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Abstract—Though intensive research efforts have been devoted
to the study of the link scheduling problem in wireless networks,
no previous work has discussed this problem for cooperative
communication networks, in which receivers are allowed to
combine messages from different senders to combat transmission
errors. In this paper, we study the link scheduling problem in
wireless cooperative communication networks, in which receivers
are allowed to combine copies of a message to combat fading.
We formulate two problems named cooperative link scheduling
problem (CLS) and one-shot cooperative link scheduling problem
(OCLS). The first problem aims to find a schedule of links
that uses the minimum number of time slots to inform all the
receivers. The second problem aims to find a set of links that
can inform the maximum number of receivers in one time slot.
As a solution, we propose an algorithm for both CLS and OCLS
with g(K) approximation ratio, where g(K) is so called diversity
of key links. In addition, we propose a greedy algorithm with
O(1) approximation ratio for OCLS when the number of links
for each receiver is upper bounded by a constant. Simulation
results indicate that our cooperative link scheduling approaches
outperform non-cooperative ones.

1. Introduction

In wireless networks, the problem of scheduling link
transmissions, or the scheduling problem, has been a subject
of much interest over the past years. In the scheduling
problem, given a set of links, we need to determine which
links should be active at what times and at what power levels
should communication take place. The goal of the problem is
to optimize one or more of performance objectives, such as
network throughput, delay or energy consumption. Though the
scheduling problem has been well studied based on various
network models [1]–[11], to the best of our knowledge,
none of the previous works takes into account cooperative
communication (CC) for this problem based on SINR model,
in which receivers are allowed to cooperatively combine the
received messages to combat transmission errors.

It has been shown that CC has a great potential to increase
the capacity of wireless networks [12]–[14]. In wireless net-
works, before a message reaches the destination (receiver), it
may have several copies stored by other nodes. For example,
the sender’s neighboring nodes can store the unintended mes-
sage from the sender due to the broadcast nature of wireless
transmission; also, in multi-hop transmission, relay nodes can

Figure 1. Schedule cooperative links.

store the copies of the original message. In CC, the nodes stor-
ing the copies (including the original message) are allowed to
send the copies to the receiver simultaneously, and the receiver
can combine the signal power of the received copies in an
additive fashion using a cooperative diversity technique (e.g.,
maximal ratio combining (MRC)) [12] to recover the message.
Fig. 1 gives a simple example for CC: suppose v4 has received
and stored the messages from v5, then v4 and v5 are able to
send the message together to their destination v3. Because v3

can combine the messages transmitted from v4 (in link l2) and
v5 (in link l3), the opportunity for v3 to decode the message is
increased. In this paper, we call the links that transmit the same
message cooperative links. For example, the links l2 (from v4

to v3) and l3 (from v5 to v3) in Fig. 1 are cooperative links.
The objective of our work in this paper is to study the link

scheduling problem in wireless cooperative communication
networks, namely the cooperative link scheduling problem.
Similar to the works in [5]–[9], we consider the problem
separately from the routing problem and the power control
problem, each of which constitutes a topic of their own.
Therefore, we concentrate our attention on scheduling single-
hop links, assuming all senders transmit at a fixed power level.
In summary, our problem has two main differences from the
traditional scheduling problem: 1) the received signal power of
cooperative links (e.g. l2 and l3 in Fig. 1) can be combined in
an additive fashion at the receiver, and 2) the metric measured
in the problem is the number of receivers to be informed, rather
than the number of links activated. Notice that the second
difference implies that a link will not transmit message once
its destination has been informed. Take Fig. 1 for example,
l2 is no longer need to be activated if v3 has decoded the
message from l3.

When studying the scheduling problem in wireless net-
works, the choice of the interference model is of fundamental
significance. The most commonly used interference model
in traditional scheduling problem is so called graph based



model [1], [2], which typically defines a set of interference
edges to describe the conflicts among nodes, thus modeling
interference as a binary measure. Such models cannot describe
the interference in CC, because they assume that the signal
power of each link is independent, while in CC the signal
power of the copies of the same message can be combined.
Comparing to graph based model, another interference model,
named physical interference model (or SINR model), offers a
more realistic representation of wireless networks. In such a
model, a message is received successfully iff the SINR, i.e.
the ratio of the received signal power to noise plus the sum
of the interference caused by all other nodes, is no smaller
than a hardware-defined threshold. This definition of a suc-
cessful transmission, as opposed to the graph-based definition,
accounts also for CC. However, the SINR model makes the
analysis of algorithms more challenging than the graph-based
model.

In this paper, we study the link scheduling problem based
on the SINR model. The objective of this work is to opti-
mize delay or throughput of the network. To achieve these
two goals, we formulate two problems, namely cooperative
link scheduling problem (CLS) and one-shot cooperative link
scheduling problem (OCLS). The first problem aims to find a
schedule of links to inform all the receivers using the minimum
number of time slots. In other words, it tries to minimize the
maximum delay of all the receivers. The second problem aims
to find a set of links to maximize the number of receivers
informed in one slot. As a solution, we propose two link
length diversity (LLD) based algorithms LLD-CLS and LLD-
OCLS to solve CLS and OCLS, respectively. The basic idea
of these two algorithms is to partition all the links into several
classes based on their length (i.e., distance between the link’s
sender and receiver) and schedule the links in each class
separately. We prove that both LLD-CLS and LLD-OCLS have
g(K) approximation ratio, where g(K) denotes the diversity
of key links (Definition 5.2 and Definition 5.3). In addition,
we consider a special case of the OCLS problem, in which
the number of links for each receiver is upper bounded by
a constant, and propose a simple greedy algorithm for it: in
each iteration, the algorithm greedily picks up the “strongest”
unpicked links and excludes any link that conflicts with the
links we have selected. We prove that this greedy algorithm
has O(1) approximation ratio. Simply put, we mainly have
two contributions:
1) We formulate two problems: CLS and OCLS.
2) We propose algorithms LLD-CLS and LLD-OCLS for CLS
and OCLS, respectively, with g(K) approximation ratio. Fur-
thermore, we propose an algorithm with O(1) approximation
guarantee for OCLS when the number of senders in each
request is upper bounded by a constant.

The remainder of this paper is organized as follows. Sec-
tion 3 builds the mathematical model for the link scheduling
problem. Section 2 presents related work. Section 4 defines the
CLS problem and the OCLS problem and proves the hardness
of both problems. In Section 5, we propose one algorithm
for CLS and two algorithms for OCLS. Section 6 evaluates
the performance of our proposed schemes in comparison with
other algorithms. Section 7 concludes this paper with remarks
on our future work.

2. Related Work

Recently, intensive research efforts have been devoted to
the study of the link scheduling problem. We categorize these
works based on the interference model they used: graph-based
model and SINR model.
Graph-based model. Graph based models have been served
as the useful abstraction for studying scheduling problems for
many years [1], [2]. For example, Sharma et al. [1] defined
a k-hop interference model for the problem, in which no two
links within k-hops can successfully transmit at the same time.
The authors showed that when k > 1, the problems are NP-
hard and cannot be approximated within a factor that grows
polynomially with the number of nodes in the network. Hand
et al. [10] proposed a MAC protocol called RTOB, which
can achieve high reliability by making efficient use of radio
channels based mobile slotted Aloha. Murakami et al. [11] pre-
sented an framework where multiple APs working on the same
channel concurrently transmit frames to avoid interference
and hence increase the throughput. Although these algorithms
present extensive theoretical analysis, they are constrained to
the limitations of a model that ultimately abstracts away the
accumulative nature of wireless signals.
SINR model. There are many works on the link scheduling
problem under SINR model [5]–[9]. Goussevskaia et al. [5]
first formulated this problem in the geometric SINR model,
where nodes are arbitrarily distributed in 2D Euclidean space,
and showed that the formulated problem is NP-hard. They
then proposed a greedy algorithm for the problem with per-
formance guarantee O(g(L)), where O(g(L)) is so-called link
diversity of the networks. Goussevskaia et al. also formulated
a variation of the problem, in which analog network coding
is allowed, and presented NP-hard proof of the problem [7].
Chafekar et al. [6] proposed an algorithm for the scheduling
problem with SINR constraints, with O(g(D)) performance
guarantee, where O(g(D)) is the ratio between the maximum
and the minimum distances between nodes. In addition, some
works focus on designing algorithms with lower approxima-
tion guarantee [8], [9]. [8] proposed a scheduling algorithm
with constant approximation guarantee, which is independent
of the topology and the size of the network. Though the link
scheduling problem has been well studied in various models,
as far as we know, no previous work considers CC.

3. The System Model

In this section, we introduce the mathematical mod- el used
throughout this paper. Consider a finite set of nodes V , a set of
links L ⊆ V ×V , and a set of requests F = {f1, ..., fN}. Each
request fi (1 ≤ i ≤ N ) can be represented by a tuple (Ii, ri)
(Ii ⊂ L and ri ∈ V ), where Ii and ri denote the set of links
and the receiver in fi, respectively. The set of all receivers is
denoted by R = {r1, ..., rN}. For each receiver ri, we call Ii
the desired link set of ri. We represent the link from a sender
s to its destination r by ls,r. The Euclidean distance between
any two nodes u, v ∈ V is denoted by du,v, and the length
of a link ls,r, denoted by d(ls,r), is defined as the Euclidean
distance between s and r: d(ls,r) , ds,r. We assume a time
slotted system with time slots normalized to integral units, so



that slot boundaries occur at times t ∈ {0, 1, 2, ...}, and slot t
refers to the time interval [t, t+1). It is assumed that the length
of every link is known at the beginning of each time slot.
Geometric SINR (SINRG) model. In the Signal to Interfer-
ence plus Noise Ratio (SINR) model, whether a message can
be transmitted correctly depends on the ratio of the received
signal strength and the sum interference caused by the senders
sending simultaneously plus noise level. In this paper, we
consider a geometric SINR (SINRG) model, in which the
nodes live in 2D Euclidean space, and the gain (or signal
attenuation) between two nodes is determined by the distance
between the two nodes. In particular, a signal fades with the
distance to the power of α, namely path loss parameter. The
exact value of α depends on external conditions of the medium
(e.g., humidity) and the exact sender-receiver distance. By
convention, we assume that α > 2. We also assume that all
nodes transmit with the same power level P . Then, for any
link ls,r, the signal power received at the receiver r is

P (ls,r) = P × d(ls,r)
−α. (1)

For any link ls′,r′ such that r′ 6= r, the interference of ls′,r′
on ls,r is calculated by

Pinterf(ls′,r′ , ls,r) = P × d−αs′,r. (2)

We define: SINR(ls,r) ,
P×d(ls,r)−α∑

l
s′,r′∈I\ls,r

P×d−α
s′,r+N0

, where I is

the set of all active links and N0 is noise power density. Then,
a message from s to r can be decoded correctly iff SINR(ls,r)
is no smaller than the decoding threshold γth.
Cooperative communication. In CC, the reliability of a
message can be improved by using several different links to
transmit the copies of the message to one receiver, namely
diversity gain. The multiple copies of a message can be
combined at the receiver into a single message to combat
fading. For this process, we assume the Maximum Ratio
Combining (MRC) filter [12] as commonly used in diversity
receivers. It can be modeled by computing the sum of all
the received instantaneous SINRs. If this sum is above the
decoding threshold, the original message can be successfully
decoded from the packet copies. We use Ii to represent the
set of active links in Ii. Let I = ∪Ni=1Ii denote the set of all
active links. Then, the SINR for a receiver ri is defined by

SINRri ,

∑
ls,ri∈Ii

Pd(ls,ri)
−α∑

ls,r∈I\Ii Pd
−α
s,ri +N0

. (3)

For the sake of simplicity, in the following, we ignore the
influence of N0 in the calculation of SINR since N0 has no
significant effect on the results [5]. Then,

SINRri ,

∑
ls,ri∈Ii

d(ls,ri)
−α∑

ls,r∈I\Ii d
−α
s,ri

(4)

and ri can correctly decode the message (or be informed) iff
SINRri ≥ γth.

4. Problem Formulation and Analysis

In this section, we formulate two problems, named CLS
(Section 4.1) and OCLS (Section 4.2), and prove that the
problems are NP-hard.

4.1. The CLS problem

For the CLS problem, we determine the set of active links
at each time slot. Hence, a CLS schedule can be represented
by a link set sequence Icls = {I1, ..., IT }, where It is the
set of active links at time slot t and T is the number of
time slots the schedule takes. We say a CLS schedule is
feasible iff this schedule enables every intended receiver to
be informed. The objective of the CLS problem is to find
a feasible CLS schedule that takes the minimum number of
time slots. Formally, the decision version of CLS is defined
as follows:
Instance: A finite set of nodes in a geometric plane V , a set
of requests F = {f1, ..., fN} (each request fi ∈ F has a set
of links Ii and a receiver ri), and constants γth and T .
Question: Existence of a CLS schedule Icls s.t.

• It ∩ It′ = φ ∀1 ≤ t < t′ ≤ T ;
• each ri can be informed by time slot T .

4.2. The OCLS problem

In contrast to the CLS problem, which aims to inform
all the receivers using the minimum number of time slots,
the objective of the OCLS problem is to pick a subset of
links, denoted by Iocls, such that the number of receivers to
be informed is maximized. In other words, we attempt to use
one slot to its full capacity. Formally, we define the decision
version of the OCLS problem as follows:
Instance: A finite set of nodes in a geometric plane V , a set
of requests F = {f1, ..., fN} (each request fi ∈ F has a set
of links Ii and a receiver ri), and constants γth and M .
Question: Existence of a subset of links Iocls s.t. at least M
receivers can be informed.

5. Approximation Algorithms

When each flow has only one link, CLS and OCLS are
actually the scheduling problem and one-shot scheduling
problem in [5], respectively, both of which are proved to
be NP-hard. Hence, both CLS and OCLS are also NP-hard.
Due to the hardness of CLS and OCLS, no polynomial time
algorithm exists for determining the optimal schedule for
either problem. In this section, we propose a link length
diversity (LLD) based algorithm for both CLS (Section
5.2) and OCLS (Section 5.3), with a bounded performance
guarantee O(g(K)). In addition, we propose a constant
approximation ratio algorithm for OCLS, when the link set
size for each request is upper bounded by a constant (Section
5.4). Before presenting these algorithms, we first introduce
some definitions and notations (Section 5.1).

5.1. Definitions and Notations

Definition 5.1. (Relative interference (RI)) Given a receiver
ri and its active desired link set Ii, the RI of link ls,r
(r 6= ri) on ri is the increase caused by ls,r in the inverse
of the SINR at ri, scaled by γth

RIls,r (ri, Ii) = γth ·
d−αs,ri∑

l∈Ii d(l)−α
. (5)



Similarly, the RI of a set of links I ′ (I ′∩Ii = φ) on ri is the
sum RI of the links in I ′ on ri

RII′(ri, Ii) =
∑
l∈I′

RIl(ri, Ii). (6)

Property 5.1. Suppose all links in a link set I ′ are activated
simultaneously, then a receiver ri, with active desired link
set Ii, can be informed iff RII′(ri, Ii) ≤ 1.

Lemma 5.1. Given a set of disjoint link sets I1, ..., In and a
receiver ri, which has active desired link set Ii (Ii∩Ij =
φ, ∀1 ≤ j ≤ n), the RI of the union I = ∪nj=1Ij on a
receiver ri is the sum RI of all link sets I1, ..., In on ri:

RII(ri, Ii) =

n∑
j=1

RIIj (ri, Ii). (7)

Proof By Definition 5.1,

RII(ri, Ii) =

n∑
j=1

∑
l∈Ij

RIl(ri, Ii) =

n∑
j=1

RIIj (ri, Ii). (8)

Definition 5.2. (Key link) Given a receiver ri and its link set
Ii. The key link of ri, denoted by κ(ri), is defined as the
shortest link in Ii:

κ(ri) , arg min{d(l)|l ∈ Ii}. (9)

In the following, we use K = {κ(r1), ..., κ(rN )} to denote
the set of all key links.

Definition 5.3. (Length diversity) Length diversity [5] of a
set of links L, denoted by g(L), indicates the number
of magnitudes of link distances of L. We define the link
length set of L by

G(L) , {h|∃l, l′ ∈ L : blog(d(l)/d(l′))c = h}, (10)

and define the link length diversity (LLD) by g(L) ,
|G(L)|. In reality, g(L) is usually a small constant [5].

Definition 5.4. (Receiver density) Given a set of receivers R
and an area A (e.g., a square), the receiver density of R
in A is defined as the number of receivers in R that reside
in A.

5.2. LLD based algorithm for CLS

The LLD based algorithm for CLS (LLD-CLS for short)
consists of three steps: 1) Calculate the key link for each
receiver; 2) Build disjoint link classes according to the links’
length; 3) For each link class, construct a feasible schedule
using a greedy strategy. In the following we introduce this
algorithm in detail.

As we stated in the introduction part, CC can help each
receiver decode the message from its desired link set. How-
ever, it also generates more interference to other links that
transmit the message simultaneously. Hence, we set a link
size constraint ∆ for each request in LLD-CLS. The algorithm
starts by calculating the key link set K and its link length set

Algorithm 1: Pseudo code for LLD-CLS.
input : {L1, ..., Lg(K)}, {R1, ..., Rg(K)};
output: Icls = {I1, I2, ...It};

1 t← 0;
2 for k ← 1 to g(K) do
3 Partition the region into squares Ak = {Aka,b} of

size βk × βk;
4 Color the squares with {1, 2, 3, 4} s.t. no two

adjacent squares have the same color (see Fig. 2
(a));

5 for j ← 1 to 4 do
6 while Rk has receivers located in squares in j

do
7 t← t+ 1;
8 for each square in j that has receivers in

Rk do
9 Pick one receiver ri in the square;

10 if |Ii| > ∆ then
11 Add the shortest ∆ links in Ii to It;
12 else
13 Add all the links in Ii to It;
14 Remove ri from Rk;

15 return Icls = {I1, I2, ...It};

G(K) = {h1, ..., hg(K)}. Then, we build g(K) disjoint link
classes L1, ..., Lg(K) from L, s.t.

Lk = {l ∈ L|2hk · σ ≤ d(l) < 2hk+1 · σ} (11)

where σ is the length of the shortest link in L. Next, each
link set Lk is scheduled separately (see Algorithm 1). When
scheduling Lk, the whole region is partitioned into a set of
squares Ak = {Aka,b}, where (a, b) represents the location of
the square in the grid and each square has size βk = 2hk+1·σβ,
where

β =

(
8∆(α− 1)γth

α− 2

) 1
α

. (12)

Then, all the squares in Ak are colored regularly with 4 colors
(see Fig. 2 (a)). Links whose receivers belong to different cells
of the same color are scheduled simultaneously (lines 6-12).

Notice that each receiver’s key link must be in one of these
classes. Hence, we can partition the receiver set R into g(K)
disjoint receiver classes R1, ..., Rg(K) based on the link classes
the receivers’ key links belong to, i.e., Rk = {ri|κ(ri) ∈
Lk, ri ∈ R}. In Algorithm 1, the goal of scheduling each link
class Lk is actually to make all receivers in Rk be informed. In
Theorem 5.1, we show that the schedule calculated by LLD-
CLS is feasible, i.e., any receiver ri ∈ Rk can be informed by
the active links in Lk.

Theorem 5.1. LLD-CLS is feasible.

Proof Without loss of generality, we examine any receiver
ri ∈ Rk. Because κ(ri) ∈ Lk, 2hkσ ≤ κ(ri) < 2hk+1σ,



(a) Partition and coloring (b) Proof of Theorem 5.1

Figure 2. LLD based algorithm for CLS.

which implies that the signal power received at ri from its
active desired link set Ii is at least

PIi,ri ≥ P/2α(hk+1)σα. (13)

Now, we consider the interference caused by the transmission
from other requests. Suppose ri is located in square Aka,b,
since links are scheduled concurrently iff their receivers reside
in the square with the same color, the interference can only
be caused by the senders whose receivers are in Aka±2q,b±2q,
Aka±2q,b∓2q, A

k
a,b±2q, and Aka±2q,b, where q ∈ N (see Fig. 2

(b)). We represent the set of all active links whose receivers
are in the 8q squares by Qkq . For any link l ∈ Qkq , because the
distance between ri and l’s sender is at least 2qβk − 2hk+1σ,
the RI of l on ri is at most

RIl(ri, Ii) ≤ P × (2qβk − 2hk+1σ)−α

PIi,ri
· γth

≤ (2qβk − 2hk+1σ)−α

2−α(hk+1)σ−α
· γth

= (2qβ − 1)−α · γth. (14)

Since there are at most 8q∆ links in Qkq , the RI of Qkq on ri
is upper bounded by

RIQkq (ri, Ii) =
∑
l∈Qkq

RIl(ri, Ii) ≤
8q∆ · γth

(2qβ − 1)α
, (15)

and the RI of all active links Qk = ∪qQkq on ri is upper
bounded by (according to Lemma 5.1))

RIQk(ri, Ii) =

∞∑
q=1

RIQkq (ri, Ii)
∞∑
q=1

8q∆γth

(2qβ − 1)α

≤
∞∑
q=1

8q∆γth

qαβα
≤ 8∆γth

βα
α− 1

α− 2
= 1,

which implies that ri can be informed.

Now, we turn our attention to the approximation ratio of
LLD-CLS (Theorem 5.2). To prepare the proof of Theorem
5.2, we first introduce the following two Lemmas. Table 1
lists some notations used in the proofs.
Lemma 5.2. The number of time slots calculated by LLD-

CLS, denoted by Tlld, is upper bounded by Tlld ≤ 4 ·
ρ(Awmax) · g(K).

TABLE 1. NOTATIONS.

Notation Description
ρ(Ak

a,b) The receiver density of Rk in Ak
a,b.

Ak
max The square that has the highest ρ(Ak

a,b) in Ak .
Aw

max The square that has the highest ρ(Ak
max) over

all A1
max, ..., Ag(K)+1

max . Without loss of
generality we assume that Aw

max is in Aw .

Proof Our first observation is that when the link set Lk are
scheduled (the loop in lines 4-8 in Algorithm 1), only the
receivers in Rk are newly informed in this loop. Otherwise,
the receiver must have been informed in some previous loop.
It implies that there are at most ρ(Akmax) receivers required
to be informed in each square in this loop. Then, the inner
repeat loop (lines 7-10) can be repeated at most ρ(Akmax)
times. Given that there are 4 colors and g(K) link classes, the
number of time slots Tlld in this algorithm is upper bounded
by

Tlld ≤
g(K)∑
k=1

4 · ρ(Akmax) ≤ 4 · ρ(Awmax) · g(K). (16)

Lemma 5.3. Given a pair of receivers r1, r2 ∈ Rk that are
located in a square Aka,b. Represent the active desired link
sets of r1 and r2 by I1 and I2, respectively. The RI
of I2 on r1 is then lower bounded by: RII2(r1, I1) ≥
ηγth ·

PI2,r2
PI1,r1

, where η is a constant η =
(
1 + 2

√
2β
)−α

,
and PI1,r1 and PI2,r2 are the signal powers that r1 and
r2 receive from their active desired link sets I1 and I2,
respectively

Proof Because both r1 and r2 reside in the same square Aka,b,
the distance between r1 and r2, denoted by dr1,r2 , is upper
bounded by

√
2βk. For any link ls,r2 ∈ I2, we have ds,r1 ≤

d(ls,r2) + dr1,r2 (triangular inequality) and d(ls,r2) ≥ 2hk · σ,
then we can derive

d(ls,r1)−α

d(ls,r2)−α
≥
(
d(ls,r2) + dr1,r2

d(ls,r2)

)−α
≥

(
1 +

√
2βk

2hk · σ

)−α
=
(

1 + 2
√

2β
)−α

.

Hence, we can get that

PI2,r1
PI2,r2

=

∑
ls,r∈I2 P · d

−α
s,r1∑

ls,r2∈I2
P · d(ls,r2)−α

≥
(

1 + 2
√

2β
)−α

= η.

(17)
Consequently, we can derive

RII2(r1, I1) = γth
PI2,r1
PI2,r2

PI2,r2
PI1,r1

≥ ηγth
PI2,r2
PI1,r1

. (18)

Theorem 5.2. LLD-CLS’s approx. ratio is O(g(K)).

Proof We proceed by showing that an optimum solution OPT
can inform all the receivers in Rw in Awmax using at least
Tw = dρ(Awmax)/me time slots, where m is a constant

m = d(ηγth)−1 + 1e. (19)



For the sake of contradiction, assume that OPT informs Rw
using less than Topt time slots. Therefore, there must exist
a time slot t, 1 ≤ t ≤ Tw, such that at least m + 1
receivers in Rw located in Awmax are informed simultane-
ously. Without loss of generality, let r1, r2,..., rm+1 be the
m + 1 receivers informed at this time slot, which have the
active desired link sets I1, ..., Im+1, respectively, and let
PI1,r1 = min{PIi,ri |k = 1, 2, ...,m+ 1}, where PIi,ri repre-
sents the signal power ri receives from Ii (i = 1, 2, ...,m+1).
Hence, the RI of I = ∪m+1

i=2 Ii on r1 is given by (according
to Lemma 5.1 and Lemma 5.3)

RII(r1, I1) =

m+1∑
i=2

RIIi(r1, I1) (20)

≥
m+1∑
i=2

ηγth ·
PIi,ri
PI1,r1

> 1 (21)

which implies r1 cannot be informed. Hence, it needs at least
dρ(Awmax/m)e time slots for OPT to inform all the receivers
in Rw in Awmax. On the other hand, LLD-CLS can inform
all receivers within Tlld ≤ 4 · ρ(Awmax) · g(K) time slots (by
Lemma 5.2). Therefore the approximation ratio follows

Tlld/Topt ≤ Tlld/Tw ≤ 4m · g(K) = O(g(K)), (22)

where Topt denotes the number of time slots that the optimal
solution OPT needs to inform all the receivers.

5.3. LLD based algorithm for OCLS

Similar to LLD-CLS, in the LLD based algorithm for
OCLS (or LLD-OCLS for short), we construct g(K) disjoin-
t link classes L1, L2, ..., Lg(K) according to Equ. (11) and
schedule each link class separately (Algorithm 2). For each
link class Lk we partition the whole network region into a
set of squares Ak = {Aka,b} and color these squares with 4
colors j ∈ {1, 2, 3, 4}, where each square has size βk × βk.
Then, we pick up one receiver for each square of color j
(if the square has receivers in Rk) and add the receiver’s
active desired link set to I(k, j). Note that if the size of
desired link set is larger than ∆, we pick the shortest ∆ links
from the link set. Consequently, we can get 4g(K) feasible
schedules: I(k, j) (k = 1, ..., N, j = 1, 2, 3, 4). Finally, the
schedule with most receivers informed is determined (line
12): Iocls = arg max{U(I(k, j))|I(k, j),∀k, j}, where U(I ′)
denotes the number of receivers informed by link set I ′. Since
we pick one receiver per selected square, the feasibility of the
schedule constructed by Algorithm 2 has been proved in The-
orem 5.1. In the next theorem, we calculate the approximation
ratio of this algorithm.
Theorem 5.3. LLD-OCLS has approximation ratio O(g(K)).

Proof We start the proof by defining Imax(k) ,
arg max{U(I(k, j))|I(k, j), j = 1, 2, 3, 4}.. Since Algorithm
2 returns the schedule of the maximum number of informed
receivers over all length classes and colorings, the number
of receivers informed by LLD-OCLS is given by Ulld =
max{U(Imax(k)), k = 1, 2, ..., g(K)}. We use Uopt to repre-
sent the number of receivers informed by the optimal solution

Algorithm 2: Pseudo code for LLD-OCLS.
input : {L1, ..., Lg(K)}, {R1, ..., Rg(K)};
output: Iocls;

1 for k ← 1 to g(K) do
2 Partition the region into squares Ak = {Aka,b} of

size βk × βk;
3 Color the squares with {1, 2, 3, 4} s.t. no two

adjacent squares have the same color (see Fig. 2
(a));

4 for j ← 1 to 4 do
5 for each square in j that has receivers in Rk do
6 Pick one receiver ri in the square;
7 if |Ii| > ∆ then
8 Add the shortest ∆ links in Ii to

I(k, j);

9 else
10 Add all the links in Ii to I(k, j);

11 Remove ri from Rk;

12 Iocls ← arg max{U(I(k, j))|I(k, j),∀k, j};
13 return Iocls;

OPT. Also, we use Ukopt to denote the number of receivers
in Rk informed by OPT. Then, we have Uopt =

∑g(K)
k=1 U

k
opt.

In Theorem 5.2 we have showed that any feasible schedule
can inform at most m (defined in Equ. (19)) receivers in each
square inAk at each time slot. Then, Ukopt/U(Imax(k)) ≤ 4m·
and the approximation ratio follows:

Uopt

Ulld
=

g(K)∑
k=1

Ukopt

Ulld
≤
g(K)∑
k=1

Ukopt

U(Imax(k))
≤ 4m · g(K). (23)

5.4. A greedy algorithm for OCLS

In this section, we present a greedy algorithm (see
Algorithm 3) for a special case of OCLS, in which the desired
link set of each receiver is upper bounded by a constant Ω
(Ω ≥ 2). For example, three-node model for CC [15] assumes
that there are at most two senders for each receiver. In
each iteration, the algorithm greedily selects the uninformed
receiver with the shortest key link in K, say ri, and activates
all the links with lengths no larger than ξ ·d(κ(ri)) in Ii, where
ξ is a constant set by the algorithm. To guarantee that ri is
informed, the algorithm deletes the links that may conflict with
the selected links. First, all links whose senders are within the
radius c·d(κ(ri)) of the receiver ri are removed from L, where

c is a constant c =
√

2 ·
(

10Ω·(α−1)·γth
α−2

) 1
α

+ξ. Second, for any
link set Ij , such that the RI of the selected links on rj rose
above 1/2, is removed. This process (lines 3-7) is repeated
until all links in L have been either active or deleted. Next,
we prove that the obtained schedule from the OCLS algorithm
is both feasible (Theorem 5.4) and competitive, i.e., is only
a constant factor away from the optimum (Theorem 5.5).

Let ri be any receiver selected in Algorithm 3, which has
active desired link set Ii, and let I−i and I+

i be the set of
links added after and before Ii, respectively.



Algorithm 3: Pseudo code for the greedy algorithm.
input : L = {I1, ..., IN}
output: Iocls

1 Iocls ← φ;
2 while L 6= Iocls do
3 Pick up the receiver ri with the shortest link in L;
4 Add the link set Ii = {l ∈ Ii|d(l) < ξ · d(κ(ri))} to

Iocls;
5 Remove Ii\Ii from L;
6 Remove all the links ls,r, s.t. ds,r < c · d(κ(ri))

from L;
7 Remove any link set Ij , s.t. RIIocls(rj , Ij) > 1/2;

8 return Iocls;

(a) Proof in Lemma 5.4 (b) Proof in Theorem 5.4

Figure 3. Proof of the approximation ratio of the greedy algorithm.

Lemma 5.4. The distance between the senders for different
receivers in I+

i is lower bounded by (c− ξ)d(κ(ri)).

Proof For any receiver rj whose active desired links are in
I+
i , there is no sender (in different request with rj) in I+

i that
has distance smaller than c · d(κ(rj)) from rj . Using this fact
and the triangular inequality (see Fig. 3 (a)), we can lower
bound the distance between two senders in different requests
in I+

i

ds,s′ ≥ ds′,rj − ds,rj ≥ ds′,rj − ξ · d(κ(rj))

≥ c · d(κ(rj))− ξ · d(κ(rj))

≥ (c− ξ)d(κ(ri)). (24)

Theorem 5.4. LLD-OCLS is feasible.

Proof When a link set Ii of ri is added to the schedule, the
RI of I−i on ri must be no larger than 1/2; otherwise, it has
already been deleted in a previous step. Therefore, the RI on
ri by concurrently active link set I−i is RII−i (ri, Ii) ≤ 1/2.
It remains to show that RII+i (ri, Ii) ≤ 1/2. The transmission
power received at ri from its active link set Ii is at least

PIi,ri ≥ P/d(κ(ri))
α. (25)

We partition the whole network region into squares with size
χri ×χri (see Fig. 3 (b)), where χri =

√
2(c− ξ)d(κ(ri))/2.

According to Lemma 5.4, any two senders for different re-
ceivers in I+

i cannot be located in the same square. We use
Qiq to denote the set of links whose senders are in the squares
that are q·χri away from ri. Then, there are at most 4(q+1)·Ω

links in Qiq. The distance between the senders in Qiq and ri
is at least q · χri , so the RI of l on ri is at most

RIl(ri, Ii) ≤
Pχ−αri
PIi,ri

≤
(
q
√

2(c− ξ)/2
)−α

. (26)

The RI of Qiq on ri is then upper bounded by

RIQiq (r, Ii) =
∑
l∈Qiq

RIl(ri, Ii) ≤
4(q + 1)Ω

(q
√

2
2 (c− ξ))α

, (27)

and the RI of all active links I+
i = ∪qQiq on ri is upper

bounded by (according to Lemma 5.1)

RII+i
(ri, Ii) =

∞∑
q=1

RIQiq (ri, Ii)

≤
∞∑
q=1

4(q + 1)Ω · γth

(q ·
√

2
2 (c− ξ))α

≤
∞∑
q=1

5qΩ · γth

(q ·
√

2
2 (c− ξ))α

=
5Ω · γth

(
√

2
2 (c− ξ))α

1

qα−1
≤ 5Ω · γth

(
√

2
2 (c− ξ))α

α− 1

α− 2

=
1

2
. (28)

which implies that ri can be informed.

Lemma 5.5. Let Iocls be a feasible solution and let ri be
an informed receiver, which has key link ls,ri . Denote the
active desired link set of ri by Ii. The number of senders
in Iocls\Ii with distance k · d(κ(ri)) from s is at most
(k + 1)αΩ/γth.

Proof The RI of each link ls′,r′ ∈ Iocls\Ii on ri is lower
bounded by

RIls′,r′ (ri, Ii) =
d−αs′,ri · γth∑
l∈Iocls d(l)−α

≥ (ds,ri + ds′,s)
−α · γth∑

l∈Iocls d
−α
s,ri

≥ (d(ls,r) + ds′,s)
−α · γth

|Ii| · d(ls,r)−α

=
γth

|Ii|

(
1 +

ds,s′

d(ls,r)

)−α
≥ (1 + k)−αγth

Ω
(29)

Since the RI of Iocls\Ii on ri cannot exceed one, there are at
most (k+1)α ·Ω such senders senders with distance no larger
than k · d(κ(ri)) from s.

Definition 5.5. (Blue and red points [8]) Let Sr and Sb be two
disjoint sets of points (red and blue) in a 2D Euclidean
space. For any z ∈ N, a point sb ∈ Sb is z-blue-dominant
if every circle Bδ(sb) around sb, comprised by points p
such that d(p, sb) ≤ δ, contains z times more blue than
red points, or formally

|Bδ(sb) ∩ Sb| > z · |Bδ(sb) ∩ Sr| ∀δ ∈ R+. (30)

Lemma 5.6. (Blue-dominant centers lemma [8]) For any z ∈
N, if |Sb| > 5z · |Sr|, then there exists at least one z-
blue-dominant point sb in Sb. In addition, given a z-blue-
dominant point sb, for each point sr in Sr, there exists a
subset of Sb corresponding to sr, denoted by G(sr), s.t.,
1) any point in G(sr) is farther from sr than from sb: ∀s ∈



G(sr), dsr,s > dsb,s; 2) for any pair of points sr, s′r ∈ Sr,
G(sr)∩G(s′r) = φ; 3) the number of points in each subset
G(sr) is no smaller than z: |G(sr)| ≥ z ∀sr ∈ Sr.

Lemma 5.7. Denote the set of all senders in the optimal
schedule and the greedy algorithm by Sopt and Sgre,
respectively. Then, |Sopt\Sgre| ≤ 3α × 5Ω · |Sgre|.

Proof For the sake of contradiction, assume that
|Sopt\Sgre| > 3α · 5Ω × |Sgre|. Label the set of senders in
Sopt by blue (Sb = Sopt) and Sgre by red (Sr = Sgre). By
Lemma 5.6, there is a z-blue-dominant point (sender) s∗ ∈ Sb
with sender set S∗, where z = 3α × Ω. We shall argue that
the link ls∗,r∗ (or l∗ for simplicity) would have been picked
by our algorithm, which leads to a contradiction.

According to Lemma 5.6, for any red point sr ∈ Sr,
there exists a subset of blue points G(sr) such that all the
points in G(sr) are closer to s∗ than to sr and |G(sr)| ≥ z
(z = 3α×Ω). We can derive that ds∗,sr > 2 ·d(l∗); otherwise,
the number of senders within distance 2 ·d(l∗) from s∗ would
be larger than (2 + 1)α ·Ω ≥ 3α · |S∗|, which contradicts with
the conclusion in Lemma 5.5. Based on triangle inequality,
dsr,r∗ ≥ ds∗,sr − d(l∗) > ds∗,sr/2. Denote the sum signal
power that r∗ receives from S∗ by P ∗. The RI of the red
sender sr on r∗ is then upper bounded by

RIsr (r
∗,S∗) =

d−αsr,r∗P

P ∗
γth ≤

d−αsr,s∗P

2−αP ∗
γth. (31)

Also, for any point sb ∈ G(sr),

dsb,r∗ ≤ dsb,s∗ + ds∗,r∗ < dsr,s∗ + ds∗,r∗

< dsr,s∗ + dsr,s∗/2

= 3dsr,s∗/2. (32)

Hence, the sum RI of the blue senders in G(sr) on r∗ is
lower bounded∑

sb∈G(sr)

RIsb(r
∗,S∗) =

∑
sb∈G(sr)

d−αsb,r∗P

P ∗
· γth

> 3αΩ ·
(

3

2

)−α d−αsr,s∗P
P ∗

γth

≥ Ω ·RIsr (r∗,S∗). (33)

This relationship holds for any sr ∈ Sr, and G(sr) and G(s′r)
are disjoint ∀sr, s′r ∈ Sr, then the total RI that r∗ receives
from the senders in OPT (blue points) is at least Ω times
as high as the RI it would receive from the senders in the
greedy algorithm (red points). Because s∗ is in Sb, its RI on
r is at most 1. Therefore, we have

RISr (r
∗,S∗) < 1

Ω
RISb(r

∗,S∗) ≤ 1

2
. (34)

Since RISr (r
∗,S∗) is less than 1/2, it would not have

been deleted by the greedy algorithm, which establishes the
contradiction.

Theorem 5.5. Algorithm 3’s approx. ratio is O(1).

Proof Denote the number of receivers informed by the greedy
algorithm and the optimal schedule by Ugre and Uopt, respec-
tively. Then, according to Lemma 5.7,

Uopt

Ugre
≤ Ω · |Sopt|

|Sgre|
=

Ω · (|Sopt\Sgre|+ |Sgre|)
|Sgre|

≤ (3α × 5Ω + 1) Ω = O(1).

6. Performance Evaluation

In this section, we present the simulation results of LLD-
CLS, LLD-OCLS, and the greedy algorithm (CC-Greed) using
MATLAB. All nodes were distributed uniformly at random
on a plane field of size 100 × 100. In the simulation, we
measured the following two metrics: (1) maximum delay,
which is defined as the number of time slots used to inform all
receivers, and (2) throughput, which is defined as the number
of receivers informed in a single time slot. We compared these
two metrics of our algorithms with two smart non-cooperative
link scheduling algorithms: ApproxDiversity [5] and Approx-
LogN [8]. Like ours, both ApproxLogN and ApproxDiversity
are polynomial time algorithms for the SINR model. The main
difference is that ApproxLogN and ApproxDiversity do not
allow CC in transmission. Since ApproxLogN is particularly
efficient for the one-shot scheduling problem, we only com-
pare ApproxLogN with our algorithms in terms of throughput.

First, we evaluate the performance of three LLD based
algorithms: LLD-CLS, LLD-OCLS, and ApproxDiversity. In
Fig. 4 (a) and Fig. 4 (b), we vary the number of receivers
from 10 to 100 with 10 increase in each step, and compare
the maximum delay and throughput, respectively. We set the
number of senders to 200. As expected, LLD-CLS outper-
forms ApproxDiversity in maximum delay and LLD-OCLS
outperforms ApproxDiversity in throughput. This is becasue
LLD-CLS (LLD-OCLS) allows receivers to combine weak
signal powers from senders, which helps increase the oppor-
tunities for receivers to recover their messages. In addition,
we have two observations from the figures: (1) the maximum
delay increases as the LLD increases, and (2) the maximum
delay increases as the number of receivers increases. These
two observations are caused by the LLD-based algorithms’
mechanism, which first partitions the link set into disjoint link
classes, and then separately schedules the links in each class
in squares. For (1), higher LLD always generates more link
classes, leading to more time slots to schedule the whole link
set. As for (2), higher receiver density causes more nodes to
be in each square, and hence more time slots to schedule each
link class.

In Fig. 5 (a) and Fig. 5 (b), we compare different algo-
rithms when the path loss exponent α was varied from 2.5
to 6 with 0.5 increase in each step. The number of senders
and receivers are set to be 1000 and 100, respectively. Similar
to Fig. 4, both figures demonstrate that LLD-CLS and LLD-
OCLS outperform ApproxDiversity in terms of maximum
delay and throughput, respectively, because of the benefit of
CC. Another interesting observation is that with the increase of
α, the maximum delay decreases and the throughput increases
for both algorithms. This is because when α is smaller, the
size of the squares partitioned by the LLD-based algorithms
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Figure 4. Different number of receivers.
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Figure 5. Different pass loss exponent.

is larger (by Equ. (12)), which leads to more receivers located
in each square and hence more time slots to schedule each
link class.

We then compare the throughput of CC-Greed, LLD-
OCLS, ApproxDiversity, and ApproxLogN. In Fig. 6 (a), we
varied the number of receivers from 40 to 400 and set α to 3.
In Fig. 6 (b), we varied α from 2.5 to 6 and set the number
of receivers to 400. In both figures, each request has exactly
two links. From both figures, we can find that CC-Greed
is always better than ApproxLogN. Furthermore, we observe
that when the number of receivers is low, CC-Greed has no
significant better performance than LLD-OCLS and Approx-
Diversity. However, as the density of receivers increases, CC-
Greed presents increasingly better relative performance. This
is because that CC-Greed can achieve constant approximation
ratio in throughput (according to the analysis in Section 5.4),
which enables it to achieve higher throughput than LLD-OCLS
and ApproxDiversity when the receiver density of the network
is high.

7. Conclusion

In this paper, to study the link scheduling problem in CC
networks, we have formulated two problems, namely the CLS
problem and the OCLS problem. The goal of CLS is to inform
all receivers using as few time slots as possible, while the goal
of OCLS is to maximize the number of informed receivers in
one time slot. As a solution, we have proposed a link length
diversity (LLD) based algorithm for both CLS and OCLS
problems, with g(K) performance guarantee. Further, we have
proposed an algorithm with O(1) approximation guarantee for
OCLS in the case that the number of senders in each request is
upper bounded by a constant. The experimental results indicate
that our cooperative link scheduling algorithms outperform
non-cooperative algorithms. In our future work, we will take
into account probabilistic fading models for this problem.
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