
MobiSensing: Exploiting Human Mobility for
Multi-Application Mobile Data Sensing with Low User

Intervention

Kang Chen#

Department of Electrical and Computer Engineering
Southern Illinois University, Carbondale, IL, USA 62901

Email: kchen@siu.edu

Haiying Shen
Department of Electrical and Computer Engineering

Clemson University, Clemson, SC, USA 29631
Email: shenh@clemson.edu

Abstract—The explosive growth of personal mobile devices
(e.g., smartphones and pads) has brought about significant
potential distributed sensing resources. However, such resources
have not been fully utilized due to two problems: i) mobile device
mobility usually is not dedicated to data sensing, and ii) users
may not be willing to participate in the data sensing proactively,
i.e., move to or wait in a specific area. To address these problems,
we propose a sensing system, namely MobiSensing, with a low
intervention to device owners. It uses the semi-Markov process
to model node mobility for future mobility prediction. While
moving around, mobile devices connect to the central task
assignment server opportunistically through their owners’ daily
usage. In each connection, the server predicts the connected
device’s next connection and its mobility between current and
the next connection. Then, the server assigns sensing tasks in
this period of time that the node is likely to complete to the
node. As a result, no proactive operations or movements are
required for device owners, and sensing tasks can be completed
passively and efficiently. Trace-driven experiments demonstrate
the high successful rate of MobiSensing.

I. INTRODUCTION

The past few years have witnessed an explosive growth
of personal mobile devices such as smartphones, pads, and
laptops. For example, the number of smartphone users reached
1 billion in 2012 and is expected to increase to 2 billion in
2015 [1]. Most personal mobile devices are equipped with
GHz level CPUs and various sensors (e.g., GPS, accelerome-
ter, microphone, and camera), which enables them to sense and
collect a large amount of information about the surrounding
environment while moving along their holders. Thus, these
widespread devices provide significant potential distributed
sensing and computing resources.

Many personal mobile device based sensing systems have
been proposed recently [2]–[7] such as cyclist experience map-
ping [2] and bus arrival time prediction [4]. However, these
sensing systems require the participated mobile users to stay
in the sensing locations or to conduct continuous sensing to
obtain desired data, which either leads to high user intervention
or consumes significant resources on mobile devices. Thus,
these methods cannot be effectively deployed to take full
advantage of the existing widespread personal mobile devices.
In summary, the sensing capabilities of mobile devices have
not been fully utilized to sense data in different designated

#The work was started when at Clemson University.

areas due to two problems: 1) mobile device mobility usually
is not dedicated to data sensing, and 2) users may not be
willing to be interrupted, i.e., do not want to purposely move
to or wait in a specific area for data sensing. Rather, they may
be willing to share the sensing capabilities of their mobile
devices in a passive model.

As a result, it is preferable to realize a data sensing system
in which data sensing tasks can be completed efficiently
with a low user intervention. Following such a direction,
we propose a personal mobile device based data sensing
system, namely MobiSensing, that has high sensing efficiency,
low resource consumption, and low intervention to device
holders. MobiSensing models each device’s mobility pattern as
the time heterogeneous semi-Markov process among different
landmarks in the sensing area to ensure accurate mobility
prediction. Based on the mobility modeling, MobiSensing
designs a practical algorithm to determine a node’s probability
to complete a sensing task for efficient task assignment when
it connects to the central server. As a result, rather than making
nodes sense data continuously, MobiSensing only requires
partial nodes to conduct data sensing when necessary.

In summary, the contributions of this paper include
• A heterogenous semi-markov model that can summarize

node/device mobility pattern efficiently.
• A novel and practical sensing task assignment algorithm

that can assign tasks to nodes with a high probability to
complete them efficiently.

• Finally, we propose a data sensing framework that can
leverage personal mobile devices to realize efficient data
sensing with a low intervention to device users.

II. RELATED WORK

Personal mobile device based sensing has been widely
studied recently in the forms of participatory sensing [2]–[7]
and individual-purpose sensing [8]–[13].

Participatory Sensing. In participatory sensing sys-
tems [2]–[7], mobile devices sense data for certain system
wide functions. BikeNet [2] deploys sensor-enabled smart-
phones on bikes to collect data on cycling routes to pro-
vide several beneficial functions such as cyclist performance
measurement and environmental data collection. G-Sense [3]
is a large-scale sensing framework built upon both mobile

and static sensor networks. It has layered structure to collect,
transport, and store sensed data to solve the scalability issues.
Zhou et al. [4] proposed collecting the contextual information
(e.g., location and movement status) of passengers on a bus
to predict bus arrival time to each station. SignalGuru [5]
utilizes smartphones cameras to capture traffic light schedule
information, which is collaboratively shared among users to
provide driving speed advices to help avoid red lights. The
Nericell system [6] utilizes various sensors on smartphones
(i.e., accelerometer, microphone, GSM radio, and GPS) to
detect road and traffic conditions. PRISM [7] is a remote
sensing platform that supports easy developing and deploying
of smartphone based sensing applications.

Though these systems leverage mobile devices for useful
functions, they mainly require mobile devices to continuously
sense data to collect desired data or assume knowing node’s
moving trajectory in advance, thereby are not a task assign-
ment framework for data sensing. On the contrary, MobiSens-
ing can assign different sensing tasks to mobile devices that
are likely to complete them, leading to a low intervention to
device holders and a low resource consumption on devices.

Individual-purpose Sensing. In the individual-purpose
sensing applications [8]–[13], users exploit sensors on their
mobile devices to collect information for specific individual
applications. Zhang et al. [12] exploited the change in WiFi
signal strength of the held smartphone when a user turns
around to find the positions of outdoor wireless access points.
CenceMe [8] uses various information sensed by sensors on
mobile phones as the input for a classifier to determine user
status, e.g., walking or sitting in a conversation or a gym. The
work in [9] solves the same problem as CenceMe but focuses
more on energy saving by dynamically selecting the minimal
set of sensors needed to collect necessary information. Wang et
al. [10] designed a scalable system that can detect sound events
with different sensing data quality (e.g., levels of surrounding
noises and sound sensing accuracies). Constandache et al. [11]
provided an escort system that helps to locate a user in a
public place based on the reported information regarding the
encountering among users. Yang et al. [13] proposed detecting
whether a driver is using a smartphone while driving by the
locating his smartphone based on the delay in receiving voice
signals from different speakers inside a car.

III. SYSTEM DESIGN

The design goal of MobiSensing is to efficiently complete
sensing tasks requested by organizations and people using the
system while reducing the resource consumption on devices
and the intervention to device owners as much as possible.
Therefore, sensing tasks should be assigned to nodes that can
complete them as likely as possible. MobiSensing does not
require that there are ensured connections between mobile
nodes and the central server at any moment.

In the following, we first model sensing tasks in Sec-
tion III-A. We then present how to model node mobility and
predict a node’s landmark visit in Section III-B. We further
introduce how to use this model for efficient sensing task
assignment in Section III-C.

A. Sensing Tasks

A sensing task is represented by a tuple with four elements:

{DataType, Location, Date, T imeSlot} (1)

Element “DataType” denotes the type of data to be sensed
at the “Location”. The data type should be supported by
mobile devices, such as the WiFi/cellular signal strength.
Elements “Date” and “TimeSlot” refer to the target date, e.g.,
01/01/2014, and the target time slot on the target date of
the sensing task, respectively. When an application submits a
sensing job, which may span a long time period, e.g., several
days, the central server in MobiSensing splits each received
sensing job into a number of sensing tasks,

MobiSensing follows the method in [14] to determine land-
marks for data sensing. In detail, it first collects mobile device
mobility tracks, i.e., a series of GPS positions or cellular tower
IDs, to detect regions in which users stay for a period of time
longer than a threshold (e.g, 20 minutes). Then, regions with a
large amount of stays are identified as landmarks. Please refer
to [14] for the details of this method.

B. Modeling Node Mobility

We adopt the discrete time homogeneous semi-Markov
process (SMP) to model node mobility as the transits between
landmarks, as following the work in [15]. In the following,
We present the detail of modeling in Sections III-B1 to III-B4
and the usage of the model in Section III-B5.

1) Time Homogeneousness: We observe that a node’s
schedule usually presents a repetitive pattern. The schedule of
a student or a vehicle repeats each week, i.e., having the same
schedule on the same day in each week. This means that a
node generally has the same transition probability and sojourn
time distribution on the same day in each week. Then, suppose
each device holder’s schedule repeats every Ns days, we can
model each node’s mobility pattern as Ns time homogeneous
SMP: the mobility on the same day in every Ns days can be
represented by one SMP process. Ns can be determined by
analyzing the mobility pattern of nodes in the system. In most
human related scenarios, we can set Ns to 7 for weekly based
schedule and 1 for the daily repetitive schedule.

2) SMP Modeling: We assume that there are m landmarks
in the system. We let L = {L1, L2, · · · , Lm} be the landmark
space and let Ω and P be a probability space in [0,1]. We use
(Xk

n, T
k
n), k = 1, 2, · · · , Ns to represent the Ns discrete time

homogeneous SMPs that represent the node’s mobility. The
k-th SMP (Xk

n, T
k
n) represents the node’s mobility in the set

of k-th days in every Ns days. For example, (X1
n, T

1
n) denotes

the time homogeneous semi-Markov process referring to the
node’s mobility pattern in the first day in every Ns days. In
each SMP, the system time unit is split into time slots, and a
time is represented by the sequence number of the time slot
that contains it. Xk

n represents the state after the n-th transition
and T k

n represents the time when the node changes to status
Xk

n after the n-th transition in the k-th SMP. Xk
n and T k

n are
two random variables: Xk

n : Ω→ L and T k
n : Ω→ N, which

means Xk
n and T k

n are a value that belongs to L and integer,
respectively, with a probability in [0,1].

Since the modelings of all time homogeneous SMPs refer-
ring to a node’s mobility are the same, we drop the superscript
k in notation for simplicity. Then, the associated discrete time
homogeneous SMP kernel Q is defined by:

Qij(t) = P [Xn+1 = Lj , Tn+1 − Tn ≤ t|X0, · · · , Xn;

T0, · · · , Tn]

= P [Xn+1 = Lj , Tn+1 − Tn ≤ t|Xn = Li] (2)

where Qij(t) denotes the probability of transiting to Lj after
staying in Li for no more than t time slots. Then, the transit
probability from status Li to status Lj can be expressed as

pij = lim
t→+∞

Qij(t) (3)

Similarly, the probability that the node will stay in state Li

for no more than t time slots can be expressed as

Si(t) = P [Tn+1 − Tn ≤ t|Xn = Li] =

m∑
j=1

Qij(t) (4)

Recall that nodes connect to the server to receive sensing
tasks when it is not overloaded and has network connection.
When a node connects to the server, we can consider its current
landmark and the current time as the starting landmark (status)
and the starting time (time 0) in its SMP model to predict its
future landmark visit for sensing task assignment. In other
words, the node position (i.e., status) prediction problem is:
given a node’s initial status Li at time 0, what’s the probability
that the node will be at status Lj after t time slots? We denote
this probability by φij(t). To calculate φij(t), we consider two
cases: the initial status is and is not Lj , respectively.

In the first case, when the initial status is Lj , i.e., the node
never leaves Lj before time t. We use φ′jj(t) to denote φij(t)
in this case, then:

φ′jj(t) = φ′ij(t)δij = (1− Si(t))δij (5)

where δij is the kronecker symbol, which equals to 1 when
i = j and 0 otherwise.

In the second case, starting from Li, the node experiences
at least one transit to be at status Lj at t. We use φ′′ij(t) to
denote φij(t) in this case, we then have

φ′′ij(t) =

m∑
r=1

t−1∑
s=1

wir(s)φrj(t− s) (6)

where wir(s) denotes the probability that the node transits to
status Lr from Li at time s.

Since the two cases are mutually exclusive, we can directly
add Equation (5) with Equation (6) to calculate φij(t)

φij(t) = (1− Si(t))δij +

m∑
r=1

t−1∑
s=1

wir(s)φrj(t− s) (7)

To calculate φij(t), we need to know wir(s). Since we use a
discrete time model, i.e., the smallest time scale is one time
slot, wir(s) can be calculated by below

wir(s) = lim
∆t→1

Qir(s)−Qir(s−∆t)

∆t
= Qir(s)−Qir(s− 1) (8)

More specifically, wir(s) can be obtained by

wir(s) =

{
Qir(1) if s = 1;
Qir(s)−Qir(s− 1) if s > 1.

(9)

Furthermore, Qij(t) can be obtained by

Qij(t) = P [Xn+1 = Lj , Tn+1 − Tn ≤ t|Xn = Ti]

=
P [Xn+1 = Lj , Xn = Ti]

P [Xn = Ti]
·

P [Tn+1 − Tn ≤ t|Xn+1 = Lj , Xn = Ti]

= P [Xn+1 = Lj |Xn = Ti] ·
P [Tn+1 − Tn ≤ t|Xn+1 = Lj , Xn = Ti]

= pijUij(t) (10)

where Uij(t) denotes the probability that the node will transit
to status Lj after staying at Li for no more than t time slots.

Finally, we can first derive pij and Uij(t) based on collected
mobility data of the node. Then, we can deduce φij(t) in an
iterative manner following Equations (7), (9), and (10).

3) Obtaining Model Parameters: Since pij represents the
probability of transiting to Lj after staying at Li, we can
calculate pij by

pij = Vij/Vi (11)

where Vij represents the number of transitions in which the
node moves to Lj from Li, and Vi denotes the total number
of transitions through which the node moves out of Li.
Uij(t) denotes the probability that the sojourn time at Li is

no more than t on the condition that the node transits to Lj

after staying at Li. Therefore, it can be calculated by

Uij(t) = Vij(t)/Vij (12)

where Vij(t) denotes the number of transitions from Li to Lj

in which the sojourn time at Li before the transition is no
greater than t. For example, suppose the node has transited
from Li to Lj for 5 times, and the sojourn times at Li are 4,
2, 6, 8, and 3 time slots, respectively. Then, Uij(5) = 3/5 and
Uij(2) = 1/6. Note that when enough mobility information
has been collected, since nodes usually have stable mobility
pattern, the two probabilities in Equations (11) and (12) of a
node do not need to be updated after each mobility report,
which saves the computation cost on the server.

4) Mobility Information Calculation: In order to save the
energy consumption on mobile devices, the calculation of
each node’s transit probabilities (pij), sojourn time distribution
(Uij(t)), and the mobility modeling is conducted at the server,
which has a high process capacity. For the mobility modeling,
based on Equation (11) and Equation (12), each node only
needs to report to the server its landmark transitions and
sojourn times, i.e., Vij , Vi, and Vij(t) for all Li, Lj , and t
in a system unit T . In this process, the mobility information
of a node for different days will be categorized as the input
for corresponding SMPs.

5) Mobility Model based Location Prediction: Finally,
we present how to predict a node’s future mobility for task
assignment based on the mobility model. Recall that φij(t)
represents a node’s probability to be on landmark Lj at time
t given the starting landmark Li at time 0. Therefore, we can
calculate φij(t) for possible Lj and t given a node’s current
position (Li) to build an appearing probability matrix (APM),
as shown in Table I. This tables shows that starting from
current landmark and current time slot, what are the node’s
probabilities to appear in different landmarks in the following
few time slots. Such a table is regarded as the prediction of
the node’s mobility and is used for task assignment.

Specifically, when a node arrives at a landmark, say Li,
and connects to the server, the server considers Li as the
starting landmark and the current time as time 0. Then, the
server calculates the φij(t) for all possible j and t in the
near future based on Equations (7), (9), and (10). In the next
section, we will introduce how to determine the number of
future time slots (t) to be considered in this step. Ideally, such
a table needs to be calculated each time when a node connects
to the server for task assignment based on its accumulated
mobility information. However, after an initial phase, this table
may become stable and the server only needs to update it
periodically based on the reported mobility information.

TABLE I: An APM for di with m = 6 and αF̄ik = 4.

LM\t 0 1 2 3 4
L1 0.05 0.4 0.8 0.2 0.1
L2 0.55 0.1 0.03 0.2 0.02
L3 0.15 0.2 0.03 0.05 0.03
L4 0.15 0.1 0.03 0.5 0.05
L5 0.03 0 0.1 0.05 0.2
L6 0.07 0.1 0.01 0 0.6

C. Sensing Task Assignment

In this work, we only assume opportunistic connections to
the central server, i.e., nodes are not always connected to
the central sever, which matches with real world scenarios.
Specifically, we use {Ei0, Ei1, · · · , Eic} to denote the series
of task assignments (i.e., connections to the server) of node
di in system unit T . Eik = {Lik, Tik}, where Lik and Tik
denote the landmark and the time slot of the task assignment.
In a task assignment, say Eik, the server first predicts the next
task assignment time (i.e., the next connection to the server)
for the node, denoted by T ′i(k+1), as shown in Figure 1. Then,
the server uses the node’s predicted mobility between Tik and
T ′i(k+1), to assign tasks for this period of time to the node.

Below, we take one task assignment, i.e., Eik, as an example
to illustrate the process of task assignment. We first introduce
how to deduce the average time between two task assignments,
e.g., F̄ik in Figure 1. Then, the expected time of the (k+1)-th
task assignment is T ′i(k+1) = Tik + F̄ik. After this, we present
how tasks are assigned to the connected node in detail.

1) Deducing the Average Inter-assignment Time Interval:
Considering that device holders often have certain mobility
and device usage pattern, we use historical records to calculate
the expected amount of time slots between task assignments
of a node. We use the average inter-assignment time between

k-th task
assignment

expected
(k+1)-th task
assignment

actual
(k+1)-th task
assignment

𝑇𝑖𝑘 𝑇𝑖(𝑘+1)
𝑡

𝑇′
𝑖(𝑘+1)

𝐹 𝑖𝑘

𝐹𝑖𝑘

𝛼𝐹 𝑖𝑘

𝐹 𝑖(𝑘+1)

𝑇′
𝑖(𝑘+2)

expected
(k+2)-th task
assignment

……

Fig. 1: Consecutive task assignments to a node

the k-th task assignment and the (k + 1)-th task assignment
of node di, i.e., F̄ik, to denote the expected interval.

In detail, the server maintains a table for each device that
records the average inter-assignment interval on each land-
mark, called inter-assignment time table (ITT), as illustrated
in Table II. In the table, each row denotes the average inter-
assignment interval after the node connects to the server for
task assignment at a specific landmark, and “count” represents
the number of inter-assignment intervals that have been used
to calculate the average value. Suppose after a task assignment
at landmark Li, node di again connects to the server for task
assignment at landmark Lj . The server then first updates the
row of Li in the node’s ITT and then checks the row of Lj in
the ITT to get the average time to the next task assignment,
which is used for the task assignment on Lj .

TABLE II: Example Inter-assignment Time Table (ITT)

Landmark Ave. Inter-assignment Time Count
L1 10 5
L4 15 2
L8 4 3

2) Task Assignment: When node di connects to the server
on landmark Lik at Tik, i.e., task assignment event Eik,
the server retrieves the average inter-assignment interval F̄ik

from ITT and then assigns the node sensing tasks that it is
likely to complete during Tik and T ′i(k+1). However, a node
may not conduct the next task assignment exactly at T ′i(k+1).
Suppose the next task assignment actually happens at Ti(k+1)

and Ti(k+1) > T ′i(k+1), i.e., the actual next task assignment
happens after the expected time, as shown in Figure 1. In this
case, if we only consider tasks between Tik and T ′i(k+1) for
assignment, the tasks between T ′i(k+1) and Ti(k+1) are missed
because the next task assignment happening at Ti(k+1) only
considers sensing tasks after Ti(k+1). This would degrade the
success rate of sensing tasks in MobiSensing.

To solve this problem, we use a redundancy factor α > 1 to
enlarge the considered number of future time slots. This means
that we consider sensing tasks in a longer period (i.e., αF̄ik

rather than merely F̄ik) for assignment to avoid sensing tasks
being missed. Then, in the task assignment, among all tasks
with target times falling in the next αF̄ik time slots, those for
landmarks where node di is likely to appear on their target
times are assigned to di. Consequently, as shown in Figure 1,
even when the next task assignment happens at a time after
the expected time T ′i(k+1), all sensing tasks between Tik and
Ti(k+1) can be considered for assignment. α can be determined
by considering how stable the inter-assignment intervals are.

Specifically, we first adjust the number of time slots in
an APM to αF̄ik. That is, for a node at landmark Lik,

its APM includes its future appearing probabilities, i.e.,
φij(t), at time slots t = 0, 1, 2, ..., αF̄ik for each Lj , j =
1, 2, ...,m, as shown in Table I. Then, if a node’s appear-
ing probability at landmark Lj in time t is larger than a
threshold Hp, the node is considered to be likely to ap-
pear in landmark Lj at time t. That is, the server assigns
tasks {DataType, Location(l), F req, Date, Slot} with
φil(Slot) larger than Hp to node di. Hp can be set to a value
that is slightly larger than 70% of all appearing probabilities.

IV. PERFORMANCE EVALUATION

A. Empirical Datasets

We used the Dartmouth trace (DART) [16] and the Diesel-
Net AP trace(DNET) [17] in the experiment. Table III shows
the characteristics of the two traces.

TABLE III: Characteristics of mobility traces.

DART DNET
Nodes 242 34
Sub-areas 155 27
Duration 107 days 20 days

B. Experiment Setup

We set the initialization period to 45 days and 10 days
in the experiments with the DART trace and the DNET
trace, respectively. During the initial period, nodes collect
their mobility patterns. After the initial period, sensing tasks
were generated at the rate of Rt tasks per node per day. In
each sensing task, the target landmark and target time were
randomly selected from frequently shown landmarks and time
slots in the traces. For MobiSensing, we set the system unit
T to 24 hours and the time slot Tp to 10 minutes. We assume
that a node can connect to the server when it has stayed in a
landmark for more than Tk minutes. We set Tk to 60 for the
DART trace and to 20 for the DNET trace. We set the schedule
repeat period parameter Ns to 7 days and 1 day in the tests
with the DART trace and the DNET trace, respectively.

As previous works are not designed to address the same
problem as in MobiSensing, we selected an intuitive method,
denoted by “MaxFreq”, and an optimal method, denoted by
“Optimal” [18], for comparison. In MaxFreq, each task is
assigned to the Rm top nodes that visit the target landmark
of the task most frequently, and Rm was set to 4 and 6 in
the tests with the DART and DNET traces, respectively. In
Optimal, each task is assigned to all nodes. We use Optimal
to show the percentage of sensing casks that can be completed
by using all mobile nodes in the traces. We measured the
following metrics in the experiment.
• Success rate: The percentage of sensing tasks that are

successfully completed by mobile devices.
• Total number of assigned tasks: The total number of

sensing tasks that are assigned to nodes.
• Node overhead: The average size of information that is

collected and stored by each node each day to support the
data sensing. Such information includes the node mobility
information in MobiSensing, the meeting frequencies in
MaxFreq,and received sensing tasks in all methods.

C. Performance Comparison

1) Success Rate: Figure 2(a) and Figure 3(a) show the
success rates of the three methods in the tests with the DART
trace and the DNET trace, respectively. We see that the success
rates of the three methods follow MaxFreq<MobiSensing
<Optimal in both tests. Optimal leads to the highest success
rate because it utilizes all possible opportunities to complete
a sensing task by assigning each task to all mobile nodes.
However, such a high success rate is at the cost of significant
intervention to mobile users and high resource consumption
on mobile devices. MobiSensing generates a higher success
rate than MaxFreq because MobiSensing uses node mobility
information to predict future node mobility and assigns sensing
tasks to nodes that are likely to complete them. In MaxFreq,
though sensing tasks are assigned to nodes that visit the target
landmarks most frequently, these nodes may not appear at the
landmarks during the target times of the sensing tasks. As a
result, MaxFreq leads to the lowest success rate.

We further found that the success rate of MobiSensing is
around 70% and 50% in the tests with the DART and DNET
traces, respectively. Meanwhile, we see that Optimal only
completes about 90% and 70% of tasks in the two traces,
respectively. Optimal can complete a task as long as there is
at least one node visiting the target landmark at the target
time period of the task. Since there are no nodes visiting
the target landmark during the target period of time in some
tasks, these tasks cannot be completed. Thus, even Optimal
cannot achieve 100% success rate. Such results mean that
MobiSensing completes more than 70% of tasks that can be
completed by Optimal. Therefore, these results demonstrate
the effectiveness of MobiSensing on identifying nodes that can
complete a sensing task with a high possibility.

2) Total Number of Assigned Tasks: Figure 2(b) and Fig-
ure 3(b) show the total number of assigned tasks in MobiSens-
ing and MaxFreq in the tests with the DART trace and the
DNET trace, respectively. The experimental results of Optimal
are too large to be shown in the two figures because Optimal
assigns each task to every node in the system. We see that
the total number of assigned tasks is smaller in MobiSensing
than in MaxFreq. This is because MobiSensing only selects
necessary number of nodes that can ensure a high success
rate to carry a task, as introduced in Section III-C. Such a
result shows that MobiSensing leads to a low intervention
to mobile users and a low resource consumption on mobile
devices, which shows its effectiveness.

3) Node Overhead: Figure 2(c) and Figure 3(c) show the
node overheads of the three methods in the tests with the
DART trace and the DNET trace, respectively. We see that
the overheads of all methods increase as the task rate increases
and Optimal generates the highest overhead. We also see that
the node overhead of MaxFreq is slightly lower than that of
MobiSensing in the beginning and gradually surpasses that of
MobiSensing when the task rate becomes high.

When the task rate increases, nodes in the three methods
need to store more tasks, leading to increased node overhead.
Optimal has the highest node overhead because each node
must store all generated sensing tasks. When the task rate is

0.4

0.6

0.8

1.0

5 10 15 20 25 30

Su
cc
es
s R

at
e

Task Rate

MobiSensing MaxFreq
Optimal

(a) Success rate.

0

4

8

12

16

20

5 10 15 20 25 30

To
ta
l N

um
be

r o
f

As
sig

ne
d
Ta
sk
s (
x1
05
)

Task Rate

MobiSensing MaxFreq

(b) Total number of task replicas.

0

8

16

24

32

40

48

5 10 15 20 25 30

N
od

e
O
ve
rh
ea
d
(K

B)

Task Rate

MobiSensing MaxFreq
Optimal

(c) Maintenance cost.
Fig. 2: Performance with different task rates using the DART trace.

0.2

0.4

0.6

0.8

5 10 15 20 25 30

Su
cc
es
s R

at
e

Task Rate

MobiSensing MaxFreq
Optimal

(a) Success rate.

0

2

4

6

8

5 10 15 20 25 30

To
ta
l N

um
be

r o
f

As
sig

ne
d
Ta
sk
s (
x1
04
)

Task Rate

MobiSensing MaxFreq

(b) Total number of task replicas.

0

8

16

24

32

40

48

5 10 15 20 25 30

N
od

e
O
ve
rh
ea
d(
KB

)

Task Rate

MobiSensing MaxFreq
Optimal

(c) Maintenance cost.
Fig. 3: Performance with different task rates using the DNET trace.

low in the beginning, the mobility data stored on each node
accounts for the majority of node overhead. Therefore, since
each node in MaxFreq only needs to store its visiting frequen-
cies to landmarks, while each node in MobiSensing stores its
mobility pattern information, MaxFreq generates lower node
overhead than MobiSensing in the beginning. When the task
rate increases, each node in both methods needs to store more
sensing tasks, which makes the sensing task storage become
the majority of the node overhead. Then, since MobiSensing
can more accurately assign sensing tasks to nodes that can
complete the tasks, as shown in the previous test, the node
overhead in MobiSensing is smaller than MaxFreq.

Combining above results, we conclude that MobiSensing
can realize efficient personal mobile device based data sensing
with a low intervention to device users.

V. CONCLUSION

In this paper, we propose MobiSensing, a system that
utilizes personal mobile devices to realize effective multi-
application data sensing with a low mobile user intervention.
MobiSensing takes advantage of the mobility patterns of device
holders to realize design goals. Specifically, it models node
mobility as a semi-Markov process and uses the model to pre-
dicts the node’s probability of appearing at each landmark in
future time slots. Then, sensing tasks are assigned to nodes that
have a high probability to complete them. As a result, mobile
device holders do not need to operate proactively to complete
sensing tasks. Real trace based experiments demonstrate the
effectiveness of the MobiSensing system. In the future, we
plan to investigate node privacy protection as well as how to
exploit the social network properties of mobile devices.

REFERENCES

[1] “Smartphone users,” 2012. [Online]. Available: ”http://finance.yahoo.
com/news/number-smartphones-around-world-top-122000896.html”

[2] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G.-S. Ahn,
and A. T. Campbell, “The bikenet mobile sensing system for cyclist
experience mapping.” in Proc. of SenSys, 2007.

[3] A. J. Perez, M. A. Labrador, and S. J. Barbeau, “G-sense: a scalable
architecture for global sensing and monitoring.” IEEE Network, vol. 24,
no. 4, pp. 57–64, 2010.

[4] P. Zhou, Y. Zheng, and M. Li, “How long to wait?: predicting bus
arrival time with mobile phone based participatory sensing.” in Proc.
of MobiSys, 2012.

[5] E. Koukoumidis, L.-S. Peh, and M. Martonosi, “SignalGuru: leveraging
mobile phones for collaborative traffic signal schedule advisory.” in Proc.
of MobiSys, 2011.

[6] P. Mohan, V. N. Padmanabhan, and R. Ramjee, “Nericell: using mobile
smartphones for rich monitoring of road and traffic conditions.” in Proc.
of SenSys, 2008.

[7] T. Das, P. Mohan, V. N. Padmanabhan, R. Ramjee, and A. Sharma,
“Prism: platform for remote sensing using smartphones.” in Proc. of
MobiSys, 2010.

[8] E. Miluzzo, N. D. Lane, K. Fodor, R. A. Peterson, H. Lu, M. Musolesi,
S. B. Eisenman, X. Zheng, and A. T. Campbell, “Sensing meets mobile
social networks: the design, implementation and evaluation of the
cenceme application.” in Proc. of SenSys, 2008.

[9] Y. Wang, J. Lin, M. Annavaram, Q. Jacobson, J. I. Hong, B. Krish-
namachari, and N. M. Sadeh, “A framework of energy efficient mobile
sensing for automatic user state recognition.” in Proc. of MobiSys, 2009.

[10] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Campbell,
“Soundsense: scalable sound sensing for people-centric applications on
mobile phones.” in Proc. of MobiSys, 2009.

[11] I. Constandache, X. Bao, M. Azizyan, and R. R. Choudhury, “Did
you see bob?: human localization using mobile phones.” in Proc. of
MobiCom, 2010.

[12] Z. Zhang, X. Zhou, W. Zhang, Y. Zhang, G. Wang, B. Y. Zhao,
and H. Zheng, “I am the antenna: accurate outdoor ap location using
smartphones.” in Proc. of MobiCom, 2011.

[13] J. Yang, S. Sidhom, G. Chandrasekaran, T. Vu, H. Liu, N. Cecan,
Y. Chen, M. Gruteser, and R. P. Martin, “Detecting driver phone use
leveraging car speakers.” in Proc. of MobiCom, 2011.

[14] T. M. T. Do and D. Gatica-Perez., “Contextual conditional models for
smartphone-based human mobility prediction.” in Proc. of UbiComp,
2012.

[15] Q. Yuan, I. Cardei, and J. Wu, “Predict and relay: an efficient routing
in disruption-tolerant networks.” in Proc. of MobiHoc, 2009.

[16] T. Henderson, D. Kotz, and I. Abyzov, “The changing usage of a mature
campus-wide wireless network,” in Proc. of MOBICOM, 2004.

[17] A. Balasubramanian, B. N. Levine, and A. Venkataramani, “Enhancing
interactive web applications in hybrid networks,” in Proc. of MOBICOM,
2008.

[18] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin, and N. Trian-
dopoulos, “Anonysense: privacy-aware people-centric sensing.” in Proc.
of MobiSys, 2008.

