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Abstract. Reducing energy consumption has become an important task
in cloud datacenters. Many existing scheduling approaches in cloud data-
centers try to consolidate virtual machines (VMs) to the minimum num-
ber of physical machines (PMs) and hence minimize the energy con-
sumption. VM live migration technique is used to dynamically consoli-
date VMs to as few PMs as possible; however, it introduces high migra-
tion overhead. Furthermore, the cost factor is usually not taken into
account by existing approaches, which will lead to high payment cost
for cloud users. In this paper, we aim to achieve energy reduction for
cloud providers and payment saving for cloud users, and at the same
time, without introducing VM migration overhead and without compro-
mising deadline guarantees for user tasks. Motivated by the fact that
some of the tasks have relatively loose deadlines, we can further reduce
energy consumption by proactively postponing the tasks without wak-
ing up new PMs. In this paper, we propose a heuristic task schedul-
ing algorithm called Energy and Deadline Aware with Non-Migration
Scheduling (EDA-NMS) algorithm. EDA-NMS exploits the looseness of
task deadlines and tries to postpone the execution of the tasks that have
loose deadlines in order to avoid waking up new PMs. When determining
the VM instant types, EDA-NMS selects the instant types that are just
sufficient to guarantee task deadline to reduce user payment cost. The
results of extensive experiments show that our algorithm performs bet-
ter than other existing algorithms on achieving energy efficiency without
introducing VM migration overhead and without compromising deadline
guarantees.

Keywords: Virtualized cloud · Real-time task · Scheduling ·
Criticality · Energy-aware

1 Introduction

Cloud computing is one of the fastest evolving paradigm in the domain of com-
puter science. Cloud serves as powerful computing platforms for a wide range
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of applications, such as meteorological prediction, genomic analysis, real-time
complex physics simulations, monitoring watershed parameters through soft-
ware services, and biological and environmental assistance [15]. Consequently,
tens of thousands of hosts in a cloud datacenter consume enormous amount
of energy. Therefore, reducing energy consumption has become an important
task when deploying and operating cloud datacenters. In a virtual cloud com-
puting environment, a set of submitted tasks from different users are sched-
uled on a set of virtual machines (VMs), and the task scheduling has become
a critical issue for achieving energy efficiency. Previous energy-aware schedul-
ing approaches [6,12,16,20,22] try to consolidate VMs to the minimum number
of physical machines (PMs) to minimize the energy consumption, which how-
ever introduces high migration overhead. Figure 1(a) illustrates how existing task
scheduling algorithms use VM migrations to further save energy. Suppose we are
scheduling three tasks to the VMs in a datacenter. The first-in-first-out (FIFO)
scheduling algorithm will create a VM for each task consequently. As each PM
has two VM slots, the scheduling will end up with using two PMs as show in
the figure. As task 2 is short, it will finish soon. After that, two tasks (e.g., task
1 and task 3) occupy two PMs. In order to reduce energy consumption, VM 3
can be migrated to PM 1 so that PM 2 can be shut down. A primary fraction of
computing applications in cloud datacenters are real-time tasks [6], which have
timing requirements on the response results. The arrival times of these tasks
are dynamic and the predictions of their execution duration can also be diffi-
cult and sometimes impossible [3]. Users usually prefer that their task execution
must be finished within a given deadline constraint. Motivated by the fact that
some of the tasks have relatively loose deadlines, we can further reduce energy
consumption by proactively postponing the tasks without waking up new PMs.
Also, we no longer need VM migration to reduce energy consumption, thus the
VM migration overhead is reduced. Figure 1(b) illustrates how arranging task
with respect to their deadlines can help in eliminating VM migrations. Take the
same scheduling problem as an example. As task 2 is short, we expect that it
will finish executing soon. On the other hand, as task 3 does not have a stringent
deadline, we can proactively postpone its execution. We schedule task 3 to VM
2 in PM 1. In this case, we no longer need the VM migration in Fig. 1(a) when
VM 2 finishes execution.

In this paper, we propose a heuristic task scheduling algorithm called Energy
and Deadline Aware with Non-Migration Scheduling (EDA-NMS) algorithm.
EDA-NMS aims to provide a solution for achieving energy reduction for cloud
providers without compromising deadline guarantees for user tasks. EDA-NMS
exploits the looseness of task deadlines and tries to postpone the execution of
the tasks with loose deadlines in order to avoid waking up new PMs.

In order to maximally satisfy user requests with different priorities, the pro-
posed approach also introduces the concept of real-time criticality to accelerate
the scheduling of priority tasks with stringent deadline constraints. Criticality
is a different dimension than hard or soft characterization of a task, which is a
measure of the cost of a failure(the higher the cost of failure, the more critical the
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Fig. 1. Task scheduling examples.

task) [13]. If two tasks have the same deadline, the task with higher criticality
should be scheduled first. When determining the VM instant types, EDA-NMS
selects the instant types that are just sufficient to guarantee task deadline to
reduce user payment cost. EDA-NMS gives higher priority to guaranteeing task
deadlines than reducing energy consumption.

The key contributions of this paper are as follows:

– We propose an energy-saving EDA-NMS algorithm that reduces the num-
ber of running PMs and avoids VM migration by exploiting the looseness of
task deadlines without compromising task schedulability (i.e., the condition
of being schedulable) and throughput.

– We conduct extensive simulation-based experiments to evaluate and analyze
the performance of the proposed task scheduling algorithm. The results show
that the proposed heuristic task scheduling algorithm not only reduces energy
consumption, but also improves the completion time of real-time tasks.

2 Related Work

A significant amount of research efforts has been devoted to investigating the
task scheduling in the cloud systems over last decade. Qiu et al. [16] stud-
ied the problem of assigning computing units to each task in a system to
achieve energy savings at a minimum cost. Hosseinimotlagh et al. [12] proposed
a VM scheduling algorithm based on the unsurpassed utilization level, which
achieves optimal energy consumption while meeting a given QoS. It focuses on
increasing the acceptance rate of arrival tasks but ignores the type of work-
loads running in VMs which affects the QoS guarantee of scheduling algorithm.
Besides these works, most existing cloud schedulers, such as FIFO scheduling in
Hadoop MapReduce [9], Fair scheduler in Facebook [7] and Capacity scheduler
in Yahoo [21] schedule tasks based on worst-case execution time while ignoring
dynamically changing cloud computing environments. As a result, they fail to
fully utilize the resource. In other word, those approaches assume that cloud
computing environments are deterministic and pre-computed schedule decisions
will be statically followed during schedule execution. Unlike those approaches,
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we leverage interval numbers to capture the dynamically changing cloud resource
parameters to improve resource utilization.

Several scheduling works also address the problem of ensuring user dead-
lines as defined in Service Level Agreements (SLAs). Chen et al. [6] proposed
a real-time scheduling strategy that allows executing only one task at any time
instant on each VM. When the number of tasks increases, it needs vast VMs
instants that will produce a lot of static energy consumption. Zhu et al. [22]
presented a rolling-horizon optimization policy, which reduces energy consump-
tion in virtualized data centers by supporting VM migration and VM placement
optimization. These works reduce static energy consumption by migrating VMs
between PMs. However, these works ignore the incurring VM migration overhead
on the servers as well as the network infrastructure of the cloud. In contrast to
previous researches, we propose the heuristic task scheduling algorithm to reduce
static energy consumption. The total energy consumption consists of two parts:
dynamic energy consumption and static energy consumption. The static energy
consumption is the energy consumed by a host during idle time. The dynamic
energy consumption is the extra energy consumed by a host when it is busy.
As static energy consumption is dominant, our work focuses on reducing static
energy consumption (i.e., reducing the number of active PMs). The proposed
heuristic achieve reduce energy by selecting different types of VM instances with
varying computing capacities for the tasks (i.e., we are actually adjusting execu-
tion speeds of real-time tasks, and consolidating these tasks into fewer number
VMs, hence fewer number of PMs). As a result, it does not need to migrate
VMs from an under-loaded host (PM) to other hosts (PMs). Furthermore, it
also provides guarantees for the real-time tasks deadlines.

There are also some works that focus on the energy consumption model. The
DVFS-enabled scheduling algorithms offers the minimum amounts of required
CPU utilization to each task, and hence reduces the dynamic energy consump-
tion as much as possible [5,18]. He et al. [10] developed a new energy-efficient
adaptive scheduling algorithm (EASA) that can adaptively adjust supply volt-
ages according to the system workload for dynamic energy efficiency. Most of
previous research works like DVFS-enabled scheduling, focus on reducing the
dynamic energy consumption as low as possible. However, the static power will
last for a long time even for executing a low-speed task [11].

3 Model and System Architecture

In this section, we introduce the scheduling system architecture and three math-
ematical models: (i) the finishing time of a task, (ii) the laxity of a task, and
(iii) the energy consumption of local a provider. These models will be used in our
scheduling algorithm. Specifically, the scheduling system architecture is a VM
based system, where VMs are launched for processing the submitted tasks and
torn down when the tasks are finished. The system also dynamically turns on/off
physical machines, and maintains the CPU utilization of the physical machines
at the optimal level based on the number of VMs to reduce energy consumption.
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(i) The finishing time of a task is calculated based on the length/size of the
task and the computing capability of the VM to which the task is going to
be assigned. It is used to estimate whether the task can be scheduled to a
certain VM under deadline constrain.

(ii) The laxity of a task is calculated based on the task finishing time and its
deadline. It is a measure of how urgent the task is. It is used for sorting the
tasks in the scheduling queue.

(iii) The energy consumption is calculated based on the CPU utilizations of
physical machines. Based on the estimated energy consumption, our algo-
rithm dynamically turns on/off physical machines to reduce energy con-
sumption.

4 Model and System Architecture

4.1 System Architecture

Figure 2 illustrates the compositional scheduling architecture used for the virtual
cloud system.

Fig. 2. Compositional scheduling architecture.

The scheduling architecture consists of two critical parts (the global sched-
uler and local VM providers) and three sub-components (performance monitor,
schedulability analyzer and cost function), as shown in Fig. 2.

– The performance monitor observes the current workload in the system, checks
the system status information such as currently allocated VMs, collects actual
tasks processing time and arrival pattern information.

– The schedulability analyzer maintains and updates the configuration parame-
ters which record tasks’ deadlines and arrival time information provided by
performance monitor. Also, the schedulability analyzer takes tasks from users
and generates VMs startup plan from configuration parameters for different
users.
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– The cost function sub-component calculates the computing expense of execut-
ing tasks in the public cloud using price model offered by Amazon’s Elastic
Compute Cloud (EC2), based on the size of tasks and the computing price for
renting a VM resource [3].

Cloud service providers (CSPs), who own large datacenters and server clus-
ters, are incentivized by profits that they accrue by charging the end users for
the service access [8]. CSPs provide services to end users through local VM
providers. Each local VM provider is responsible for allocating cloud resource to
the tasks of an individual user. One local VM provider offers one user massive
computing power, needed storage and different services based on an SLA. Several
neighboring local VM providers may form the CSPs with network connections.
CSPs consist of a set of local VM providers: LP = {lp1, lp2, ..., lpn}.

Each lpj manages a set of PMs: PM j = {pmj
1, pmj

2, ..., pmj
k}, k =

0, 1, ..., |PM j |. A PM can host one or more VMs. For each local VM provider
lpj , it manages a set of PMs which contains a set of VMs: V M j =
{V M j

1 , V M j
2 , ..., V M j

k}, k = 1, ..., |PM j |. V M j
k is a set of VMs in pmj

k that
belongs to lpj , and V M j

k = {vmj
k1, vmj

k2, ..., vmj
kr}, r = 1, ..., |V M j

k |. vmj
kr is

the rth VM on PM pmj
k that belongs to lpj . The resource demands of a set

V M j cannot exceed the resource capacity of PM j which belongs to lpj .
To satisfy tasks diversity, multiple task queues are employed in global sched-

uler. Thus, the real-time tasks are assigned to global real-time waiting queues
(RTQ), and non-real-time tasks are assigned to global non-real-time queue
(NRTQ). In RTQ, all the real-time tasks are sorted by their laxity values in
an ascending order, whenever a new real-time task arrives. The task with the
smallest laxity which means a level of urgency is first considered for execution in
scheduling. The motivation of sorting the tasks in RTQ based on their laxities
is that tasks with tight deadlines are processed earlier than others in order to
avoid SLA violations.

Definition 1. The laxity ζi of real-time task τ j
ikr belong to vmj

kr means a level
of urgency, and it is given as [6]:

ζj
ikr = du

i − (etjikr)
+ − tc, (1)

where du
i is the deadline of task τu

i , (etjikr)
+ represents the maximal execution

time of task τu
i executing on vmj

kr and tc is the current time.

If some tasks have the same laxity value, then these tasks are sorted by their
criticalities again. The tasks with higher criticality should be scheduled first. In
NRTQ, the non-real-time tasks are sorted by their arrival times. The task with
an earlier arrival time is scheduled first. Only when the RTQ is empty, the global
scheduler schedules the tasks in NRTQ.

The local VM provider is bound to a specific user, so its VM instances can
promote user context preservation, security and privacy. In other words, any VM
instance of a local VM provider is dedicated to a single user until the instance
is shut down when it approaches multiples of full hour operation (i.e., keep the
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instance busy doing work until the charging time interval is due) and no tasks
are running on it. For example, since the instance is charged based on the unit
of hour, we shut down the VM only when it is idle and reaching multiples of full
hour operation. One local VM provider lpu

j manages and monitors all pending
and ready VM instances belong to one user u.

4.2 Task Model and Characteristics

The information provided by the task is the input to our scheduling algorithm.
We introduce the task model and its characteristics in this section.

The tasks are submitted by individual users. We denote the set of tasks
belonging to a separate user u as Tu = {τu

1 , τu
2 , ..., τu

m}. The tasks considered
in this paper can be divided into two types: real-time and non-real-time triv-
ially parallel tasks which are independent and aperiodic. Each task requires to
be executed in one VM instance type and cannot be partitioned to multiple
computing nodes. Each task τu

i is characterized by a 4-tuple of parameters:
τu
i = (atui , l̃ui , du

i , ku
i ), where

– atui is the arrival time for task τu
i .

– l̃ui is the length/size of task tui , which is the number of instructions (i.e.,
millions instructions, MI). Note that the length of a task is uncertain before
scheduling, but its lower bound (lui )− and upper bound (lui )+ can be gained
[2,6]. As in [6,17], we regard l̃ui as an interval number.

– du
i is the deadline of τu

i . Note that du
i ≥ atui . In this paper, the deadlines serve

as the performance requirements specified by the users.
– ku

i ∈ {K1,K2,K3} denotes the criticality of the task τu
i .

The set of criticality is a designation of the level of assurance against failure
needed for a system component [4]. In this paper, we use three generic critical-
ity levels. K1 is the lowest criticality level, K3 is the highest criticality level.
The task with higher criticality level indicates that it is more important and
usually requires urgent response.

4.3 VM Instances

VMs are categorized into G distinct instance types: it1, it2, ..., itG, and a VM of
instance type itg denotes as vmg. VM is configured to have a number of slots
for executing tasks. For a given VM vmj

kr, it is characterized by its c̃apvmj
kr

and

τ j
ikr, where c̃apvmj

kr
denotes the CPU capacity represented by the number of

instructions per second (MIPS), and τ j
ikr is an indicator denoting that the task

τu
i belong to vmj

kr, respectively. Each user only specifies the types of VMs that
are needed, but not the quantity of each requested VM type [8].

VM instance acquisition requests can be made at any time, but it may take
startup time denoted as σ for newly requested pending instance to be ready to
use. Based on the previous research [14], σ could take around 600 s from the
arrival time of an instance acquisition request to the time when the VM is ready
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to use. The overhead is paid by the user although a task cannot be executed
on the VM during the time when the VM is starting up. Because cloud VM
instances are currently billed by instance hours (rather than the exact user con-
sumption time), the scheduling and scaling (i.e., whether wake up extra PMs)
decisions should avoid partial instance-hour waste. Therefore, a reasonable pol-
icy is that whenever an instance is started, it is better to be shut down when
the VM usage approaches full hour operation (i.e., keep the instance busy doing
work until the charging time interval is due) [14].

As mentioned before, clouds now normally offer various instance types for
users to choose, instead of offering one suit-for-all instance type. Correspond to
Amazon EC2 instance type with the only exception that all the VMs are single-
core, our experiments model multiple VM instance types of a cloud with differ-
ent performance and varying costs as shown in following Table 1. The it1 and
it2 are compute and memory optimized instance types which are most suitable
for CPU and memory intensive applications respectively, like image processing,
database systems and memory caching applications. The it3 is a general instance
type which provides the balance between compute and memory. General type
instances are suitable for all general purpose applications. A computing inten-
sive task can run faster on high-CPU VM instance than on high-memory VM
instance. Choosing cost-effective instance types can both guarantee task dead-
lines and save user payment cost [14].

4.4 Task Finishing Time Estimation

The CPU capacity allocated to a task in a VM is measured in MIPS (million
instructions per second) c̃apvmj

kr
, which arbitrarily varies over time. We do not

know its actual value, but its lower and upper bounds can be obtained before
scheduling [6]. As a result, the real execution time ẽt

j

ikr cannot be exactly deter-
mined before scheduling. We utilize the interval number described in [6,17] to
determine these uncertain parameters as follows.

c̃apvmj
kr

= [cap−
vmj

kr

, cap+

vmj
kr

], (2)

Table 1. Characteristics of types of VMs used

Type name Description Max MIPS Cost Startup lag

it1 High-CPU 2500 $0.68/hour σ = 720 s

it2 High-Memory 2000 $0.50/hour σ = 720 s

it3 General type 1000 $0.085/hour σ = 600 s
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where cap−
vmj

kr

and cap+

vmj
kr

are the computing capacity lower and upper bound
of the VMs with minimal and maximal CPU performance.

ẽt
j

ikr =
l̃ui

c̃apvmj
kr

=

⎡
⎣ (lui )−

cap+

vmj
kr

,
(lui )+

cap−
vmj

kr

⎤
⎦ . (3)

f̃ t
j

ikr = s̃t
j

ikr + ẽt
j

ikr, (4)

where s̃t
j

ikr is the estimated start time of task τ j
ikr, and f̃ t

j

ikr denotes the finish
time of task τ j

ikr.

s̃t
j

ikr = max{(ftjikr)
b, atui }, (5)

where (ftjikr)
b is the finish time of previously allocated task before τu

i executing
on vmj

kr.

4.5 Energy Consumption

CPU resource utilization. We first discuss the CPU resource utilization of
the VMs and PMs, which are related to the energy consumption. The CSPs may
offer different types of VM instances, which are suitable for different types of
workloads. lpj is associated with an integer array Qj of G members: qj

1, q
j
2, ..., q

j
G,

where qx
g indicates that number of type g VMs (vmg) are hosted on the PMs

set PM j that belongs to lpj . Since Qj is dynamic, it may change over time
due to VM terminations and reconfigurations. We denote it as Qj(t) at time t.
lpj contains a finite amount of computing resources Cj

cpu coming from PM j .
The CPU resource utilization of lpj at time t is denoted as U j(t), and the CPU
resource requirement of vmg is denoted as Rg

cpu.

U j(t) =

G∑
g=1

Qj
g(t) · Rg

cpu

Cj
cpu

× 100% (6)

=

|PMj |∑
k=1

U j
k(t)

|PM j | , (7)

where U j
k(t) is the CPU resource utilization of one PMs pmj

k belongs to lpj at
time t.

The energy consumption (E) at a datacenter is defined as a total amount of
power (P) consumed over a period of time (T) while performing the work [19].

E = P · T. (8)

The total energy consumption of pmj
k is denoted as TEj

k. In CMOS chips,
the total energy-consuming contains two main parts, one is the static energy

zywait@glut.edu.cn



An Energy-Efficient Task Scheduling Heuristic Algorithm 89

consuming SEj
k and the other is dynamic energy consuming DEj

k. The SEj
k

is the energy consumed during the idle time of pmj
k. From [12], we can define

SEj
k as:
Static energy consumption. The SEj

k is the energy consumed during the
idle time of pmj

k. From [12], we can define SEj
k as:

SEj
k =

{
γ·MEj

k

Uj
k

, when U j
k > 0,

0, otherwise.
(9)

where MEj
k is the energy consumed when a PM works with its maximum utiliza-

tion, γ is a constant ratio of the static energy consumption SEj
k to the maximum

energy consumption MEj
k of pmj

k (0 < γ < 1).

MEj
k = P j

k max
· tmax, (10)

where P j
k max

is the power consumed when a PM works with its maximum uti-
lization, and tmax is the time in which a PM works at its maximum computing
power to finish a certain amount of tasks.

This ratio γ depends on the physical characteristics of the PM, and it is
constant during the time that a host is switched on.

Dynamic energy consumption. The relationship between dynamic energy
consumption DEj

k and Uj(t) is much more complex. From [11], we can know
that several models proposed for the dynamic energy consumption DEj

k in the
literature which are functions of the utilization of a PM. The dynamic energy
consumption DEj

k and the total energy consumption TEj
k of pmj

k to execute
tasks can be defined as:

DEj
k = (MEj

k − SEj
k) · U j

k . (11)

TEj
k = SEj

k + DEj
k (12)

= [γ + (1 − γ) · U j
k

2
]
P j

k max
· tmax

U j
k

. (13)

Equation (13) explains that CPU resource utilization U j
k is the only

adjustable parameter that has an impact on total energy consumption TEj
k.

In the following, we will show that the static energy consumption dominates
the total energy consumption. In Fig. 3, we assume the γ = {0, 0.2, 0.4, 0.8},
it means that the static energy consumption SEj

k takes 0%, 20%, 40%, 80%
of the maximum energy MEj

k. We compare the total energy consumption TEj
k

under different static energy consumption by ignoring the exact value of P j
k max

.
Figure 3 shows that the pmj

k consumes a noticeable amount of static energy for
a long-life computing. Therefore, the static energy plays a profound role in the
total energy consumption, and sometimes it comprises up to 70 % of total energy
consumption [11]. When the value of γ is larger, the static energy consumption is
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Fig. 3. Total energy consumption with various values of γ.

more than those with smaller γ. From the projection curves on x-y plane under
various γ values, we can see that the increasing speeds of energy consumption are
different. The smaller γ has faster increasing speed of energy consumption. This
explains that most of total energy consumption is dynamic energy consumption
when the γ is smaller.

Only alleviating the dynamic energy consumption cannot reduce the total
energy consumption significantly as long as there is high static energy consump-
tion. Previous research works focus on consolidating VMs to alleviate the sta-
tic energy consumption. However, the migration process imposes a high over-
head depending on the network infrastructure. In addition, the source local VM
provider spends more computing power during the live migration transient inter-
val which might result in SLA violations. In order to handle this problem, we
propose a task scheduling strategy that launches as few VMs (hence few PMs)
as possible to guarantee most of tasks’ deadlines and to enhance the CPU uti-
lization level to minimize the static energy consumption.

5 Scheduling Strategy with Deadline Guarantee

Our energy-aware scheduling strategy focuses on how to finish all the submitted
tasks before user specified deadlines with as few VM instance hours as possible.

Definition 2. The computing cost of running a task τu
i on provider lpj with

instance VM type iti ∈ {it1, it2, it3} is defined as Ctask(τu
i , lpj , iti).

Ctask(τu
i , lpj , iti) = (� l̃ui

c̃apvmjk

� · Citi
), (14)

where � ˜lui
c̃apvmjk

� means that the execution time is rounded up to the nearest

discrete time unit (i.e. 1 h) of lpj’s billing interval for cost calculations, Citi

denotes as the cost of running the VM instance vmj
kr of type iti on lpj for one

time unit. When the deadline of task τu
i is not met, the computing cost is ∞.
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Our scheduling policy first schedules the task τu
i within deadline constraint

on the local waiting queue of the cheapest (low hourly-cost) VM instance type
among all the live instances. A task τu

i will be removed from the cheapest VM
instance type queue to more expensive (high hourly-cost) VM instance type
queue from the all available instance types, when the current state of vmj

kr is
not able to finish task τu

i before its deadline. Even when there is no workload, a
cloud application will always maintain at least one running VM instance. When
one VM instance vmjk is approaching full hour operation, we need to decide
whether to shut down the machine or not. The detail pseudocode of our EDA-
NMS algorithm is showed in Algorithm1.

Algorithm 1. Pseudocode of EDA-NMS algorithm
1: RTQ ← NULL;
2: NRTQ ← NULL;
3: for each new task τu

i do
4: if du

i ! = NULL then
5: RTQ ← τu

i ;
6: else
7: NRTQ ← τu

i ;
8: end if
9: while RTQ! = NULL do

10: sort all the tasks in RTQ by laxity in ascending order;
11: if more than two tasks have the same ζi then
12: sort all the tasks with same ζi by criticality ku

i in descending order;
13: end if
14: τu

i ← get the task at the head in RTQ;
15: the global scheduler assigns task τu

i to specific lpj belonging to one user;
16: move τu

i to the tail of local waiting queue on most cost-efficient vmj
kr;

17: execute LRTS algorithm (Algorithm 2);
18: end while
19: while RTQ == NULL && NRTQ! = NULL do
20: τu

i ← get the task at the head in NRTQ;
21: the global scheduler assigns task τu

i to specific lpj belonging to one user;
22: move τu

i to the tail of local waiting queue on most cost-efficient vmj
kr;

23: for each task in local waiting queue on vmj
kr do

24: execute τu
i ;

25: end for
26: end while
27: end for

The pseudocode of local real-time scheduling (LRTS) algorithm is shown in
Algorithm2.
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Algorithm 2. Pseudocode of LRTS algorithm
1: τu

i ← get the task at the head in local waiting queue on vmj
kr;

2: calculate the start time ˜st
j
ikr, execution time ˜et

j
ikr and finish time ˜ft

j

ikr of τu
i ;

3: while ˜ft
u

ijk > du
i do

4: Find next cost-efficient vmj
kr′ ;

5: end while
6: if can find one vmj

kr on lpj make ˜ft
u

ijk ≤ du
i then

7: while τu
i ! = NULL do

8: execute τu
i ;

9: τu
i ← get the task at the head in local waiting queue on vmj

kr;
10: end while
11: else
12: reject τu

i

13: end if

6 Performance Evaluation

6.1 Environment Setup

To demonstrate the performance improvements gained by our EDA-NMS algo-
rithm, we quantitatively compare it with a existing algorithms PRS using the
CloudSim simulator [6]. We compare the user payment cost and the completion
time of real-time tasks of running cloud applications. In the simulation frame-
work, we can also control the input parameters, such as workload patterns and
task deadlines. The detailed parameters are given as follows:

– The simulation environment consists of a datacenter with 10000 hosts, where
each host is modeled to have a single CPU core (with CPU performance
3000 MIPS, 3500 MIPS and 4500 MIPS), 4 GB of RAM memory, and 1 TB
of storage [1,6].

– We employ the interval number to control a task’s deadline, which can be
calculated as:

du
i = atui +

U [(lui )−, (lui )+]
cap+

vmj
kr

+ U [0, 500] s, (15)

where U [0, 500] s denotes a variable that subjects to uniformly distributed
from 0 s to 500 s, and it determines whether the deadline of a task is loose or
not.

– We randomly generated the task’s length: l̃ui = [5000, 100000] MIs in a uniform
distribution.

– The arrival of tasks follows Poisson distribution at the arrival rate of
Poisson(λ), λ = 4 per unit of time, it means the arrival interval between two
consecutive tasks obey the negative exponential distribution with parameter
Exp(1/λ).
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6.2 Performance Under Changing Workloads

In these experiments, we focus on two types of workload. The single type work-
load experiment for compute-intensive tasks whose main bottleneck is CPU’s
computing power. In the mix type workload evaluation, we simulated three types
of tasks, including mix, computing intensive and I/O intensive. The processing
time parameters of single type and mix type workload experiment on different
types VM instance are summarized in Table 2.

Table 2. Mix type workload unit execution time

Mix Computing intensive I/O intensive

General 50 s/MI 50 s/MI 50 s/MI

High-CPU 25 s/MI 15 s/MI 50 s/MI

High-Memory 25 s/MI 50 s/MI 15 s/MI

Three task trace groups are generated for the experiments, each includes
1000, 5000 and 10000 tasks and the number of real-time tasks, non-real-time
tasks and reject tasks produced by the experiment results is summarized in
Table 3.

Table 3. Some running results of single type workload/mix type workload

Number of real-
time tasks

Number of non-
real-time tasks

Reject number of
real-time tasks

EDA-NMS(1000 tasks) 584/587 416/413 0/0

PRS(1000 tasks) 587/581 413/419 0/0

EDA-NMS(5000 tasks) 2915/2912 2085/2088 0/0

PRS(5000 tasks) 2910/2913 2090/2087 1/0

EDA-NMS(10000 tasks) 5838/5835 4162/4165 5/2

PRS(10000 tasks) 5828/5832 4172/4168 6/2

To investigate the duration of the real-time tasks executions, we use the
cumulative distribution function (CDF) of the response time lags (i.e., deadline -
finish time) of the tasks. From the experiment result of Fig. 4, we can see the
EDA-NMS and PRS scheduling algorithms’ performance under these two types
of workload conditions. EDA-NMS outperforms PRS in terms that it achieves
bigger tasks response lag than PRS, it means that the completion time of the
real-time tasks executed by EDA-NMS is shorter than PRS under different types
of workloads.

By analysing the situation of the rejected tasks, we can know the system
stability under EDA-NMS and PRS. The reject tasks of EDA-NMS consist of
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Fig. 4. Tasks response time lag.

7 tasks with middle criticality, and the reject tasks of PRS consist of 8 tasks
including 3 ones with highest criticality, 4 ones with middle criticality and 2
ones with lowest criticality. The task with different criticality which misses the
deadline has different influence on the system stability. So we can find that there
are fewer rejected tasks with higher criticality of our EDA-NMS than PRS. It
means that our EDA-NMS has better system stability than PRS.

6.3 Cost Efficient Comparison

By changing the task number from 1000 to 10000, we first use the average execu-
tion cost of real-time tasks to compare the performance of these two scheduling
policies (EDA-NMS, PRS). The experiment results in Fig. 5 show that our EDA-
NMS has lower average execution cost in both two computing intensive and mix
type workload cases.
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Fig. 5. Average cost per real-time task comparison.

We then compare the total cost of these two scheduling policies (EDA-NMS,
PRS) with three different types of VM instances as shown in Table 1. From the
comparison results of total cost are illustrated in Table 4, we can see that the
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Table 4. Mix workload cost

No Number of tasks VM types Total cost($) Static energy
consumption

Choice 1 10000 General, Gen-
eral

9.95 × 103(58 %
higher)

Standard

Choice 2 10000 General, High-
Memory

7.74 × 103(23 %
higher)

Standard

Choice 3 10000 General, High-
CPU

7.4 × 103(17 %
higher)

Standard

Optimal 10000 General,
High-CPU,
High-Memory

6.3 × 103 1.5 standard

choice 1, choice 2 and choice 3 incur 58 %, 23 % and 17 % more cost than the
optimal solution separately. Our choice 3 is closest to the optimal cost, and it
outperforms other two choices. Although the optimal solution can obtain the
lowest cost, its statics energy consumption is 1.5 times of other three choices.
Because the future workload cannot be known in advance, so the optimal cost
can’t be obtained in real life. Hence, our choice 3 is cost and energy efficient
solution.

7 Conclusion

In this paper, EDA-NMS exploits the looseness of task deadlines and tries to
postpone the execution of the tasks that have loose deadlines in order to avoid
waking up new PMs. It incrementally provides cloud resources to the tasks based
on the user specified deadlines, the estimated completion times of the tasks, and
the resource utilization levels of the hosts. The results of extensive experiments
show that our approach perform better than other existing approaches on achiev-
ing energy efficiency without introducing VM migration overhead and without
compromising deadline guarantees. In the future, we are going to implement
EDA-NMS in a real testbed and evaluate its performance.
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