
A Low-Cost Multi-Failure Resilient Replication
Scheme for High Data Availability in Cloud Storage

Jinwei Liu* and Haiying Shen†

*Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA
†Department of Computer Science, University of Virginia, Charlottesville, VA 22904, USA

jinweil@clemson.edu, hs6ms@virginia.edu

Abstract—Replication is a common approach to enhance data
availability in cloud storage systems. Previously proposed replica-
tion schemes cannot effectively handle both correlated and non-
correlated machine failures while increasing the data availability
with the limited resource. The schemes for correlated machine
failures must create a constant number of replicas for each data
object, which neglects diverse data popularities and cannot utilize
the resource to maximize the expected data availability. Also, the
previous schemes neglect the consistency maintenance cost and
the storage cost caused by replication. It is critical for cloud
providers to maximize data availability (hence minimize SLA
violations) while minimizing cost caused by replication in order to
maximize the revenue. In this paper, we build a nonlinear integer
programming model to maximize data availability in both types
of failures and minimize the cost caused by replication. Based
on the model’s solution for the replication degree of each data
object, we propose a low-cost multi-failure resilient replication
scheme (MRR). MRR can effectively handle both correlated and
non-correlated machine failures, considers data popularities to
enhance data availability, and also tries to minimize consistency
maintenance cost and storage cost. Extensive numerical results
from trace parameters and experiments from real-world Amazon
S3 show that MRR achieves high data availability, low data loss
probability and low consistency maintenance cost and storage
cost compared to previous replication schemes.

I. INTRODUCTION

Datacenter storage system (e.g., Hadoop Distributed File

System (HDFS) [1], RAMCloud [2], Google File System

(GFS) [3] and Windows Azure [4]) is an important component

of cloud datacenters, especially for data-intensive services in

this big data era. It is critical for cloud providers to reduce the

violations of Service Level Agreements (SLAs) for tenants

to provide high quality-of-service and avoid the associated

penalties. For example, a typical SLA required from services

that use Amazon’s Dynamo storage system is that 99.9% of the

read and write requests execute within 300ms [5]. Therefore,

a storage system must guarantee data availability for different

applications to comply to SLAs, which is, however, a

non-trivial task. In many cloud services such as Amazon,

Google App Engine and Windows Azure, the server failure

probability is in the range of [1%, 10%] and the corresponding

data availability is in the range of [99.9%, 99.99%] [6].
Data availability is usually influenced by data loss, which is

typically caused by machine failures including correlated and

non-correlated machine failures coexisting in storage systems.

The former means multiple nodes fail (nearly) simultaneously,

while the latter means nodes fail individually. Correlated ma-

chine failures often occur in large-scale storage systems [7]–

[9] due to common failure causes (e.g., cluster power outages,

workload-triggered software bug manifestations, Denial-of-

Service attacks). For example, in cluster power outages [10],

[11], a non-negligible percentage (0.5%-1%) of nodes [1], [10]

do not come back to life after power is restored [12]. Corre-

lated machine failures cause significant data loss [12], which

have been documented by Yahoo! [1], LinkedIn [10] and

Facebook [13]. Non-correlated machine failures [8] are caused

by reasons such as different hardware/software compositions

and configurations, and varying network access ability.

Replication is a common approach to reduce data loss and

enhance data availability. The data popularity consideration in

replication is critical to maximize the expected data availabil-

ity1. Due to highly skewed data popularity distributions [16],

popular data with considerably higher request frequency

generates heavier load on the nodes, which may lead to data

unavailability at a time. On the other hand, unpopular data with

few requests wastes the resources for storing and maintaining

replicas. Thus, an effective replication scheme must consider

the diverse data popularities to use the limited resources (e.g.,

memory) [17], [18] to increase expected data availability.

Though creating more replicas for data objects improves

data availability, it comes with higher consistency maintenance

cost [19]–[21] and storage cost [22], [23]. In consistency

maintenance, when data is updated, an update is sent to

its replica nodes. In addition to the number of replicas, the

consistency maintenance cost and storage cost are also affected

by the geographic distance and storage media (e.g., disk, SSD,

EBS), respectively. To reduce the cost, we need to minimize

the number of replicas, limit the geographic distance of replica

nodes and replicate the additional replicas beyond the required

storage of applications to less expensive storage media while

still provide SLA guarantee. Therefore, effective replication

methods must maximize expected data availability (by consid-

ering both correlated and non-correlated machine failures and

data popularity) and minimize the cost caused by replication

(i.e., consistency maintenance cost and storage cost) [20], [24].

Random replication has been widely used in datacenter stor-

age systems including HDFS, RAMCloud, GFS and Windows

Azure. These systems partition each data object into chunks

(i.e., partitions), each of which is replicated to a constant num-

ber of randomly selected nodes on different racks. Though ran-

1We use a service-centric availability metric: the proportion of all successful
service requests over all requests [8], [14], [15].

dom replication can handle non-correlated machine failures, it

cannot handle correlated machine failures well. The reason

is that any combination of a certain number of nodes would

form a set of nodes for storing all replicas of a data chunk

and data loss occurs if all nodes in the set experience fail-

ures simultaneously [12]. Previously proposed data replication

methods cannot effectively handle both correlated and non-

correlated machine failures and utilize the limited resource to

increase data availability simultaneously [7], [8], [12], [25].

Although many methods have been proposed to improve data

availability [7], [8], [19], [25]–[27], they do not concurrently

consider data popularities and the cost caused by replication

to increase expected data availability and decrease cost.

D
a

ta
 a

va
ila

b
ili

ty

Consistency maintenance cost

MRR

Copyset Replication

Random Replication

Figure 1: Achieving an optimal tradeoff
among data availability, storage cost and
consistency maintenance cost.

As shown in Figure

1, a key problem here is

how to achieve an opti-

mal tradeoff between in-

creasing data availability

and reducing cost caused

by replication with the

ultimate goal of SLA

compliance and revenue

maximization for cloud service providers. To address the prob-

lem, we propose a low-cost multi-failure resilient replication

scheme (MRR), which targets the application of distributed

data-intensive services and storage system. MRR is more

advantageous than previous replication schemes (e.g., Random

Replication, Copyset Replication [12]) in that it can handle

both correlated and non-correlated machine failures, and

also jointly considers data popularity and the cost caused by

replication. We summarize the contribution of this work below.
• We build a nonlinear integer programming (NLIP) model

that aims to maximize expected data availability (in both

types of failures) with the consideration of popularities and

reduce the cost caused by replication. We then use Lagrange

multipliers to derive a solution: the replication degree (i.e.,

the number of replicas) of each data object.

• Based on the solution, we propose MRR to handle both corre-

lated and non-correlated machine failures. MRR partitions all

nodes to different groups with each group responsible for repli-

cating all data objects with the same replication degree. Then,

MRR partitions nodes in a group into different sets [12]; each

set consists of nodes from different datacenters within a certain

geographic distance. The replicas of a chunk are stored in the

nodes in one set, so data loss occurs only if these nodes expe-

rience failures simultaneously. Each data chunk is replicated to

the corresponding storage medium based on its priority. MRR

reduces the frequency of data loss by reducing the number of

sets in a group, i.e., the probability that all nodes in a set fail.

• We have conducted extensive numerical analysis based on

trace parameters and experiments on Amazon S3 [28] to com-

pare MRR with other state-of-the-art replication schemes. Re-

sults show MRR achieves high data availability, low data loss

probability and low storage and consistency maintenance cost.
The remainder of this paper is organized as follows. Section

II reviews the related work. Section III presents our NLIP

model. Section IV presents the design for MRR. Section V

presents the numerical and experimental results. Section VI

concludes this paper with remarks on our future work.

II. RELATED WORK

Many methods have been proposed to handle non-correlated

or correlated machine failures. Zhong et al. [8] assumed

independent machines failures, and proposed a model that

achieves high expected service availability. However, this

model does not consider correlated machine failures hence

cannot handle such failures. Nath et al. [7] identified a

set of design principles that system builders can use to

tolerate correlated failures. Cidon et al. proposed Copyset

Replication [12] and Tiered Replication [29] to reduce

the frequency of data loss caused by correlated machine

failures by limiting the replica nodes of many chunks to

a single copyset. These methods for correlated machine

failures do not consider data popularity to minimize data

loss probability in correlated and non-correlated machine

failures. Unlike Copyset Replication and Tiered Replication,

our proposed MRR reduces probability of data loss caused

by both correlated and non-correlated machine failures with

considering data popularity, and it derives diverse replication

degrees for data objects with different popularities and thus

increases the overall data object availability by creating

more replicas for popular data objects and less for unpopular

data objects. Moreover, MRR replicates data objects with

considering reducing consistence maintenance cost and storage

cost, which is critical for cloud providers to maximize the

revenue. Thomson et al. [25] presented CalvinFS, a scalable

distributed file system, which horizontally partitions and

replicates file system metadata across a shared-nothing cluster

of servers. However, CalvinFS cannot handle both correlated

and non-correlated machine failures while minimizing cost

(e.g., consistency maintenance cost and storage cost) caused

by replication. The above previously proposed methods cannot

handle both correlated machine failures and non-correlated

machine failures while utilizing the limited resource to

increase data availability. They neglect data popularity

existing in current cloud storage system and thus cannot

fully utilize the resource to increase data availability. Also,

they do not concurrently consider minimizing the consistency

maintenance cost and storage cost caused by replication.

There is a large body of work on enhancing data

availability for distributed storage systems. Abu-Libdeh

et al. [26] presented a replication protocol for datacenter

services to provide strong consistency and high availability.

Bonvin et al. [19] proposed a self-managed key-value store

that dynamically allocates the resources of a data cloud

to several applications in a cost-efficient and fair manner.

Zhang et al. [30] presented Mojim to provide the reliability

and availability in large-scale storage systems. Mojim uses

a two-tier architecture in which the primary tier contains a

mirrored pair of nodes and the secondary tier contains the

secondary backup nodes with weakly consistent copies of

data. Yu et al. [31] used a fixed number of replicas for every

data object, and showed that the assignment of object replicas

to machines plays a dramatic role in the availability of multi-

object operations. However, most of these previous works

neglect data object popularities when determining the number

of replicas for each object, thus cannot satisfy the demands

of popular data objects or fully utilize the limited resource.

Although the works in [8], [16] consider object popularities,

they do not give a solution for handling correlated machine

failures, which is a key issue in achieving high availability in

today’s cloud datacenters [7]. In addition, they do not consider

different storage medium prices (for reducing storage cost) or

geographic distance in selecting nodes to store replicas, both

of which affect the total cost of the storage systems.
Motivated by the problems in the existing works, we pro-

pose MRR that can effectively handle both correlated and non-

correlated machine failures and also considers the factors indi-

cated in the introduction section to maximize data availability

and reduce the consistency maintenance cost and storage cost.

III. NONLINEAR INTEGER PROGRAMMING MODEL FOR

MRR
A cloud storage system usually serves multiple applications

simultaneously. Without loss of generality, we assume there

are n applications in the cloud storage, and each application

has m data objects [19]. Each data object belongs to only one

application, and is split into M partitions [19] and the data

object is lost if any of its partitions is lost [12]. Replication

degree of a data object represents the number of replicas

of the data object. We use Di j to denote the jth data object

belonging to application i (denoted by ai). Let di j be the

replication degree (number of replicas) of Di j. The replicas

of a partition of a data object are placed in a set of di j
different nodes. Suppose there are N servers in the cloud.

For analytical tractability, we assume a physical node (i.e.,

a server) belongs to a rack, a room, a datacenter, a country

and a continent. To easily identify the geographic location of

a physical node, each physical node has a label in the form

of “continent-country-datacenter-room-rack-server” [19].
Problem Statement: Given data object request

probabilities, data object sizes, space constraints for different

applications, and thresholds for request failure probability,

consistency maintenance cost and storage cost, what is the

optimal replication degree for each data object, so that the

request failure probability, consistency maintenance cost

and storage cost are minimized in both correlated and non-

correlated machine failures? Then, how to assign the chunk

replicas of data objects to the nodes to achieve the objectives?

A. Data Availability Maximization
We maximize data availability by considering both machine

failure probability and data object request probability (i.e.,

popularity). We minimize the data loss probability in both

correlated and non-correlated machine failures. Different data

objects may have different popularities, and then have different

demands on the number of replicas to ensure data availability.
1) Correlated Machine Failures: To reduce data loss in

correlated machine failures, we adopt the fault-tolerant set

(FTS) concept from [12], which is a distinct set of servers

holding all copies of a given partition. Each FTS is a single

unit of failure. That is, when an FTS fails, at least one data

object is lost. For correlated machine failures, the probability

of data loss increases as the number of FTSs increases because

the probability that the failed servers constitute at least one

FTS increases (It is more likely that the failed servers include

at least one FTSs). So we minimize the probability of data

loss by minimizing the number of FTSs.

To this end, we can statically assign each server to a single

FTS, and constrain the replicas of a partition to a randomly

selected preassigned FTS. That is, we first place the primary

replica (i.e., original copy) on a randomly selected server,

and then place the secondary replicas on all the nodes in

this server’s FTS. However, this will lead to load imbalance

problem in which some servers become overloaded while some

servers are underloaded due to data storage. On the other hand,

random replication that randomly chooses a replica holder

has a higher probability of data loss because almost every

new replicated partition creates a distinct FTS. To achieve a

tradeoff, we use the approach in Copyset Replication [12],

which assigns a server to a limited number of FTSs rather than

a single FTS. Due to the overlap of FTSs, after the primary

replica is stored in a randomly selected server, the FTS options

that can store the secondary replicas are those that hold the

server. The servers in these sets are options that can be used

to store the secondary replicas. The number of these servers

is called scatter width (denoted by S). For example, if the

FTSs that hold server 1 are {1,2,3}, {1,4,5}, then when the

primary replica is stored at server 1, the secondary replica can

be randomly placed either on servers 2 and 3 or 4 and 5. In

this case the scatter width equals to 4.

The probability of correlated machine failures equals the

ratio of the number of FTSs over the maximum number of sets:
#FT Ss/max{#sets} (1)

To reduce the probability of data loss, Copyset Replication

makes the replication scheme satisfy two conditions below:
• Condition 1: The FTSs overlap with each other by at

most one server.
• Condition 2: The FTSs cover all the servers equally.

Copyset Replication uses the Balanced Incomplete Block

Design (BIBD)-based method for any scatter width to create

FTSs that satisfy both condition 1 and 2 and minimize #FTSs.2

We define a pair (X ,A), where X is a set of servers in the

system (i.e., X = {1,2, ...,N}), and A is a collection of all FTSs

in the system. Let N,R and λ be positive integers such that N >
R ≥ 2, BIBD for (N,R,λ) satisfies the following properties:

• Each FTS contains exactly R servers.
• Each pair of servers is contained in exactly λ FTSs.

When λ = 1, the BIBD provides an optimal design for mini-

mizing the number of FTSs for scatter width S =N−1. In this

case, condition 1 ensures that each FTS increases the scatter

width for its servers by exactly R− 1 compared to the case

when λ = 0. Copyset Replication creates S
R−1

N
R FTSs. Then,

the failure probability in correlated machine failures equals:

2In implementation, Copyset Replication uses random permutation to create
FTSs.

pcor =
S

R−1

N
R
/

(
N
R

)
(2)

In random replication, the number of FTSs created is [12]:{
#FT Ss = N

(S
R−1

)
, S < N

2

#FT Ss ≈ (N
R

)
, S ≈ N

(3)

Based on Equs. (1), (3), we can calculate the probability of

correlated machine failures in random replication.
We give an example to illustrate the process of generating

FTSs. Consider a storage system with N = 12 servers, the size

of FTS R = 3, and the scatter width S = 4. Using the BIBD-

based method, the following solution of FTSs is created to

achieve less number of FTSs.
B1 = {0,1,2},B2 = {3,4,10},B3 = {6,7,8},B4 = {9,10,11},
B5 = {0,3,8},B6 = {1,4,7},B7 = {2,5,11},B8 = {5,6,9}.

For random replication, the #FTSs is 72. Hence, the prob-

ability of data loss caused by correlated machine failures is:

#FT Ss/
(

N
R

)
= 72/

(
12

3

)
= 0.327

However, for BIBD-based method from Copyset Replication,

the number of FTSs is 8, and the probability of data loss

caused by correlated machine failures is much smaller:

#FT Ss/
(

N
R

)
= 8/

(
12

3

)
= 0.036

There are many methods that can be used for constructing

BIBDs, but no single method can create optimal BIBDs for

any combination of N and R [32], [33]. Copyset Replication

combines BIBD and random permutations to generate a non-

optimal design that can accommodate any scatter width. By re-

laxing the constraint for the number of overlapping nodes from

an exact number to at most the exact number, the probability

of successfully generating FTSs increases. Since the scatter

width should be much smaller than the number of nodes,

MRR is likely to generate FTSs with at most one overlapping

node [12]. MRR tries to minimize the replication degrees of

data objects in order to limit the consistency maintenance cost

and storage cost, the replication degrees should be not large

or vary greatly. Smaller replication degrees generate smaller R
values. Although sometimes it is not possible to generate the

optimal BIBDs, BIBDs can be used as a useful benchmark to

measure how close MRR is to the optimal scheme for specific

values of scatter width [12].
2) Non-correlated Machine Failures: In non-correlated

machine failures, the failures of machines are statistically

independent of each other, and they can be categorized into

uniform and nonuniform machine failures. In the scenario

of uniform machine failures, each machine has the same

probability to fail, denoted by p (0 < p < 1). The data object

is lost if any of its chunk (partition) is lost, and a chunk is lost

only if all replicas of the chunk are lost. Hence, the expected

probability of data loss in the uniform machine failure is:

puni = (
n

∑
i=1

m

∑
j=1

M · pdi j)/(m ·n) (4)

where M is the number of partitions (chunks) for each data

object, n is the number of applications, and m is the number

of data objects in each application.
In the scenario of nonuniform machine failures, each ma-

chine fails with different probabilities. Assume replicas of

each data object are placed on machines with no concern for

individual machine failures. Let p1, ..., pN be the failure proba-

bilities of N servers in the cloud, respectively. Based on [8], the

expected data object failure probability is the same as that on

uniform failure machines with per-machine failure probability

equaling ∑N
i=1 pi/N. We use pnon to denote the expected

probability of data loss in nonuniform machine failures. Then,

pnon = (
n

∑
i=1

m

∑
j=1

M · (
N

∑
k=1

pk/N)di j)/(m ·n) (5)

We introduce a method to evaluate a data object’s popularity

below. Different types of applications are always featured by

the popular time periods of data objects. For example, the

videos in social network applications are usually popular for

3 months [34], while the news in a news website usually is

popular for several days. We rank the applications based on

their types and use bai to denote the rank; a higher bai means

that the application has longer popular time periods of data

objects. Assume time is split into epochs (a fixed period of

time). To avoid creating and deleting replicas for data objects

that are popular for a short time period, we consider both its

application rank (bai) and its expected visit frequency, i.e., the

number of visits in an epoch (vi j) [16], [19], [35], [36], to

determine the popularity function of a data object (ϕ(·)):
ϕi j(·) = α ·bai +β · vi j (6)

where α and β are the weights for the two factors.

Let ri j be the probability of requesting data Di j. For single-

object requests, ∑n
i=1 ∑m

j=1 ri j = 1 after normalization. The

request probability of a data object is the same as that of each

partition of this data object. The request probability is propor-

tional to the popularity of the data object (ϕ(·)) [8], [37].
ri j = k1 ·ϕi j(·) (7)

where k1 is a certain coefficient.
3) Availability Maximization Problem Formulation: In a

cloud system with the co-existence of correlated and non-

correlated (uniform and nonuniform) machine failures, the data

is lost if any type of failures occurs. Recall that pcor (For-

mula (2)), puni (Formula (4)) and pnon (Formula (5)) are prob-

abilities of a data object loss caused by correlated machine fail-

ures, uniform machine failures, and nonuniform machine fail-

ures (at epoch t), respectively. So the probability of data loss

caused by correlated and non-correlated machine failures is

Pf = w1 · pcor +w2 · puni +w3 · pnon (
3

∑
i=1

wi = 1) (8)

where w1,w2, and w3 are the probabilities of the occurrence

of each type of machine failures, respectively.
We maximize the data availability by minimizing the ex-

pected request failure probability with the consideration that

different data objects have different popularities. To achieve

this goal, we present a NLIP model with multiple constraints

to determine the replication degree of each data object.
Given the popularities and sizes of data objects, our goal

is to find the optimal replication degree of each data object

such that the expected request failure probability (denoted by

P̄r) can be minimized. Each application purchases a certain

storage space in public clouds. Also, in private clouds,

different applications may be assigned different storage

spaces based on their priorities. Thus, the storage space

constraint for each application is necessary and important due

to the limited precious storage media. Thus, we formalize our

problem as the following constrained optimization problem:

min P̄r =
n

∑
i=1

m

∑
j=1

ri j·M · (Pf)
di j

s.t.
m

∑
j=1

si j ·di j ≤ Ki (i = 1, ...,n)
(9)

where Ki (i = 1, ...,n) is the space capacity for application

i, and si j is the size of data object Di j. ∑m
j=1 si j · di j is the

total storage consumption of all the data objects belonging to

application i. The optimization objective is to minimize the

expected request failure probability and the constraint is to

ensure that the storage consumption of an application does

not exceed its space capacity.

B. Consistency Maintenance Cost Minimization
In this section, we formulate the problem of minimizing

consistency maintenance cost caused by data replication. We

use Cc to denote the total consistency maintenance cost of

all replicas in the cloud storage system. We first introduce

how to calculate Cc. Previous work [38] indicates that the

data object write overhead is linear with the number of data

object replicas. Then, the consistency maintenance cost of a

partition can be approximated as the product of the number of

replicas of the partition and the average communication cost

parameter (denoted by δcom) [19], i.e., di j · δcom. Hence, the

total consistency maintenance cost of all data objects is

Cc =
n

∑
i=1

m

∑
j=1

(M ·di j) ·δcom (10)

The fixed average communication cost (δcom) can be calcu-

lated as in [39]:
δcom = E[∑

i, j
su ·dis(Si,S j) ·σ] (11)

where su is the average update message size, dis(Si,S j) is
the geographic distance between the server of the original

copy Si and a replica server S j (an expectation of all possible

distances between server of original copy (primary server)

and replica servers, which is calculated it from a probabilistic

perspective), and σ is the average communication cost per

unit of distance. We adopt the method in [19] to calculate the

geographic distance between servers. Specifically, it uses a

6-bit number to represent the distance between servers. Each

bit corresponds to the location part of a server, i.e., continent,

country, datacenter, room, rack and server. Starting with the

most significant bit (i.e., the leftmost bit), each location part

of both servers are compared one by one to compute the

geo-similarity between them. The corresponding bit is set to

1 if the location parts are equivalent, otherwise it is set to 0.

Once a bit is set to 0, all less significant bits are automatically

set to 0. For example, suppose Si and S j are two arbitrary

servers, and the distance between them is represented as

111000 (as shown below). Then, it indicates that Si and S j
are in the same datacenter but not in the same room.

continent country datacenter room rack server

1 1 1 0 0 0

The geographic distance is obtained by applying a binary

“NOT” operation to the geo-similarity. That is,
111000 = 000111 = 7 (decimal)

Thus, the optimization problem for consistency maintenance

cost can be formulated as follows:

min Cc =
n

∑
i=1

m

∑
j=1

(M ·di j) ·δcom

s.t.
m

∑
j=1

si j ·di j ≤ Ki (i = 1, ...,n)
(12)

C. Storage Cost Minimization
Different applications require different storage media (e.g.,

disk, SSD, EBS) to store data. Different media have different

costs per unit size. For example, in the Amazon web cloud

service, the prices for EBS and SSD are $0.044 and $0.070

per hour, respectively. After satisfying the applications’ storage

requirements on different storage media, we need to decide the

storage media for their additional replicas for enhanced data

availability. Different applications have different SLAs with

different associated penalties. The applications with higher

SLA violation penalties should have higher priorities to meet

their SLA requirements in order to reduce the associated

penalties. Therefore, the additional replicas of data objects of

higher-priority applications should be stored in a faster storage

medium. On the other hand, in order to save storage cost, the

additional replicas of data objects of lower-priority applica-

tions should be stored in a lower and less expensive storage

medium. We use bpi to denote application i’s priority; higher

bpi means higher priority. Since faster storage mediums are

more costly, for data objects of high priority applications, we

hope to store more data partitions in faster storage mediums in

order to satisfy more requests per unit time hence increase data

availability [19]. Thus, to determine the storage medium for

storing additional replicas, we define a priority function ψ(·)
of a data object based on its application priority and size [16]:

ψi j(·) = γ ·bpi +η/si j (13)

where γ and η are the weights for application priority and

data object’s size. The size of the data object can be changed

due to write operation. The priority values are classified to

a number of levels, and each level corresponds to a storage

medium. Thus, the unit storage cost of a data object equals the

unit cost of its mapped storage medium, denoted by csi j , which

is proportional to the priority value of a data object (ψi j(·)).
csi j = k2 ·ψi j(·) (14)

where k2 is a certain coefficient.

The storage cost of a data object is related to its storage

medium, its size and the number of its replicas. Different

storage mediums have different unit costs, and different

data objects have different sizes and replication degrees.

We minimize storage cost by minimizing the expected cost

for storage mediums. We examine expected storage cost

minimization by determining the replication degree for each

data object. To achieve this goal, we present a NLIP approach

with multiple constraints that can be used to obtain a policy.

Given the applications of data objects and the data object

sizes, our goal is to find the replication degree for each data

object that minimizes storage cost. Hence, we formalize our

problem as the following constrained optimization problem:

min Cs =
n

∑
i=1

m

∑
j=1

(si j ·di j · csi j ·T)

s.t.
m

∑
j=1

si j ·di j ≤ Ki (i = 1, ...,n)
(15)

where T is the time duration of an epoch.

D. Problem Formulation and Solution

We consider additional three threshold constraints for

request failure probability (Pth
r), consistency maintenance

cost (Cth
c) and storage cost (Cth

s). The probability of expected

request failure must be no larger than a threshold Pth
r . This

constraint is used to ensure that the expected request failure

probability is not beyond a threshold, which serves the goal

of achieving high data availability. The constraint on the

consistency maintenance cost is to ensure that the consistency

maintenance cost in one epoch is no larger than a threshold,

Cth
c . The storage cost in one epoch is no more than threshold

Cth
s . The constraints on both consistency maintenance cost and

storage cost are to ensure that the cost caused by replication

is at a low level, which makes the system more efficient and

economical. By combining Formulas (9), (12) and (15) and

the additional constraints, we can build a NLIP model for the

global optimization problem as follows:

min {P̄r +Cc +Cs}=
n

∑
i=1

m

∑
j=1

(ri j·M · (Pf)
di j)

+
n

∑
i=1

m

∑
j=1

(M ·di j) ·δcom +
n

∑
i=1

m

∑
j=1

(si j ·di j · csi j ·T)
(16)

s.t.
m

∑
j=1

si j ·di j ≤ Ki (i = 1, ...,n) (17)

n

∑
i=1

m

∑
j=1

ri j ·M · (Pf)
di j ≤ Pth

r (0 < ri j < 1) (18)

n

∑
i=1

m

∑
j=1

(M ·di j) ·δcom ≤Cth
c (19)

n

∑
i=1

m

∑
j=1

(si j ·di j · csi j ·T)≤Cth
s (20)

The decision variables are data objects’s replication degrees,

and they must be positive integers in practice. The objective

is to minimize the request failure probability, the consistency

maintenance cost and storage cost. The optimization con-

straints are used to ensure that the space capacity of data ob-

jects belonging to each application is not exceeded, the prob-

ability of expected request failure is no more than a threshold

Pth
r , the consistency maintenance cost and storage cost in one

epoch are no more than thresholds Cth
c and Cth

s , respectively.
Theorem 3.1. The relaxed NLIP optimization model is

convex.
Proof Inequs. (17), (19), (20) are linear inequalities, and

they define convex regions. The exponential function P
di j
f in

Inequ. (18) is convex, and the sum (i.e., ∑n
i=1 ∑m

j=1 ri j · m ·
(Pf)

di j) of convex functions is a convex function. Thus, the

constraint (18) defines a convex set. All the constraints define

convex regions, and the intersection of convex sets is a convex

set. Thus, the region of the optimization problem is convex.

Hence the relaxed NLIP optimization problem is convex.

For analytical tractability, we first relax the problem to a

real-number optimization problem in which d11, ...,dnm are

real numbers, and derive the solution for the real-number

optimization problem. Then, we use integer rounding to

get the solution for practical use. Specifically, we adopt the

approach from [8] to round each di j to its nearest integer

while all di j’s smaller than 1 are rounded to 1. By relaxing

the problem to real-number optimization problem, the optimal

solution should always use up all the available storage space

(i.e., Ki) for each application [8].3 Thus, we have
m

∑
j=1

si j ·di j = Ki (i = 1, ...,n) (21)

where Ki is the space capacity for application i. For the real-

number optimization problem, we use Lagrange multipliers to

derive the solution. Since there are n+ 3 constraints, we use

the multipliers λ1,λ2, ...,λn+3 to combine the constraints and

the optimization goal together into the Lagrangian function
Λ(d11, ...,d1m, ...,dn1, ...,dnm,λ1,λ2, ...,λn+3)

=
n

∑
i=1

(
m

∑
j=1

ri j ·M · (Pf)
di j +

m

∑
j=1

(M ·di j) ·δcom +
m

∑
j=1

(si j ·di j · csi j ·T)

+λi(
m

∑
j=1

si j ·di j −Ki))+λn+1(
n

∑
i=1

m

∑
j=1

ri j ·M · (Pf)
di j −Pth

r)+λn+2

(
n

∑
i=1

m

∑
j=1

(M ·di j)δcom −Cth
c)+λn+3(

n

∑
i=1

m

∑
j=1

(si j ·di j · csi j ·T)−Cth
s)

(22)

where Ki = ∑m
j=1 si j · di j. The critical value of Λ is achieved

only if its gradient is zero. Based on Theorem 3.1, the NLIP

optimization problem is convex. Thus, the gap between the

relaxed problem and its dual problem is zero [40]. Also, the

object function of the NLIP model is derivable, thus the gra-

dients of λ exist. We can get the solution for the optimization

problem based on the Lagrange dual solution. Considering

that the popularities and importance of data objects usually

do not change much within a short period of time, we can

choose larger value for T to avoid computation overhead, and

also use IPOPT [41], [42] (a software library for large scale

nonlinear optimization) to solve the large-scale nonlinear

optimization problem, which make MRR more practical.4

IV. THE MRR REPLICATION SCHEME

In Section III, we calculate the replication degree of each

data object, which is the first step of the design of MRR.

The next problem is how to assign the replicas to nodes,

which is of importance for increasing the data availability [9].

Recall that in Section III-A, we introduced BIBD-based file

replication in Copyset Replication that can reduce data loss

probability in correlated machine failures. Though the BIBD-

based method can be used to reduce data loss probability in

correlated machine failures, it requires a constant replication

degree and cannot be used for replicating data with various

replication degrees. Our proposed MRR can deal with the

problems. We present the details of MRR below.

Algorithm 1 shows the pseudocode of the MRR replication

algorithm. For particular and arbitrary i and j, the replication

degree di j of data Di j can be obtained from the NLIP optimiza-

tion model in Section III. To reduce data loss in both correlated

and non-correlated machine failures, MRR first ranks these

replication degrees in ascending order (i.e., d1, ...,dl). For a

given replication degree di (i = 1, ..., l), MRR first groups the

data objects with replication degree di together (denoted by

3The storage cost may increase as storage space increases, but it also
depends on the storage media for storing the data, thus the claim that the
space constraint holds at equality does not contradict the main hypothesis
(cost-effective) of the paper.

4Although some parameters (e.g., data popularity, machine failure rate) are
not usually available a priori, we can get them from the historical data [7],
[8], [16].

Server0 Server1 Server2 Server3

Server0 Server2 Server1 Server3

Server10 Server11 Server12 Server13Server4 Server5 Server6 Server7 Server8 Server9

Server4 Server6 Server7 Server5 Server8 Server9

 FTS 1 FTS 2

 FTS 3 FTS 4

 FTS 1 FTS 2

 FTS 3 FTS 4

 FTS 1

 FTS 3

 FTS 2

 FTS 4

Replication degree=d1 Replication degree=d2 Replication degree=d3

Server14 Server15 Server16 Server17

Server10 Server14 Server15 Server16 Server11 Server12 Server13 Server17

Figure 2: Architecture of MRR for cloud storage fault-tolerant sets (FTSs).

Table I: Parameters from publicly available data [12].

System Chunks per node Cluster size Scatter width
Facebook 10000 1000-5000 10
HDFS 10000 100-10000 200
RAMCloud 8000 100-10000 N-1

Di), and counts the number of data objects with replication

degree di (denoted by Nr
Di

). To handle the problem of varying

replication degrees, MRR partitions all nodes to l groups

and then conducts Copyset Replication [12] to assign chunks

with replication degree di to the ith node group (i = 1, ..., l).
For load balance, the number of nodes in each group is

Algorithm 1: Pseudocode of the MRR algorithm.

1 Compute the replication degree for each data object using the NLIP
model (Section III)

2 Rank the replication degrees in ascending order d1, ...,dl
3 for i ← 1 to l do
4 Group data objects with di together (Di)
5 Use BIBD-based method to generate FTSs; each FTS has nodes

from different datacenters but within a certain geographic distance
6 Store each chunk’s replicas of data objects with di to all nodes in

an FTS with di

7 return

proportional to the number of replicas that will be stored in the

group. Accordingly, MRR assigns |N · Nr
Di
·di

∑l
i=1 Nr

Di
·di
| nodes to data

group Di. MRR then uses the BIBD-based method to generate

FTSs for each group of nodes. Specifically, MRR determines λ
in Section III-A1 based on the load balancing requirement and

then uses the BIBD-based method for (N,R,λ), where N is the

number of the nodes in a node group and R is the replication

degree of the group (di) (R relates the correlated machine

failure with replication degree). The nodes in each FTS are

required to be from different datacenters and within a certain

geographic distance between each other. Distributing replicas

over different datacenters can avoid data loss due to machine

failures (e.g., caused by power outages) for data reliability.

Limiting the distances between replica nodes for a data chunk

constrains the consistency maintenance cost. MRR replicates

the chunks of each data object to all nodes in an FTS.5 Figure

2 illustrates an example to show the design of MRR. In the

example, d1 = 2, d2 = 3, and d3 = 4. In the left most block,

each FTS contains two chunks of a data object. Each FTS

overlaps with every other FTS with at most one server. This

helps reduce the probability of data loss in correlated machine

failures and balance the load. For those data objects with repli-

cation degree 2, the chunks of a data object will be stored to

the nodes in an FTS in the left most block. In the middle block,

each FTS contains three chunks of a data object. In the right

most block, each FTS contains four chunks of a data object.

5Although putting all replicas of a chunk to the nodes in an FTS can bring
about the cost of inter-rack transfer (across oversubscribed switches), it can
significantly reduce the probability of data loss caused by correlated machine
failures using BIBD-based method [12].

Table II: Parameter settings.

Parameter Meaning Setting
N # of servers 1000-10000
M # of chunks of a data object 3 [45]
R # of servers in each FTS 3
λ # of FTSs containing a pair of servers 1
S Scatter width 4
p Prob. of a server failure 0.5

Pth
r Threshold for expected request failure 0.05

Cth
c Threshold for consistency maint. cost 1000000

Cth
s Threshold for storage cost 300000

m # of data objects in each application 1000
n # of data applications 5

Recall that each data priority value corresponds to a storage

medium. We assume that all servers have all types of storage

media, and we need to determine which medium to use for a

given priority on a given server. When replicating a chunk to a

node, MRR chooses the storage media for the chunks based on

data objects’ priority calculated by Formula (13). Data objects

with higher priority values will be stored to faster and more

expensive storage media (e.g., Memory, SSD), and vice versa.

The constraint (17) is to ensure that storage requirements of

data objects do not overfill the servers.

V. PERFORMANCE EVALUATION

We conducted the numerical analysis based on the param-

eters in [12] (Table I) derived from the system statistics from

Facebook, HDFS and RAMCloud [1], [2], [10], [12], [13],

[43], and also conducted real-world experiments on Amazon

S3. The distributions of file read and write rates in our analysis

and tests follow those of the CTH trace [44] provided by

Sandia National Laboratories that records 4-hour read/write

log in a parallel file system.

A. Numerical Analysis Results
We compared MRR with other three replication schemes:

Random Replication (RR) [12], Replication Degree

Customization (RDC) [8] and Copyset Replication [12]

(Copyset). We compare MRR with Copyset instead of

Tiered Replication (TR) [29] because TR focuses on data

durability [29], however MRR focus on data availability.

Moreover, the key idea of Copyset and TR for reducing data

loss probability is the same, and they both use the BIBD-based

method to reduce the probability of data loss. RR places the

primary replica on a random node (say node i) in the entire

system, and places the secondary replicas on (R-1) nodes

around the primary node (i.e., nodes i+1, i+2,...).6 RDC derives

replication degree for each object with considering data object

popularity to maximize the expected data availability for

non-correlated machine failures. Copyset splits the nodes into

a number of copysets, and constrains the replicas of every

chunk to a single copyset so that it can reduce the frequency of

6RR is based on Facebook’s design, which chooses secondary replica
holders from a window of nodes around the primary node.

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

Pr
ob

ab
ilit

y o
f d

ata
 lo

ss
Number of nodes

RR Copyset RDC MRR

(a) Facebook

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

Pr
ob

ab
ilit

y o
f d

ata
 lo

ss

Number of nodes

RR Copyset RDC MRR

(b) HDFS

0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y o
f d

ata
 lo

ss

Number of nodes

RR Copyset RDC MRR

(c) RAMCloud
Figure 3: Probability of data loss vs. number of nodes (R = 3 for RR and Copyset).

0.7

0.75

0.8

0.85

0.9

0.95

Av
ail

ab
ilit

y o
f r

eq
ue

ste
d

da
ta

ob
jec

t

Number of nodes

RDC MRR Copyset RR

(a) Facebook

0

0.2

0.4

0.6

0.8

1

Av
ail

ab
ilit

y o
f r

eq
ue

ste
d

da
ta

 ob
jec

t

Number of nodes

RDC MRR Copyset RR

(b) HDFS

0

0.2

0.4

0.6

0.8

1

Av
ail

ab
ilit

y o
f r

eq
ue

ste
d

da
ta

 ob
jec

t

Number of nodes

RDC MRR Copyset RR

(c) RAMCloud
Figure 4: Availability of requested data objects vs. number of nodes (R = 3 for RR and Copyset).

220000
240000
260000
280000
300000
320000
340000
360000

Sto
rag

e c
os

t

Number of nodes

MRR Copyset RDC RR

(a) Facebook

220000
240000
260000
280000
300000
320000
340000
360000

St
or

ag
e c

os
t

Number of nodes

MRR Copyset RDC RR

(b) HDFS

220000
240000
260000
280000
300000
320000
340000
360000

St
or

ag
e c

os
t

Number of nodes

MRR Copyset RDC RR

(c) HDFS
Figure 5: Storage cost vs. number of nodes (R = 3 for RR and Copyset).

0

1000000

2000000

3000000

4000000

5000000

Co
ns

ist
en

cy

 m
ain

te
na

nc
e c

os
t

Number of nodes

RR Copyset RDC MRR

(a) Facebook

0

1000000

2000000

3000000

4000000

5000000

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Co
ns

ist
en

cy

m
ai

nt
en

an
ce

 co
st

Number of nodes

RR Copyset RDC MRR

(b) HDFS

0

1000000

2000000

3000000

4000000

5000000

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Co
ns

ist
en

cy

m
ain

te
na

nc
e c

os
t

Number of nodes

RR Copyset RDC MRR

(c) HDFS
Figure 6: Consistency maintenance cost vs. number of nodes (R = 3 for RR and Copyset).

data loss by minimizing the number of copysets. The number

of nodes that fail concurrently in each system was set to 1%

of the nodes in the system [6], [12]. Since this rate is the

maximum percentage of concurrent failure nodes in real clouds

(i.e., worst case) [10], [11], [46], it is reasonable to see higher

probabilities of data loss and lower expected data availability

in our analytical results than the real results in current clouds.

The distributions of file popularity and updates follow those

of the CTH trace. We used the normal distribution with mean

of 10 and standard deviation of 1 to generate 10 unit costs

for different storage mediums. Compared to uniform machine

failures, nonuniform and correlated machine failures are more

realistic due to different hardware/software compositions and

configurations [8], [47]. Thus, we set w1 = 0.4, w2 = 0.2 and

w3 = 0.4 in Equ. (8), respectively. We randomly generated 6

bit number from reasonable ranges for each node to represent

its location, as explained in Section III-B. Table II shows the

parameter settings in our analysis unless otherwise specified.
We first calculate the data loss probability for each method.7

Specifically, we used Formula (8) for MRR, Formula (2) for

Copyset, Formula (3) for RR, and Equ. (8) with w1 = 0,

w2 = 0.4 and w3 = 0.6 for RDC. Figure 3(a)-3(c) show the

7Many datacenter operators prefer to low probability of any incurring data
loss at the expense of losing more data in each event due to high cost of each
incident of data loss [12].

relationship between the probability of data loss and the

number of nodes in the Facebook, HDFS and RAMCloud envi-

ronments, respectively. We find that the result approximately

follows MRR<Copyset<RDC<RR. The probability of data

loss in Copyset is higher than that in MRR. This is because

MRR considers non-correlated machine failures which are not

considered in Copyset. RDC generates a higher probability

of data loss than MRR and Copyset because it neglects

reducing the probability of data loss caused by correlated

machine failures. The probability of data loss in RR is much

higher than MRR and Copyset, and also higher than RDC.

This is due to two reasons. First, RR places the copies of

a chunk on a certain number (i.e., R) of different nodes.

Any combination of R nodes that fail simultaneously would

result in data loss in correlated machine failures. However,

MRR and Copyset lose data only if all the nodes in an FTS

fail simultaneously. Second, MRR and RDC consider data

popularity to increase the expected data availability, which is,

however, not considered in RR.

We then calculate the availability of requested data object

by 1−P̄r, and P̄r is calculated by Formula (9). Figure 4(a)- 4(c)

show the result of the availability of requested data objects. We

see the result generally follows MRR>Copyset>RDC>RR

in all figures. The availability of requested data objects in

Copyset is lower than that in MRR because MRR considers

0

0.02

0.04

0.06

0.08

5 10 15 20 25

Pr
ob

ab
ilit

y o
f d

ata
 lo

ss

Number of nodes

RR Copyset
RDC MRR

(a) Scatter width=2

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

5 10 15 20 25

Pr
ob

ab
ilit

y o
f d

ata
 lo

ss

Number of nodes

RR Copyset
RDC MRR

(b) Scatter width=4
Figure 7: Probability of data loss vs. number of nodes on Amazon S3 (R = 3
for RR and Copyset).

0.945

0.955

0.965

0.975

0.985

0.995

1.005

5 10 15 20 25

Av
ail

ab
ilit

y o
f r

eq
ue

ste
d

da
ta

 ob
jec

t

Number of nodes

RR RDC
Copyset MRR

(a) Scatter width=2

0.927
0.937
0.947
0.957
0.967
0.977
0.987
0.997

5 10 15 20 25Av
ail

ab
ilit

y o
f r

eq
ue

ste
d

da
ta

 ob
jec

t

Number of nodes

RR Copyset
RDC MRR

(b) Scatter width=4
Figure 8: Availability of requested data objects vs. number of nodes on
Amazon S3 (R = 3 for RR and Copyset).

data popularity when determining the replication degree for

each chunk, which is, however, not considered in Copyset.

Also, MRR reduces data loss in both correlated and non-

correlated machine failures, while Copyset only minimizes

the data loss in correlated machine failures. The availability

of requested data objects in Copyset is higher than that in

RDC because RDC cannot reduce the probability of data loss

caused by correlated machine failures and thereby decreases

the availability of requested data objects. RR has the lowest

availability because RR places the copies of a chunk on a

certain number (i.e., R) of nodes and any combination of R
nodes that fail simultaneously would cause data loss. Also,

RR does not consider data popularity as RDC.
We then used Formula (15) to calculate the storage cost

based on the sizes, replication degrees, and storage medium

unit costs of data objects for MRR. For the other three

methods, we randomly choose storage media for data objects

and do not minimize the storage cost with space capacity

constraint (Inequ. 17) for RDC. Figure 5(a)-5(c) show the

result of storage cost. The result in all three figures generally

follows RR≈Copyset>RDC>MRR. This is because MRR

stores data objects into different storage mediums based on

their applications’ priorities, the sizes, and the replication

degrees of data objects to minimize the total storage cost. The

storage costs in Copyset and RR are higher than RDC and

much higher than MRR. RDC reduces the replicas of unpop-

ular data objects, thus reducing storage cost. Copyset and RR

neither consider the different storage mediums nor reduce the

replicas of unpopular data objects to reduce storage cost.
We used Formula (12) to calculate the consistency

maintenance cost of each method based on the geographic

distance and replication degrees of data objects. Figure 6(a)-

6(c) show the result of consistency maintenance cost. In these

figures, the consistency maintenance costs in Copyset and

RR are higher than MRR because MRR limits the geographic

distance between the replica nodes of a chunk and the number

of replicas, thereby reducing the consistency maintenance

cost. However, Copyset and RR neglect geographic distances.

RDC produces the highest consistency maintenance cost

because RDC neglects geographic distance and it also

generates more replicas for popular data objects.

B. Real-world Experimental Results
We conducted experiments on the real-world Amazon S3.

We simulated the geo-distributed storage datacenters using

three regions of Amazon S3 in the U.S. In each region, we

created the same number of buckets, each of which simulates

a data server. The number of buckets was varied from 5

to 25 with step size of 5 in our test. We distributed 5000

75%

80%

85%

90%

95%

100%

105%

5 10 15 20 25

St
or

ag
e c

os
t t

o C
op

ys
et

Number of nodes

MRR Copyset RDC RR

(a) Storage cost

0%

20%

40%

60%

80%

100%

120%

5 10 15 20 25

Co
ns

ist
en

cy
 m

ain
ten

an
ce

co

st
to

Co
py

Se
t

Number of nodes

RR Copyset RDC MRR

(b) Consistency maintenance cost
Figure 9: Storage cost and consistency maintenance cost vs. number of nodes
on Amazon S3 (R = 3 for RR and Copyset).

data objects to all the servers in the system. We used the

distributions of read and write rates from the CTH trace data

to generate reads and writes. The requests were generated

from servers in Windows Azure eastern region. We consider

the requests targeting each region with latency more than

100ms as failed requests (unavailable data objects).8 We used

the parameters in Table II except p and N. In this test, N is

the total number of simulated data servers in the system and

p (with average value 0.089) follows the actual probability of

a server failure in the real system. We used the actual price of

the data access of Amazon S3 to calculate the storage cost.
Figure 7(a) and 7(b) show the result of probability of data

loss on Amazon S3. We see the result approximately follows

MRR<RDC<Copyset<RR. Our numerical result shows that

MRR<Copyset<RDC<RR. Both results confirm that MRR

generates the lowest probability of data loss. RDC generates

higher probability of data loss than Copyset in the numerical

analysis but generates lower probability of data loss than

Copyset in the experiments. This is because RDC cannot

handle correlated machine failures, and the failure rate of

correlated machine failures is 1% in the numerical analysis

but our real-world experiment has fewer correlated machine

failures. We also see that scatter width 2 produces lower

probability of data loss than scatter width 4. This is because

a large scatter width increases the number of FTSs and thus

increases the probability of data loss.

Figure 8(a) and 8(b) show result of the availability of

requested data objects on Amazon S3. We see the result

follows MRR>Copyset>RDC>RR, which is consistent with

the result in Figure 4 due to the same reasons. We also see

that scatter width 2 produces higher availability than scatter

width 4 because a large scatter width increases the probability

of data loss and reduces data availability.

We then regard Copyset as a baseline and calculate the ratio

of storage/consistency maintenance cost of each of the other

8Since it is hard to generate permanent failures on Amazon S3 and the
network latency is low based on [48], we believe the data request failure
within U.S. is mainly caused by machine failures, and we consider the requests
targeting each region with latency longer than 100ms as failed request, which
reflects the availability of data objects.

methods over Copyset. Figure 9(a) and 9(b) show the storage

cost ratio and consistency maintenance cost ratio of different

schemes, respectively. We see the storage cost ratio follows

RR≈Copyset>RDC>MRR, and the consistency maintenance

cost ratio follows RDC>RR≈Copyset>MRR, which are con-

sistent with that in Figure 5 and 6 due to the same reasons.

VI. CONCLUSION

In this paper, in order to increase data availability and

reduce cost caused by replication, we formulate a problem

that determines the replication degree of each data object so

that the request failure probability, consistency maintenance

cost and storage cost are minimized in a cloud storage in

both correlated and non-correlated machine failures. Based

on the problem solution, we propose the MRR scheme that

assigns the chunk replicas of data objects to the nodes to

handle the aforementioned problems for the objective. Our

extensive numerical analysis and real-word experiments on

Amazon S3 show that MRR outperforms other replication

schemes in different performance metrics. In the future, we

will further consider data update frequency for reducing con-

sistency maintenance cost, the effects of node joining and

leaving, and the influence of changing network connections.

Also we will consider energy consumption of machines and

designing an optimal replication scheme to save power.
ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants

NSF-1404981, IIS-1354123, CNS-1254006, IBM Faculty

Award 5501145 and Microsoft Research Faculty Fellowship

8300751. REFERENCES

[1] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. In MSST, pages 1–10, 2010.

[2] D. Ongaro, S. Rumble, R. Stutsman, J. Ousterhout, and M. Rosenblum.
Fast crash recovery in ramcloud. In Proc. of SOSP, pages 29–41, 2011.

[3] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In
Proc. of SOSP, pages 29–43, 2003.

[4] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie,
Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas, C. Uddaraju,
H. Khatri, A. Edwards, V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal,
M. Haq, M. Haq, D. Bhardwaj, S. Dayanand, A. Adusumilli, M. McNett,
S. Sankaran, K. Manivannan, and L. Rigas. Windows azure storage: a
highly available cloud storage service with strong consistency. In Proc.
of SOSP, 2011.

[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. In Proc. of SOSP, 2007.

[6] V. Rawat. Reducing failure probability of cloud storage services using
multi-clouds. In Proc. of CoRR, 2013.

[7] S. Nath, H. Yu, P.B. Gibbons, and S. Seshan. Subtleties in tolerating
correlated failures in wide-area storage systems. In Proc. of NSDI, 2006.

[8] M. Zhong, K. Shen, and J. Seiferas. Replication degree customization
for high availability. In Proc. of EuroSys, Glasgow, 2008.

[9] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly durable,
decentralized storage despite massive correlated failures. In NSDI, 2005.

[10] R. Chansler. Data availability and durability with the hadoop distributed
file system. ;login: The USENIX Magazine, 37(1), 2012.

[11] J. Dean. Evolution and future directions of large-scale storage and
computation systems at google. In Proc. of SoCC, page 1, 2010.

[12] A. Cidon, S. Rumble, R. Stutsman, S. Katti, J. Ousterhout, and
M. Rosenblum. Copysets: Reducing the frequency of data loss in cloud
storage. In Proc. of USENIX ATC, 2013.

[13] D. Borthakur, J. Gray, J. Sarma, K. Muthukkaruppan, N. Spiegelberg,
H. Kuang, K. Ranganathan, D. Molkov, A. Menon, S. Rash, R. Schmidt,
and A. Aiyer. Apache hadoop goes realtime at facebook. In Proc. of
SIGMOD, 2011.

[14] H. Shen, J. Liu, K. Chen, J. Liu, and S. Moyer. SCPS: A social-
aware distributed cyber-physical human-centric search engine. IEEE
Transactions on Computers (TC), 64:518–532, 2015.

[15] J. Liu, L. Yu, H. Shen, Y. He, and J. Hallstrom. Characterizing data
deliverability of greedy routing in wireless sensor networks. In Proc. of
SECON, Seattle, June 2015.

[16] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica,
D. Harlan, and E. Harris. Scarlett: Coping with skewed content
popularity inmapreduce clusters. In Proc. of EuroSys, Salzburg, 2011.

[17] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. Nohype: Virtualized
cloud infrastructure without the virtualization. In Proc. of ISCA, 2010.

[18] J. Liu, H. Shen, and L. Chen. CORP: Cooperative opportunistic resource
provisioning for short-lived jobs in cloud systems. In Proc. of IEEE
CLUSTER, 2016.

[19] N. Bonvin, T. Papaioannou, and K. Aberer. A self-organized, fault-
tolerant and scalable replication scheme for cloud storage. In Proc. of
SoCC, 2010.

[20] H. Yu and A. Vahdat. The costs and limits of availability for replicated
services. In Proc. of SOSP, pages 29–42, 2001.

[21] J. Liu, H. Shen, and H. Hu. Load-aware and congestion-free state
management in network function virtualization. In Proc. of ICNC, 2017.

[22] C. Tang and S. Dwarkadas. Hybrid global-local indexing for efficient
peer-to-peer information retrieval. In Proc. of NSDI, 2004.

[23] J. Liu, H. Shen, and X. Zhang. A survey of mobile crowdsensing
techniques: A critical component for the internet of things. In Proc.
of ICCCN workshop on ContextQoS, 2016.

[24] Y. Ma, T. Nandagopal, K. P. N. Puttaswamy, and S. Banerjee. An
ensemble of replication and erasure codes for cloud file systems. In
Proc. of INFOCOM, pages 1276–1284, 2013.

[25] A. Thomson and D. Abadi. Calvinfs: Consistent wan replication and
scalable metadata management for distributed file systems. In Proc. of
FAST, Santa Clara.

[26] H. Abu-Libdeh, R. Renesse, and Y. Vigfusson. Leveraging sharding in
the design of scalable replication protocols. In Proc. of SoCC, 2013.

[27] S. Y. Ko, I. Hoque, B. Cho, and I. Gupta. Making cloud intermediate
data fault-tolerant. In Proc. of SoCC, Indianapolis, 2010.

[28] Amazon S3. http://aws.amazon.com/s3 [accessed in Jun. 2016].
[29] A. Cidon, R. Escriva, S. Katti, M. Rosenblum, and E. G. Sirer. Tiered

replication: A cost-effective alternative to full cluster geo-replication. In
Proc. of ATC, pages 31–43, 2015.

[30] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson. Mojim: A reliable
and highly-available non-volatile memory system. In ASPLOS, 2015.

[31] H. Yu, P. Gibbons, and S. Nath. Availability of multi-object operations.
In Proc. of NSDI, pages 211–224, 2006.

[32] S. Houghten, L. Thiel, J. Janssen, and C. Lam. There is no (46, 6, 1)
block design*. Journal of Combinatorial Designs, 9(1):60–71, 2001.

[33] P. Kaski and P. Östergård. There exists no (15, 5, 4) rbibd. Journal of
Combinatorial Designs, 9:227–232, 2001.

[34] H. Shen, Z. Li, Y. Lin, and J. Li. SocialTube: P2P-assisted Video Sharing
in Online Social Networks. TPDS, 2014.

[35] F. André, A. Kermarrec, E. Merrer, N. Scouarnec, G. Straub, and
A. Kempen. Archiving cold data in warehouses with clustered network
coding. In Proc. of EuroSys, 2014.

[36] J. Liu, H. Shen, and L. Yu. Question quality analysis and prediction in
community question answering services with coupled mutual reinforce-
ment. TSC, PP(99):1–14, 2015.

[37] H. Shen, Z. Li, J. Liu, and J. E. Grant. Knowledge sharing in the
online social network of yahoo! answers and its implications. IEEE
Transactions on Computers (TC), 64(6):1715C1728, June 2015.

[38] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gum-
madi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
Oceanstore: An architecture for global-scale persistent storage. In Proc.
of ASPLOS, 2000.

[39] M. Wittie, V. Pejovic, L. Deek, K. Almeroth, and B. Zhao. Exploiting
locality of interest in online social networks. In Proc. of CoNEXT, 2010.

[40] M. Bazaraa, H. Sherali, and C. Shetty. Nonlinear programming: Theory
and algorithms. Wiley Interscience, 2006.

[41] IPOPT. https://projects.coin-or.org/Ipopt [accessed in Jun. 2016].
[42] A. Wächter and L.T. Biegler. On the implementation of an interior-point

filter linesearch algorithm for large-scale nonlinear programming. Math.
Program, 106(1), 2006.

[43] Intelligent block placement policy to decrease probability of block loss.
https://issues.apache.org/jira/browse/HDFS-1094.

[44] N. Nakka, A. Choudhary, R. Klundt, M. Weston, and L. Ward. Detailed
analysis of i/o traces for large scale applications. In HiPC, 2009.

[45] J. Cook, A. Wolf, and B. Zorn. Partition selection policies in object
database garbage collection. In Proc. of SIGMOD, New York, 1994.

[46] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan. Availability in globally distributed storage
systems. In Proc. of OSDI, Berkeley, CA, USA, 2010.

[47] J. Liu and H. Shen. Dependency-aware and resource-efficient scheduling
for heterogeneous jobs in clouds. In Proc. of CloudCom, 2016.

[48] S3 FAQs. https://aws.amazon.com/s3/faqs [accessed in Jun. 2016].

