
Probabilistic Demand Allocation for Cloud Service
Brokerage

Chenxi Qiu, Haiying Shen and Liuhua Chen
Dept. of Electrical and Computer Engineering

Clemson University, Clemson, USA
{chenxiq, shenh, liuhuac}@clemson.edu

Abstract—Functioning as an intermediary between cloud ten-
ants and providers, cloud service brokerages (CSBs) bring about
great benefits to the cloud market. To maximize its own profit,
a CSB is faced with a challenge: how to reserve servers and
distribute tenant demands to the reserved servers such that the
total reservation cost is minimized while the reserved servers can
satisfy the tenant service level agreement (SLA)? Demand predic-
tion and demand allocation are two steps to solve this problem.
However, previous demand prediction methods cannot accurately
predict tenant demands since they cannot accurately estimate
prediction errors and also assume the existence of seasonal
periods of demands. Previous demand allocation methods only
aim to minimize the number of reserved servers rather than the
server reservation cost, which is more challenging. To solve this
challenge, we propose a Probabilistic Demand Allocation system
(PDA). It predicts demands and more accurate prediction errors
without the assumption of the existence of seasonal periods. It
then formulates a nonlinear programming problem and has a
decentralized method to find the problem solution. In addition
to overcoming the shortcomings in previous methods, PDA is
novel in that rather than separately conducting the prediction
and demand allocation, it considers prediction errors in demand
allocation in order to allocate demands with offsetting prediction
errors (e.g., -1 and +1) to the same server, which helps find the
problem solution. Both simulation and real-world experimental
results demonstrate the superior performance of our system in
reducing servers’ reservation cost.

I. INTRODUCTION

As innovative approaches continue to emerge in cloud com-
puting, it is becoming clear that simple cloud interoperability
between cloud tenants and cloud providers is often neither
realistic nor the most advantageous. In particular, if a cloud
tenant wants to use the cloud resource from multiple cloud
providers, it needs to negotiate multiple contracts with the
cloud providers, which results in multiple payments, multiple
data streams, and multiple providers to check up on. Then,
tenants are faced with a problem of how to make the services
from multiple cloud providers work together to gain maximum
profit. However, determining the most advantageous ways to
procure, implement and manage cloud technologies to handle
this problem presents complex issues to cloud tenants. Under
this circumstance, cloud service brokerages (CSBs) have arisen
in the cloud market [1]–[4].

A CSB is a third-party individual or business that acts as
an intermediary between the tenants and the cloud providers.
A CSB reserves the cloud resources (e.g., servers) from the
cloud providers and sells services (e.g. virtual machine (VM))

along with administration and security to the tenants with
higher prices [5]. Usually, CSBs can make cloud services
more valuable for cloud tenants, because CSBs work closely
with cloud providers to get price breaks or access to more
information about how much resources are required for a
service [1]. In addition, CSBs can enhance the security of
cloud services for tenants because they can monitor, track,
protect and enforce company policies across all demands from
different tenants [1]. Thus, CSBs can make it easier, less
expensive, safer and more productive for tenants to use cloud
resources, particularly when a tenant’s demands span multiple
cloud service providers.

To maximize its own profit, a CSB is faced with a challenge:
how to reserve servers and distribute tenant demands to the re-
served servers such that the total reservation cost is minimized
while the reserved servers can satisfy all the demands based
on tenants’ service level agreement (SLA) (i.e., satisfying all
the demands with a given probability)?
Demand prediction and demand allocation are two important
functions to handle this challenge. Demand prediction predicts
the amount of resources required by each demand in a future
time period (e.g., one month) and demand allocation allocates
demands to servers that can meet the demands. Previous
demand allocation works [6]–[8] aim to find an allocation
schedule that minimizes the number of allocated servers while
satisfy all demands. However, these works are based on the
assumption that the demands can be accurately predicted.
Unfortunately, previous demand prediction methods [9]–[11]
cannot accurately predict tenant demands since they neglect or
cannot accurately estimate prediction errors and also assume
the existence of seasonal periods of demands. Further, their
methods to estimate the seasonal period are not time-efficient
[12] and they are not suitable for predicting demands that do
not exhibit seasonal periods (e.g. some demands in Google
cluster [13]). A recent work, CloudScale [11], takes into
account the underestimation of demands in prediction and adds
padding on demands to avoid underestimation. However, it
omits the case that the demands can be also overestimated,
which leads to under-utilization of server resources.

Even if we can accurately estimate the demands, the pre-
vious demand allocation methods cannot solve the above-
mentioned challenge because their objective is to minimize the
number of reserved servers while our goal is to minimize the
cost of the reserved servers, which however is more difficult.

This is because we need to consider not only which server
can best fit a given demand (in order to minimize the number
of servers) but also the reservation cost of the server. In most
cases, the server that best fits a demand is not the server with
the minimum reservation cost.

To solve the above-indicated challenge, we propose a Prob-
abilistic Demand Allocation (PDA) system, which consists of
demand prediction and demand allocation.

Demand prediction. We predict demands and more accu-
rate prediction errors without the assumption of the existence
of seasonal periods. Specifically, we model the historical data
of tenants’ demand by the seasonal autocorrelated moving
average (SARMA) model for demand prediction. We estimate
the prediction errors using the maximum likelihood estimation
(MLE) [14], which determines the prediction errors that make
the observed demands the most probable.

Demand allocation. We formulate a stochastic program-
ming problem for the challenge and find the problem solution
through theoretical work. The input of this problem is the
predicted value of each demand and its estimation error in the
next period and the output determines which servers should
be reserved and how to allocate each demand to the reserved
servers. Finally, we propose a decentralized method using the
technique of Lagrangian dual decomposition [15] to find the
solution for this problem.

In addition to overcoming the shortcomings in previous
methods, PDA is novel in that rather than separately con-
ducting the prediction and demand allocation, it considers
prediction errors in demand allocation in order to allocate
demands with offsetting prediction errors (e.g., -1 and +1)
to the same server, which helps find the problem solution.
Within our knowledge, this is the first work that provides
guidance to CSBs in server reservation and demand allocation
across multiple clouds to minimize the reservation cost while
guarantee the reserved servers can satisfy demands with a
given probability.

We test the performance of PDA in comparison with the
previous algorithms by both trace-driven experiments and
on Amazon EC2 [16]. The experimental results demonstrate
the superior performance of our system. In summary, our
contributions can be summarized as follows:
1. We design a prediction method that can predict the future
demand cost based on the observed historical data. Differ-
ent from previous prediction method that only considers the
possibility of underestimation, we consider both cases of
underestimation and overestimation.
2. Using the predicted data, we formulate a new demand
allocation problem for the CSB, namely PDA, which has
a different objective with the traditional demand allocation
problem, i.e., the new problem’s objective is to minimize
the cost of the reserved servers, rather than to minimize the
number of servers. As a solution, we also propose a gradient
method based on Lagrangian dual decomposition, which can
be implemented in a decentralized way.
3. Finally, we test the performance of PDA in comparison with
the previous algorithms by both trace-driven experiments on a

simulator and on Amazon EC2 [16]. The experimental results
demonstrate the superior performance of our algorithms in the
aspects of total reservation cost and resource utilization.

The remainder of this paper is organized as follows: Section
II outlines the framework of PDA and introduces the system
model used in this paper. Section III and Section IV describe
the prediction part and demand allocation part of PDA, respec-
tively. Section VI evaluates the performance of our proposed
schemes in comparison with other algorithms. Section VII
presents related work. Section VIII concludes this paper with
remarks on our future work compared with previous methods.

II. THE ARCHITECTURE OF PDA

In this section, we will first briefly outline the architecture of
the PDA system, which is composed of two parts: the demand
prediction part and the demand allocation part. Also, we
will describe the system model and some important concepts,
notations, and assumptions that will be used in this paper.

First, we consider a scenario composed of multiple public
cloud providers, tenants, and a CSB. The CSB reserves servers
from cloud providers and allocates the demands from tenants
to the reserved servers. We assume a dynamic system, i.e.,
the whole time span is partitioned into a number of periods
(e.g., one month for a period) and the CSB needs to re-reserve
servers and re-allocate the demands at the beginning of each
period. The goal is to minimize the reservation cost while guar-
antee the reserved servers can still satisfy tenants’ demands
with a given probability in each period. Here, a demand can
be a VM in IaaS (Infrastructure as a Service) model or a video
game in SaaS (Software as a Service) model. Fig. 1 shows the
architecture of PDA: At the beginning of a short-term period,
the CSB analyzes the history of each demand consumption
from cloud monitoring services by monitor, and then uses the
historical data to predict the expected value of each demand by
predictor. After that, the CSB delivers the predicted value to
allocator, which is responsible for allocating the demands to
different servers. While the CSB sells cloud service to tenants
individually, it jointly reserves the different types of cloud
resources from multiple cloud providers using the allocator.

More specifically, we assume there are totally M demands
V = {v1,v2, ...,vM} from tenants, where each demand is com-
posed of K different types of resources (e.g., CPU, memory,
and storage). In reality, the resource consumption for each
demand does not always remain the same level, but randomly
fluctuates over time. As previous works in [5], [11], [17], we
consider the case that the demands are predictable. We charac-
terize the resource consumption of each demand vl by a time
series {wl

t}t∈Z+ (l = 1, ...,M), where wl
t = [wl,1

t ...wl,k
t ...wl,K

t]

and wl,k
t represents the consumption of type k resource at time

slot t in demand vl . At each period t, the CSB collects each
{wl

1, ...,w
l
t−1} from the monitor, and then uses the predictor

to predict wl
t . In addition, we don’t consider the case that the

demands can enter or leave the system.
Suppose that the CSB needs to allocate demands at be-

ginning of period T . After getting wl
T from the predictor,

the CSB uses the allocator to allocate the demand of tenants

Allocator

...

Monitor

...

Predictor

Cloud Service

Brokerage

Tenants

Cloud

Providers

Allocate demands

to servers

Predicted

data
Monitored

data

Request

Fig. 1. Cloud service brokerage.

to different cloud providers. Similar to demand, each server
si can be characterized by a K-dimensional capacity vector
bi = [bi,1, ...,bi,K]

>, where each dimension bi, j represents the
server’s capacity on type- j resource. We assume that there
are N heterogeneous servers S = {s1, ...,sN}. Here, “heteroge-
neous” means that the servers in S have different reservation
costs and different capacity vectors. We normalize the entries
of each wl

T and each bi through dividing wl,k
T and bi,k by

bmax = maxi,k bi,k in all demands and all servers, respectively.
We assume that the reservation price of each server is fixed
when it is used regardless of its resource utilization [8], and
we use ci to denote the reservation price of each si and
c = [c1, ...,cN]

>.
We assume that cloud providers always have enough re-

source to sell to CSB [5], which is justified by the “illusion
of infinite capacity”. We use indicator variable xi to represent
whether si is purchased by the CSB: if yes, xi = 1; otherwise
xi = 0. We use indicator variable yi,l to denote whether demand
vl is distributed to server si: if yes, yi,l = 1; otherwise yi,l = 0.
We define ε as the risk factor. The objective of the allocator
is to minimize the reservation cost while guaranteing all
the demands can be satisfied by the reserved servers with a
given probability 1−ε . We represent the allocator’s objective
formally by

min c>x (1)

s.t. Pr

(
∑

l
wl,k

T yi,l > bi,kxi

)
≤ ε ∀i,k. (2)

Here, Equ. (2) means that, for each server si, allocator requires
the probability that the total consumption of the demands
allocated to this server exceeds the server’s capacity to be no
higher than ε . In addition, each demand should be allocated
to exactly one server, i.e.,

y j1 = 1, (3)

where 1 is an N dimensional vector with each entry equals
to 1. Later on, we will prove that the problem with objective
function (1) and constraints (2) (3) is NP-hard (Section V-A),
and introduce how to solve this problem using the subgradient
method [15] (Section V-B).

0 100 200 300 400 500 600 700 800 900
0

0.01

0.02

0.03

0.04

0.05

0.06

Time (5 minutes)

C
P

U
 u

til
iz

at
io

n

Fig. 2. The seasonal period varies in different demands.

III. DEMAND PREDICTION

In this section, we will introduce how to predict demands of
different types of resources for tenants. As a solution, we use
the seasonal autoregressive moving-average (SARMA) model,
which has been widely used for the prediction of time series
[18]. In Section III-A, we will first introduce the problems
we need to solve to predict demands more accurately and
more efficiently. In Section III-B and Section III-C, we will
introduce how we solve these problems.

A. Accurate and Efficient Demand Prediction

Previous demand prediction methods assume the existence
of seasonal period [19]. However, we observed from the trace
in Google cluster [13], which records the CPU and memory
resource utilization on a cluster of about 11000 machines from
May 2011 for 29 days in every 5 minutes, which shows that
not all the demands has seasonality. Specifically, we analyze
all these demands and find that 32.7% demands do not have
seasonality. For example, Fig. 2 shows that no seasonality
exists for the CPU utilization of a demand that we picked up
in Google cluster within 900 intervals, where each interval
lasts for 5 minutes. We then use SARMA for prediction,
which can describe not only the time series with seasonality
but also the time series without seasonality. Specifically,
we first need to estimate the parameters of SARMA using
the historical demand consumption, and then based on the
estimated parameters, we predict the future demands ŵl,k

T
(1 ≤ l ≤ M,1 ≤ k ≤ K) using SARMA. In SARMA, the
parameter d denotes the seasonal period. If no seasonality is
found, the parameter d = T , which means seasonality does
not exist. After estimating the seasonal period d, we can use
the Innovation algorithm [18] to estimate all other parameters
in SARMA. If a demand follows seasonality, we need to
efficiently estimate the seasonal period of the demand. After
the prediction, we also need to estimate the prediction errors
for more accurate demand prediction. In particular, there are
two problems we need to solve and we introduce the solutions
in Sections III-B and III-C.

Seasonal period estimation. In our prediction method, we
use Fast Hartley Transform (FHT) [12] to estimate the seasonal
period [20], [21].

Prediction error estimation. Because the noise cannot be
predicted even in a stationary time series, the prediction errors
cannot be avoided, i.e., the actual demand is higher or lower
than the expected demand. However, we need to determine

t

CPU

O

HT-1

H1

H2

t

t

t
O

O

O

...

+

+

O

noise

=

FHT of noise

t
+

FHT of the

original series

Original

series

CPU

CPU

CPU

CPU

Fig. 3. FHT-based estimation of seasonal period in a demand.

the allocation of a demand by its predicted resource cost,
prediction errors may lead to resource overload or under-
utilization. Recall that in PDA, each tenant’s demand must be
satisfied with probability higher than 1− ε , simply using the
predicted value from SARMA cannot guarantee meeting such
a requirement and also previous work [11] only considered
underestimation. To solve this problem, we estimate the vari-
ance of prediction errors using maximum likelihood estimation
(MLE) [14], which determines the parametric values that make
the observed results the most probable.

B. Seasonal Period Estimation

To estimate the seasonal period of each demand, we use
a signal processing technique, called FHT [12], to discover
the seasonal period. Given a series {wl,k

1 , ...,wl,k
T−1}, FHT is

defined as a linear and invertible function H : Rn→Rn, which
decomposes the T − 1 elements in a resource consumption
time series {wl,k

1 , ...,wl,k
T } into T −1 periodic series (as shown

in Fig. 3). The mth period series has the period T−1
2πm and the

amplitude Hm, which can be calculated by

Hm =
T

∑
t=1

wl,k
t

[
cos
(

2π

T −1
tm
)
+ sin

(
2π

T −1
tm
)]

(4)

where m = 1, . . . ,T − 1. We employ FHT to calculate the
dominant frequencies (whose Hms are higher than a given
threshold) of resource demand, and then pick the lowest
dominant frequency. Suppose that the frequency we choose is
1/d′, then the estimated seasonal period d equals d′. Here, we
don’t choose the high dominate frequencies to determine the
seasonal period because they cannot easily be differentiated
from noise [14] (Fig. 3).

If there is no dominant frequency selected in FHT, which
means no seasonality exists in the demand, then the seasonal
period d = T in SARMA. Using d and and all other estimated
parameters in SARMA, we finally get the expected value of
all the demands using SARMA.

C. Prediction Error Estimation

As we mentioned before, prediction errors cannot be avoid-
ed during the predicting process. Hence, we need to esti-
mate the distribution of these errors, such as variance. We
implement the estimation of prediction error variance using

maximum likelihood estimation [14], which determines the
prediction error variance, which is defined by

σ
l,k =

∑
T−1
t=1

(
ŵl,k

t −wl,k
t

)2

T −1
(5)

where wl,k
t and ŵl,k

t represent the actual value and expected
value of vl on resource k. In the following we use vector vl,k to
represent the errors [wl,k

1 −wl,k
1 , ...,wl,k

T−1−wl,k
T−1]. Then, MLE

tries find the value of σ
l,k
t , i.e., the prediction error variance,

that makes the observed results vl,k the most probable. That
is, given a predicted value, we estimate the predicted error
variance. To do this, we find the value of σ

l,k
t that maximizes

the likelihood function Ll,k
(
vl,k|σ l,k

)
,

Ll,k
(

vl,k|σ l,k
)
= ln f

(
σ

l,k
)

(6)

which represents the probability that vl,k happens given σ l,k,

that is its partial derivative, i.e.,
∂Ll,k(σ l,k|vl,k)

∂σ
l,k
t

, should be
equal to 0. In the following, we represent how to calculate
Ll,k
(
vl,k|σ l,k

)
, and then estimate the prediction error variance

σ
l,k
t , when the partial derivative equals 0.
To calculate Ll,k

(
vl,k|σ l,k

)
, we first need to specify the

joint PDF for vl,k. Here, we use a widely used statistic
model to describe vl,k in time series, which assumes that
the demands vl,k follows multi-variant Gaussian distribution,
which is a widely used statistic model to describe the noise,
i.e., prediction errors, [14], [18], [22]

f
(

σ
l,k
)
=

1√
(2π)T |Γl,k

n |
exp
(
−1

2
vl,k>

(
Γ

l,k
n

)−1
vl,k
)
, (7)

where Γ
l,k
n is the covariance matrix of vl,k. Also, from Fig.

4(b), we observe that this assumption is suitable to describe
the trace in Google cluster. According to Equ. (6) and Equ.
(7), we can derive that

Ll,k
(

vl,k|σ l,k
)
=−1

2

(
T ln2π + ln

∣∣∣Γl,k
n

∣∣∣)− 1
2

vl,k>
(

Γ
l,k
n

)−1
vl,k

(8)
Take the partial derivative of Ll,k

(
vl,k|σ l,k

)
, we obtain

∂Ll,k
(
vl,k|σ̂ l,k

)
∂ σ̂

l,k
t

= 0, t = 1,2, ...,T. (9)

or equivalently,

1∣∣∣Γl,k
n

∣∣∣
∂

∣∣∣Γl,k
n

∣∣∣
∂ σ̂

l,k
t

+
vl,k>(
Γ

l,k
n

)2
∂Γ

l,k
n

∂ σ̂
l,k
t

vl,k = 0, t = 1,2, ...,T. (10)

After solving Equ. (10), we can obtain the value of σ
l,k
T

σ̂
l,k
T =

∑
T
t=1
(
vl,k
)2

T
(11)

which is the prediction error variance for the demand vl’s kth

resource.

0.0 0.4 0.8 1.2 1.6 2.0
0

1

2

3

4

5

6

7

8

Probability density of overestimation
Pe

rc
en

ta
ge

 (%
)

Fig. 4. Overestimation and underestimation are equally likely to happen.

IV. DEMAND ALLOCATION

Based on the predicted demands and the prediction errors
calculated in Section III, in this section, we focus on deciding
which servers to reserve and how to allocate demands to
handle the challenge indicated in Section I, that is, minimizing
the total reservation cost and guaranteeing that the reserved
servers can satisfy the requirement of each demand with the
probability no smaller than 1− ε . In Section V, we introduce
the rationale of our demand allocation method. In Section V-A,
we formally formulate this demand allocation problem, namely
the probabilistic demand allocation (PDA) problem and prove
the NP-hardness of this problem. In Section V-B, we introduce
how to solve this problem.

V. RATIONALE OF THE DEMAND ALLOCATION METHOD

Using the previous demand prediction method, we first
study whether demand overestimation and underestimation co-
exist and have similar probability to occur.

We run our prediction method on the CPU utilization of
3000 demands in Google cluster [13], and measure the ratio
of overestimation over underestimation in the prediction of
each demand. From the test, we found that this ratio is no
larger than 2. Then, we partition the interval [0,2] to 200
intervals: [0,0.01), [0.01,0.02), ..., [1.99,2.00]. Fig. 4 shows
the percentage of demand ratios in each interval. We find
that over 95% of the demands have the ratios in [0.95,1.05),
which means that overestimation and underestimation are
equally likely to happen for each demand in most cases.
Then, we test whether the distributions of the magnitude
of overestimation and underestimation of each demand are
similar. Specifically, we partition the prediction error interval
[−0.15,0.15] to 300 intervals evenly. For each interval, we
count the percentage of the prediction errors that reside in
each interval for randomly chosen demands. We observe that
the magnitudes of overestimation and underestimation have
similar distributions over these intervals for each demand as
shown in Fig. 4(b).

Previous methods (e.g., CloudScale) achieve high SLA
guarantee at the cost of under-utilization of resources. They
always add a padding on predicted demands to handle under-
estimation. However, they omit the impact of overestimation.
PDA considers both underestimation and overestimation. It
aims to allocate demands with similar underestimation and
overestimation together in a server, so that the underestima-
tion and overestimation can offset each other and hence the
server resources are less likely to be either overutilized or
underutilized.

A. Problem Formulation and Analysis

Recall that the scenario we have considered is composed of
a CSB, M demands V = {v1,v2, ...,vM}, and N heterogeneous
servers S = {s1, ...,sN}. At time T , the allocator of each
CSB needs to allocate the demands to the servers. Using
the prediction method described in Section III, CSBs get
the estimated demand vector and the prediction error vector
for each demand vl , represented by ŵl

T = [wl,1
T , ...,wl,K

T]> and
σ̂

l
T = [σ̂ l,1

T , ..., σ̂ l,K
T]>, respectively.

Recall that yi,l represents whether demand vl is distributed to
server si. Then, the sum demand consumption for resource k in
si is calculated by ω>k,T yi, where ωk,T = [w1,k

T , ...,wM,k
T]>. Also,

let ω̂k,T = [ŵ1,k
T , ..., ŵM,k

T]> and σ̂k,T = [σ̂1,k
T , ...,σM,k

T]>. We use
c>x = ∑i cixi to represent the total reservation cost of servers.
Our objective is to minimize the cost of all the reservation cost
of servers and satisfy each demand with probability no smaller
than 1− ε . Accordingly, we formulate the PDA problem as
follows:

min c>x (12)

s.t. Pr
(

ω
>
k,T yi ≤ bi,kxi

)
≥ 1− ε, ∀i,k (13)

y j1 = 1 (14)

where ω>k,T is random vector that follows normal distribution
with mean 0 and variance [σ̂1,k

T , ..., σ̂M,k
T]. The first constraint

(Equ. (13)) means that, for each server si and resource k, the
probability that the resource consumption of demands assigned
to si does not exceed si’s capacity on resource k is no smaller
than 1−ε . The second constraint (Equ. (14)) means that each
demand should be allocated to exact one server.

The input of the problem is the predicted demand at period
T , say ŵl

T and σ̂
l
T , and capacity vector of each server si, say

bi. The output of the algorithm is the solution of PDA z, where
z = [z1, ...,zN]

> and zi = [xi,yi1,yi2, ...,yiM]>, which contains
all the information of xi and yi,l . Here xi indicates whether si
is reserved and yi,l indicates whether vl is allocated to si. Then
the allocator determines which server should be reserved and
how to allocate the demands to reserved servers according to
xi and yi,l .

Proposition 5.1: The PDA problem can be expressed as the
SOCMIP problem [22]

min f (z) =
N

∑
i=1

c>i zi (15)

s.t. gi(z) = φ(ε)‖Σ′1/2
k zi‖−b>i,kzi ≤ 0, (16)

i = 1, ...,N, k = 1, ...,K (17)
h(z) = E>z−1 = 0, (18)

where each Σ′k is determined by the input σ̂ k,T and each
bi,k is determined by the input ωk,T , ci is an N dimensional
vector such that the first entry equals ci (i = 1, ...,N) and all
other entries equals 0, E = [e1, ...,eM], and e j is a (M + 1)N
dimensional vector such that the jth entry equals 1 and all
other entries equal to 0.

Master

sub1

...

λ
(k)

λ (k)

z
(k)

N

1

Adjusts λ

using

subgradient

method

Find the

optimal solution

zi of each

subproblem in

parallelsubN

1

z (k)
N

Fig. 5. Decentralized subgradient method at the kth iteration.

B. Decentralized Subgradient Algorithm

SOCMIP has been proved NP-hard [15]. Hence, it is impos-
sible to get the optimal solution of SOCMIP within polynomial
time. As a solution, we first relax the feasible region of
SOCMIP from integers to real numbers. However, even for the
relaxed SOCMIP, the subgradient algorithm is still not time-
efficient. Considering the scalability of our system, we need to
find a way to realize the algorithm in a decentralized way. In
the following, we design a decentralized method based on the
Lagrangian dual decomposition, which is a classical method
in combinatorial optimization and has been widely applied to
distributed and parallel computation [15]. More specifically,
the decentralized method is composed of three steps, where the
first two steps (Lagrangian dual decomposition) decompose
the problem and the third step solves the problem:

1. We derive a dual problem of the relaxed SOCMIP,
denoted by DSOCMIP (Equ. (19) - Equ. (22)).

2. We decompose the dual problem into a set of subproblems
(Equ. (23) - Equ. (28)).

3. We use subgradient to get the solutions of all the sub-
problems, and combine and adjust all these solutions to
get the dual solution and primal solution, and then round
the primal solution to get z.

Step 1. Creating a dual problem of the relaxed SOCMIP.
To create the dual problem of the relaxed SOCMIP, we follow
the steps defined by the Lagrangian dual decomposition (Equ.
(19) - Equ. (28)). We first define the Lagrangian function Λ :
ZN(M+1)×RN×R→R as follows. In this function, the vector
λ = [λ1, ...,λN] is called the Lagrange multiplier vector and
ν is called Lagrange multiplier (λ ∈ RN , λ � 0 and ν ∈ R)
associated with SOCMIP:

Λ(z,λ ,ν) =
N

∑
i=1

c>i zi +
N

∑
i=1

λigi(z)+νh(z)

=
N

∑
i=1

(
c>i zi +λi

(
‖Σ1/2

i zi‖
)
−b>i zi

)
[i]

+ ν

(
E>z−1

)
[ii] (19)

Then, we define the Lagrangian dual function by

Θ(λ ,ν) = infΛ(z,λ ,ν). (20)

Therefore, DSOCMIP is to find the solution

max Θ(λ ,ν) (21)
s.t. λ � 0 (22)

Step 2. Decomposing the dual problem of the relaxed
SOCMIP. Note that the Lagrangian function in Equ. (19)

has two parts (indicated by [i] and [ii]). Accordingly, we
decompose the problem to two parts denoted by Λ0(z,ν) and
Λi(zi,λi) (i = 1, ...,N), respectively.

Λ0(z,ν), ν

(
E>z−1

)
(23)

Λi(zi,λi), c>i zi +λi

(
‖Σ1/2

i zi‖−b>i zi

)
(24)

Then, we define sub-problem functions Θ0(λ) and Θi(λi) by
Θ0(ν), inf{Λ0(z,ν)} and Θi(λi), inf{Λi(zi,λi)}. Hence, the
Lagrangian dual function can be written as:

Θ(λ ,ν) = inf
z∈D

Λ(z,λ ,ν) = Θ0(ν)+
N

∑
i=1

Θi(λi). (25)

where D = {z | 0≤ xi ≤ 1,0≤ yi j ≤ 1,1≤ i≤ N,1≤ j≤M}.
As for Θ0(ν), if E>z− 1 < 0, then setting ν = ∞ leads to
the minimum value of Θ0(ν) to be −∞; if E>z−1 > 0, then
setting ν = −∞ leads to the minimum value of Θ0(ν) to be
−∞. Hence, in the above two cases, it is impossible for Θ0(ν)
to get its maximum value. Accordingly, we only consider the
case that E>z−1 = 0, where

Θ0(ν), inf
z∈D0
{Λ0(z,ν)}= inf

z∈D0
{E>z−1}= 0 (26)

where D0 =D ∩{z | z−1 = 0}. Then, Θ(λ ,ν) = ∑
N
i=1 Θi(λi).

Note that all Θi(λi) can be evaluated independently, i.e., in
parallel. Hence, DSOCMIP can be decomposed into a set of
subproblems subi (i = 1, ...,N):

max Θi(λi) (27)
s.t. λi � 0 (28)

Step 3. Finding the solution of SOCMIP. To solve the
subproblems to get the final problem solution, we use a de-
centralized subgradient method which finds the result by com-
bining and adjusting the solutions from all the subproblems
and is guaranteed to converge to the optimal values provided
that the step sizes of subgradient are sufficiently small [15].
We first define the objective function of the master problem by
max ∑i Θi(λi). As shown in Fig. 5, the decentralized algorithm
collects and compares the subproblems’ solutions and sends
feedback to subproblems to adjust the solutions if conflicts
exist. After getting the solution of the relaxed SOCMIP z, we
obtain z by rounding z.

VI. PERFORMANCE EVALUATION

We conducted both simulation and real-world experiments
(on Amazon EC2 [16]) driven by the Google Cluster [13]
(introduced previously). We first evaluated the effectiveness of
our prediction algorithm with the prediction method in Cloud-
Scale [11], which is the most advanced prediction method
for cloud computing. CloudScale estimates the magnitude of
underestimation from prediction using FFT and adds a padding
on predicted demands to avoid the impact of underestimation.
We then evaluated the effectiveness of our demand allocation
algorithm in comparison with two typical demand allocation
algorithms, BFDSum (or BFD for short) and FFDSum (or FFD

for short) [8]. In both BFD and FFD, all servers’ capacity
vectors and demands’ consumption vectors are mapped into
singular scales, called volumes and weights, respectively. Both
BFD and FFD sort the demands in decreasing order of size
at the beginning, and then start the allocation from the first
demand. The difference is that, given a demand to allocate,
BFD iterates over all the servers and allocates the demand
into the server with the least remaining volume, while FFD
just allocates the demand into the first server in the server set
S with sufficient volume. The objective of both FFD and BFD
is to minimize the number of servers reserved rather than the
total server reservation cost. We extended them to weighted
BFD (BFD-w) and weighted FFD (FFD-w), respectively, that
consider servers’ different weights (prices) when allocating a
demand to a server. Specifically, for BFD-w, we define a metric
βi for each server si, which equals the product of si’s remaining
volume and si’s price. In each iteration, BFD-w chooses the
server with the minimum βi to allocate the demand. FFD-w
always allocates the demand to the server that has the lowest
price among the servers with sufficient remaining volume. All
these compared methods use CloudScale without padding (i.e.,
FFT) as their demand prediction method. For each demand in
the trace of Google Cluster, we used first two days’ utilization
records for prediction and the utilization records of the first
five minutes in the third day for testing. Finally, we assume
that there are three types of servers for the simulation and the
experiments on Amazon EC2, as shown in Table I.

TABLE I
THREE TYPES OF SERVERS

Type Memory CPU Price Quantity
Standard 15 GB 8 units 0.7 20
High-Memory 17.1 GB 6.5 units 0.6 20
High-CPU 7 GB 20 units 1.0 20

For prediction algorithms, the metrics we measured in-
clude: 1) Total allocated resource, which is defined as the
total amount of all the allocated resource (i.e., capacity of
reserved servers). 2) Total over allocated resource, which
is calculated as the total allocated resource minus the total
amount of predicted demands. It includes padding and reserved
resource that may not be used in the server and a smaller
value implies higher utilization of the resources of reserved
serves. 3) Probability of overload, which is defined as the
percentage of periodical recoding times that the actual total
demand exceeds the total allocated resource. In addition,
in the following experiments, we normalized the demands
and servers by dividing the CPU and memory by 20 units
and 17.1GB, respectively, which are the maximum CPU and
maximum memory of all the servers (shown in Table. I). In
the following, the metrics of total allocated resource and total
over allocated resource are normalized.

For demand allocation algorithms, the metrics we measured
include: 1) Total reservation cost, which is defined as the total
fee that the CSB needs to pay to all the cloud providers; 2)
CPU overload rate, which is defined as the percentage of
time that a server’s CPU is overloaded; 3) SLA violation rate,

40 50 60
0

20

40

60

80

Number of demands

C
P

U
 s

iz
e

Total allocated resource (PDA)
Total allocated resource (CloudScale)
Total over allocated resource (PDA)
Total over allocated resource
(CloudScale)

(a) Prediction for CPU

40 50 60
0

0.2

0.4

0.6

Number of demands

P
ro

b.
 o

f o
ve

rlo
ad

 (%
)

PDA
CloudScale

(b) Prob. of CPU overload
Fig. 6. Demand prediction for Google Cluster

which is defined as the percentage of demands that are not
satisfied with probability 1−ε during the testing time, and 4)
CPU/memory utilization, which is defined as the percentage
of a server’s CPU/memory capacity that is actually consumed.

A. Demand Prediction

We first compare the performance of the prediction methods
in PDA and CloudScale. CloudScale determines the servers
and allocates the demands to the servers using FFD based
on the sum of its predicted value and the padding value for
each demand. To compare the prediction methods of PDA
and CloudScale, we also let PDA use FFD to choose servers
and allocate demands to the servers. In particular, PDA first
sorts the demands to be inserted in decreasing order by their
expected capacity, and then inserts each demand into the first
server in the list with sufficient remaining space.

Fig. 6(a) and Fig. 6(b) show the performance of PDA and
CloudScale using the Google cluster CPU trace. In particular,
Fig 6(a) compares the total allocated resource and the total
over allocated resource and Fig 6(b) shows the probability
of overload. From the figures, we find that 1) PDA needs
less total allocated resource than CloudScale, 2) the total over
allocated resource of PDA is smaller than that of CloudScale,
and 3) the probabilities of overload of PDA and CloudScale
are similar. Even though PDA aims to minimize the reservation
cost of servers rather than minimizing the total allocated
resource, which is the goal of FFD used in CloudScale,
PDA still generates less total allocated resource while pro-
duces similar probability of overload as CloudScale. This is
because PDA can more accurately estimate the prediction
errors. Specifically, when allocating demands, PDA considers
both overestimation and underestimation from the predictions,
which can offset each other and lead to less prediction errors.
However, CloudScale neglects the impact of overestimation,
leading to larger prediction errors. This is why PDA produces
smaller total over allocated resource (hence higher server
resource utilization) than CloudScale as shown in Fig 6(a)-
(d).

B. Demand Allocation

1) Trace-driven Simulation: Fig 7(a) shows the total server
reservation cost when the number of demands is varied from
40 to 60 with 2 increase in each step. We observe that
the result follows FFD≈BFD>FFD-w≈BFD-w>PDA. Recall
that, when selecting a server, all BFD-w, FFD-w, BFD, and
FFD simply map all the capacity vectors and consumption

40 45 50 55 60
0

10

20

30

Number of demands

To
ta

l r
es

er
va

tio
n

co
st

PDA
FFD−w
BFD−w
FFD
BFD

(a) Total reservation cost

PDA FFD−wBFD−w FFD BFD
0

0.2

0.4

0.6

0.8

AlgorithmC
P

U
 o

ve
rlo

ad
 ra

te
 (%

)

40 demands
50 demands
60 demands

(b) CPU overload rate

PDA FFD−wBFD−w FFD BFD
0

0.05

0.1

0.15

Algorithm

S
LA

 v
io

la
tio

n
ra

te
 (%

)

40 demands
50 demands
60 demands

(c) SLA violation rate

PDA FFD−w BFD−w FFD BFD
0

0.5

1

1.5

Algorithms

C
P

U
 u

til
iz

at
io

n

40 demands
50 demands
60 demands

(d) CPU utilization

PDA FFD−w BFD−w FFD BFD
0

0.5

1

1.5

Algorithm

M
E

M
 u

til
iz

at
io

n

40 demands
50 demands
60 demands

(e) Memory utilization
Fig. 7. Demand allocation for Google cluster (Simulation).

vectors to single scalars without considering the bottleneck of
the resource utilization for each server, which decreases each
server’s remaining capacity for allocating more demands. PDA
has better performance because it aims to search the demand
allocation such that the total server cost is minimized. Also,
the prediction method in BFD, FFD, BFD-w, and FFD-w does
not consider the overestimation of prediction, and hence they
cannot fully utilize the resource of reserved servers comparing
to PDA, which can estimate the prediction errors before the
allocation. Comparing to FFD and BFD, FFD-w and BFD-
w have smaller total reservation cost because FFD-w and
BFD-w always choose the server with lower price to allocate
each demand, while FFD and BFD do not consider the server
prices at all. Since PDA uses the least server reservation cost
to support a given amount of demands, we are interested in
checking if it generates many server overload occurrences. Fig.
7(b) and Fig. 7(c) show the CPU’s overload rate and the SLA
violation rate of different algorithms, respectively. We observe
that for these two metrics, the result follows FFD≈BFD≈FFD-
w≈BFD-w>PDA. PDA has much smaller CPU’s overload rate
because when allocating a demand to a server, PDA allocating
the demands with the consideration of prediction errors. In
contrast, all other four methods predict the demand using FFT
without considering prediction errors, which generates larger
number of CPU overload. PDA has almost zero SLA violation
rate because it satisfies the constraint (13) when allocating
demands, which guarantees that the probability of overload
rate is lower than ε , i.e., the SLA requirement. Other four
algorithms have much higher SLA violation rates because they

40 45 50 55 60
0

10

20

30

Number of demands

To
ta

l r
es

er
va

tio
n

co
st

PDA
FFD−w
BFD−w
FFD
BFD

(a) Total reservation cost

PDA FFD−wBFD−w FFD BFD
0

0.2

0.4

0.6

0.8

Algorithms

C
PU

 o
ve

rlo
ad

 ra
te

 (%
)

40 demands
50 demands
60 demands

(b) CPU overload rate

PDA FFD−w BFD−w FFD BFD
0

0.05

0.1

0.15

0.2

Algorithm

S
LA

 v
io

la
to

in
 ra

te
 (%

)

40 demands
50 demands
60 demands

(c) SLA violation rate

PDA FFD−w BFD−w FFD BFD
0

0.5

1

1.5

Algorithms

C
P

U
 u

til
iz

at
io

n

40 demands
50 demands
60 demands

(d) CPU utilization

PDA FFD−w BFD−w FFD BFD
0

0.5

1

1.5

Algorithms

M
E

M
 u

til
iz

at
io

n

40 demands
50 demands
60 demands

(e) Memory utilization
Fig. 8. Demand allocation for Google cluster (Amazon EC2).

do not have such constraint when allocating demands and they
do not consider the prediction errors, which leads to more
resource overloads.

Furthermore, we measured the CPU and memory utiliza-
tions every 5 minutes for all servers. Fig 7(d) and Fig 7(e)
show the median, 5th and 95th percentile of the CPU and
memory utilizations at all time points of all servers of the five
algorithms with 40, 50, and 60 demands, respectively. In both
Fig 7(d) and Fig 7(e), we observed that the median utilization
follows: FFD≈FFD-w≈BFD≈BFD-w<PDA, which indicates
that PDA can more fully utilize the resources of servers and
hence save the total reservation cost. The reason is the same
as in Fig 7(a).

2) Trace-driven Real-world Experiments on Amazon EC2:
We carried out experiments in a cluster built from Amazon
EC2 US East Region. We applied the Google Cluster trace to
a synthetic load generator lookbusy [23] to emulate the real
workload in the VMs. Our algorithm uses the utilization trace
to predict the demands and then places each demand to an ap-
propriate reserved server. After allocating the demands to the
reserved servers, we measured the real resource consumptions
of each server.

Fig. 8 shows the performance of the five algorithms
implemented in Amazon EC2 using Google Cluster trace.
Comparing Fig. 7 and Fig. 8, we have the following
observations: (1) in both Fig. 7(a) and Fig. 8(a), the
total reservation cost of servers follow: FFD≈BFD>FFD-
w≈BFD-w>PDA, (2) in both Fig. 7(b)-(c) and Fig. 8(b)-(c),
the CPU overload rate and the SLA violation rate follow:

FFD≈BFD≈FFD-w≈BFD-w>PDA, and (3) in all Fig.
7(d)-(e) and Fig. 8(d)-(e), both CPU utilization and memory
utilization follow FFD≈BFD≈FFD≈BFD<PDA. The results
in Fig. 8 confirm that PDA more fully utilizes resources in
each server without overloading them and hence saves total
reservation cost in Amazon EC2.

VII. RELATED WORK

There has been two groups of works studying the demand
allocation problems. The first group of demand allocation
works [8]–[10], [24] aim to find an allocation schedule that
minimizes the number of allocated servers while satisfy all
demands. For example, Wood et al. [10] reduced the number
of servers by enabling live migration of VMs using FFD, by
taking the product of CPU, memory, and network loads. Tang
et al. [9] developed an application placement controller for
data centers, which performs demand assignment by combin-
ing the CPU and memory into a scalar by taking the ratio of
the CPU demand to the memory demand. Srikantaiah et al. [8]
proposed to use Euclidean distance between resource demands
and residual capacity as a metric for consolidation, a heuristic
analogous to Norm-based Greedy. Michael and Zaourar [24]
modified the traditional BFD algorithm by minimizing the
bin’s remaining capacity variance when selecting a bin to fit an
item, which is similar to our strategy. However, all these works
are based on the assumption that the demands are known,
which is not practical in real world.

The second group of demand allocation works predict the
demands before allocating the demands to servers [11], [17],
[19]. For example, [19] predicts the seasonal period using FFT,
which decomposes the demands into a number of periodic
series and eliminates the periodic series with high frequencies.
Niu et al. [17] predicted the demand using the auto-regression
moving average (ARMA) model, which is a widely used
prediction model for time series. However, all these works
cannot accurately predict tenant demands since they neglect
prediction errors. A recent work, CloudScale [11], takes into
account the underestimation of demands in prediction and adds
padding on demands to avoid underestimation. However, it
omits the case that the demands can be also overestimated,
which leads to under-utilization of server resources. Further,
all these methods to estimate the seasonal period are not time-
efficient [12] and they are not suitable for predicting demands
that do not exhibit seasonal periods (e.g. some demands in
Google cluster [13]).

VIII. CONCLUSIONS

In this paper, we proposed a demand allocation system for
CSB, called CSB demand allocation (PDA) system, which
aims to determine how to reserve servers and allocate demands
into the reserved servers, such that all the demands from
tenants can be satisfied with a given probability and the total
reservation cost is minimized. PDA is composed of two parts:
1) prediction and 2) demand allocation. In the prediction part,
we proposed a predictive model that can dynamically predict
different types of resources of demands based on historical

data. In the demand allocation part, given the prediction
results from prediction part, we formulated a probabilistic
demand allocation problem. We showed that PDA can also
be formulated as the SOCMIP problem, which can be solved
by the rounding cuts method. Both simulation and real-world
experimental results demonstrate the superior performance of
our system in achieving the objective in comparison with
some previous methods. In our future work, when predicting
the demands, we will further consider the correlation among
the demands from different tenants and different types of
resources. In addition, we will consider the demand migration
among different servers.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
NSF-1404981, IIS-1354123, CNS-1254006, IBM Faculty
Award 5501145 and Microsoft Research Faculty Fellowship
8300751.

REFERENCES

[1] Gartner, “http://www.gartner.com/.”
[2] Z. C. Computing, “http://www.zimory.com/.”
[3] R. Buyya, C. S. Yeo, J. B. S. Venugopal and, and I. Brandic, “Cloud

computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility.,” Future Generation Computer
Systems, 2009.

[4] A. C. Compute, “http://aws.amazon.com/ec2/hpc- applications/,” 2011.
[5] D. Niu, C. Feng, and B. Li, “A theory of cloud bandwidth pricing for

video-on-demand providers.,” in Proc. of INFOCOM, 2012.
[6] L. Chen and H. Shen, “Consolidating complementary vms with

spatial/temporal-awareness in cloud datacenters.,” in Proc. of Infocom,
2013.

[7] S. Lee, R. Panigrahy, V. Prabhakaran, V. Ramasubramanian, K. Talwar,
L. Uyeda, and U. Wieder, “Validating heuristics for virtual machines
consolidation,” 2011.

[8] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolidation for
cloud computing.,” in Proc. of HotPower, 2008.

[9] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A scalable applica-
tion placement controller for enterprise data centers.,” in Proc. of WWW,
2007.

[10] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif., “Black-
box and gray-box strategies for virtual machine migration.,” in Proc. of
NSDI, 2007.

[11] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: Elastic resource
scaling for multi-tenant cloud systems.,” in Proc. of SOCC, 2011.

[12] R. N. Bracewell, The Hartley Transform. Oxford Univ. Press, New York,
1986.

[13] G. cluster data., “https://code.google.com/p/googleclusterdata/.”
[14] S. M. Ross, Introduction to Probability Models, 8th Edition. Amsterdam:

Academic Press, 2003.
[15] M. Bazaraa, H. Sherali, and C. Shetty, “Nonlinear programming: Theory

and algorithms.,” Wiley Interscience, 2006.
[16] “Amazon EC2.” http://aws.amazon.com/ec2.
[17] D. Niu, Z. Liu, B. Li, and S. Zhao, “Demand forecast and performance

prediction in peer-assisted on-demand streaming systems.,” in Proc. of
Infocom, 2011.

[18] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis:
Forecasting and Control. WILEY, 2008.

[19] P. X. Gao, A. R. Curtis, B. Wong, and S. Keshav, “Its not easy being
green.,” in Proc. of Sigcomm, 2012.

[20] R. N. Bracewell, “The fast hartley transform.,” in Proc. of IEEE, 1986.
[21] H. S. Hou, “The fast hartley transform algorithm algorithm.,” 1987.
[22] F. TA and R. MG, “Greedy randomized adaptive search procedures.,”

Journal of global optimization, 1995.
[23] “lookbusy.” http://devin.com/lookbusy/.
[24] M. G. S. Zaourar, “Variable size vector bin packing heuristics applica-

tion to the machine reassignment problem.,” Distributed, Parallel, and
Cluster Computing.

