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Abstract—Cloud storage system usually experiences data loss,
hindering data durability. Three-way random replication is
commonly used to prevent data loss in cloud storage systems.
However, it cannot effectively handle correlated machine failures.
Although Copyset Replication and Tiered Replication can reduce
data loss in correlated and independent failures and enhance
data durability, they fail to leverage different data popularities to
substantially reduce the storage cost and bandwidth cost caused
by replication. To address these issues, we present a popularity-
aware multi-failure resilient and cost-effective replication (PM-
CR) scheme for high data durability in cloud storage. PMCR
splits the cloud storage system into primary tier and backup tier,
and classifies data into hot data, warm data and cold data based
on data popularities. To handle both correlated and independent
failures, PMCR stores the three replicas of the same data into one
Copyset formed by two servers in the primary tier and one server
in the backup tier. For the third replicas of warm data and cold
data in the backup tier, PMCR uses the Similar Compression
method for read-intensive data and uses the Delta Compression
method for write-intensive data to reduce storage cost and
bandwidth cost. As a result, these costs are reduced and data
durability and availability are enhanced without compromising
data request delay greatly. Extensive experiment results based on
trace parameters show that PMCR achieves high data durability,
low probability of data loss, and low storage cost and bandwidth
cost compared to previous replication schemes.

I. INTRODUCTION

Cloud providers, such as Amazon S3 [1], Google Cloud

Storage (GCS) [2] and Windows Azure [3] offer storage as a

service. It is important for cloud providers to reduce Service

Level Agreement (SLA) violations to provide high quality of

service and reduce the associated penalties [4–6]. High data

durability is usually required to meet SLAs. Durability means

the data objects that an application has stored into the system

are not lost due to machine failures (e.g., disk failure) [7].
Data loss caused by machine failures typically affects

data durability. Machine failures usually can be categorized

into correlated machine failures and non-correlated machine

failures. Correlated machine failures refer to the events in

which multiple nodes (i.e., servers) fail concurrently due to

the common failure causes [8–10] (e.g., cluster power outages,

Denial-of-Service attacks), and this type of failures often occur

in large-scale storage systems [8, 11–13]. Significant data loss

is caused by correlated machine failures [8], which has been

documented by Yahoo! [14], LinkedIn [8] and Facebook [15].

Non-correlated machine failures refer to the events in

which nodes fail individually (e.g., individual disk failure).

Usually, non-correlated machine failures are caused by

factors such as different hardware/software compositions and

configurations [12, 16], and varying network access abilities.

To enhance data durability, data replication is commonly

used in cloud storage systems. Due to highly skewed data

popularity distributions [17], popular data with considerably

higher request frequency (referred to as hot data) [18] could

generate heavy load on some nodes, which may result in

data unavailability at a time. Availability means that the

requested data objects will be able to be returned to users [7].

Actually, much of the data stored in a cloud system is

rarely read (commonly referred to as cold data [18, 19]).

Replicas of cold data waste the storage resource and generate

considerable storage cost and bandwidth cost (for data

updates, data requests and failure recovery) [18, 20] that

outweigh their effectiveness on enhancing data durability.

Thus, it is important to compress and deduplicate unpopular

data and store them in low-cost storage medium.

Random replication has been widely used in cloud storage

systems [8, 9]. Cloud storage systems, such as Hadoop

Distributed File System (HDFS) [14], Google File System

(GFS) [21] and Windows Azure [22] use random replication

to replicate their data in three servers randomly selected from

different racks to prevent data loss in a single cluster [8, 9].

However, the three-way random replication cannot well

handle correlated machine failures because data loss occurs

if any combination of three nodes fail simultaneously [8].

To handle this problem, Copyset Replication [8] and Tiered

Replication [9] have been proposed. However, both methods

do not try to leverage data popularity to substantially reduce

storage cost or bandwidth cost caused by replication.
To address the above issues, we aim to design a cost-

effective replication scheme that can achieve high data

durability and availability while reducing storage cost

and bandwidth cost caused by replication. To achieve our

goal, we propose a popularity-aware multi-failure resilient

and cost-effective replication scheme (PMCR), which has

advantages over the previous proposed replication schemes.

We summarize the contributions of this work below.

• PMCR replicates the first two replicas of each data chunk in

primary tier, and replicates the third replica in remote backup

tier. The three replicas of each data chunk are stored in one

Copyset, which can handle correlated failures [8]. As a result,

PMCR can handle both correlated and independent failures.

• PMCR classifies data into hot data, warm data and cold data

based on data popularity. It compresses the third replicas of

warm data and cold data in the backup tier. For read-intensive

data, PMCR uses the Similar Compression (SC), which lever-



ages the similarities among replica chunks and removes re-

dundant replica chunks; for write-intensive data, PMCR uses

the Delta Compression (DC), which records the differences of

similar data objects and between sequential data updates. As a

result, PMCR significantly reduces the storage cost and band-

width cost caused by replication without compromising data

durability and availability, as well as data request delay greatly.

• To further reduce the storage and bandwidth costs caused by

replication, PMCR enhances SC by eliminating the redundant

chunks between different data objects (rather than only

within one data object) and enhances DC by recording the

differences between different data objects (rather than only

the difference between sequential updates).

• We have conducted extensive trace-driven experiments

to compare PMCR with other state-of-the-art replication

schemes. The results show PMCR achieves high data dura-

bility, low data loss probability, storage and bandwidth cost.

The remainder of this paper is organized as follows.

Section II presents the design for PMCR. Section III describes

the analysis of system performance. Section IV presents the

experiment results. Section V reviews the related work. Sec-

tion VI concludes this paper with remarks on our future work.

II. SYSTEM DESIGN

Suppose there are m data objects and each data object

is split into M partitions (i.e., chunks) in the cloud storage

system [23]. A data object is lost if any of its partitions is

lost [8]. Suppose there are N servers in the system. For ana-

lytical tractability, we assume that a server belongs to a rack,

a room, a datacenter, a country and a continent. We use the

label in the form of “continent-country-datacenter-room-rack-

server” to identify the geographic location of a server [23].

Problem Statement: Given data object request probabil-

ities, data object sizes, and node failure probability, how to

replicate the chunks of data objects so that the request failure

probability, storage cost and bandwidth cost are minimized in

both correlated failures and non-correlated failures?

A. PMCR Replication Scheme

1) Classification of Data Types: PMCR classifies data into

three types: hot data, warm data and cold data based on data

popularity. The popularity of a data object (di) is measured by

its visit frequency, i.e., the number of visits in a time epoch

(denoted by vi) [17, 18, 23–25]. That is, ϕi(·) = α · vi, where

ϕi denotes di’s popularity, α is a coefficient. Suppose the time

is split into epoches, then the popularity at epoch t +1 can be

estimated based on the popularity value at epoch t:
ϕt+1

i (·) = β ·ϕt
i (·)+α · vi (1)

where β (0 < β < 1) is a coefficient. To determine the

popularity type of a data object, PMCR first calculates the

popularity of each data object, and then ranks them based on

their popularity values. PMCR considers the data objects with

popularity rank within top 25% as hot data, with popularity

rank between (25%,50%] as warm data, and with popularity

rank between (50%,100%] as cold data.
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Fig. 1: Similar Compression.

PMCR sets thresholds for read rate and write rate, and it

logs the number of reads and writes of each data object in

each time epoch. A data object is write-intensive if its write

rate is higher than the pre-defined write rate threshold, and it

is read-intensive if its read rate is higher than the pre-defined

read rate threshold. PMCR determines the read-intensiveness

and write-intensiveness of each data object periodically.
2) Replica Placement: PMCR first splits the nodes in the

system into two tiers: primary tier and backup tier. For load

balance, the number of nodes on the primary tier is twice

of that on the backup tier [4, 26, 27]. To reduce the data

loss caused by correlated machine failures, PMCR adopts the

fault-tolerant set (FTS) [8] (i.e., Copyset). An FTS is a distinct

set of servers that holds all replicas of a data object’s chunk.

We will explain the details of FTS in Section III-B1. PMCR

then partitions the nodes and uses Balanced Incomplete Block

Design (BIBD)-based method to generate FTSs.

In PMCR, the SC method removes the similar chunks

within a file or among the files for storage and transmission

to the file requester, and the file requester recovers the

removed chunks. The DC method stores a copy of a file and

the different parts of other files that are similar to this file.

For a file request, the stored file copy and the different parts

are transmitted to the file requester. In file update, only the

updated parts need to be transmitted to the replica nodes. As a

result, rather than storing the entire data object, the size of the

stored data is greatly reduced with the SC and DC methods.

B. Similar Compression
In SC, similar chunks are grouped together and a certain

number of similar chunks form a block. Then, duplicate blocks

or near-duplicate blocks to a block are removed. Fig. 1 shows

an example illustrating the process of grouping similar blocks

and compressing the similar blocks together. In Fig. 1(a),

similar blocks including (A, A’, A”), (C, C’), (E, E’) are

grouped together. In Fig. 1(b), for each similar block group,

the redundant blocks are removed and only the first block

(including A, B, C, D, E) is remained. The data within a data

object sometimes are similar to each other [28]. PMCR adopts

the SC method to eliminate the redundant chunks within each

data object in order to reduce the storage cost and bandwidth

cost in data transmission for data requests.

Also, PMCR extends the SC method originates from [28]

to eliminate the redundant chunks between different data

objects to further reduce the costs. We present examples for

the intra-file compression and inter-file compression. Fig. 2

shows an example of intra-file compression in a file. Similar

blocks including (A, A’), (C, C’), (D, D’), (E, E’) are marked

in the same color. Fig. 3 shows an example of inter-file

compression (deduplication). The blocks C and C′ in the left
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data object are similar to the block C in the right data object.

The block E in the left data object is similar to the block E in

the right data object. Similar blocks within a file or between

files are grouped together for compression. That is, except the

first block, other similar blocks are removed in the storage

of a server. An index for a removed block is created to point

to the first similar block. When a file requester receives the

compressed file, it recovers the removed blocks from the

intra-file compression based on the indices. When a received

compressed file contains indices pointing to similar blocks in

other files, if the file requester has the files, it simply recovers

the removed blocks. Otherwise, it requests for these blocks

from the cloud to recover the removed blocks.

C. Similarity Calculation
In this paper, we use the Bloom filter to detect the similarity

between data blocks and extend this algorithm for detecting

similarity between data chunks. The chunks can be uniquely

identified by the SHA-1 hash signature, also called fingerprint

As the amount of data increases, more fingerprints need to be

generated, which consume more storage space and incur more

time overhead for index searching. To overcome the scalability

of fingerprint-index search, PMCR groups a certain number of

chunks into a block, and detects the similarity between blocks.
The chunks of a block is a set in Bloom filter parlance

whose elements are the chunks. Data blocks that are similar

to each other have a large number of common 1s among

their Bloom filters. To find similar blocks of a given block,

we compare the Bloom filter of the block with that of all

the other blocks. The blocks that have the percentage of

common 1s higher than a certain threshold (e.g., 70%) are

considered as similar blocks [29]. To detect similar chunks,

we can consider a block as a chunk and consider a chunk as a

sub-chunk in the above algorithm and use the same algorithm.

III. ANALYSIS OF SYSTEM PERFORMANCE

A. Storage Cost Reduction
The replicas in the backup tier have lower read frequency

compared to those in the primary tier. Therefore, the replicas

in the backup tier can be stored on cheaper storage mediums

(e.g., tape, disk), and the replicas in the primary tier can be

stored on relatively fast and expensive storage mediums (e.g.,

Memory, SSD). Hot data with considerably higher request

frequency could generate heavy load on some nodes, which

may lead to data unavailability at a time, and cold data with

lower request frequency may waste the storage resource and

increase the storage cost. Thus, it is important to choose the

storage mediums for storing data based on data popularity.
To reduce storage cost, we choose SSD to store the first two

replicas of a hot data object and choose tape to store its third

replica; we choose SSD to store the first replica of warm data

and cold data, and choose disk to store their second replica,

and choose tape to store their third replica with compression.
Denote si as the size of data object di without compression.

Define Ic as an indicator function representing whether the

third replica of a data object needs to be compressed. Given

a data object di, we have

Ic(di) =

{
1, i f data ob ject di is hot data
0, i f data ob ject di is warm data or cold data (2)

Hence, the storage consumption of data object di with com-

pression can be calculated as follows:
s′i = Ic(di) · si/γ +(1− Ic(di)) · si (3)

where γ is the compression ratio, which is defined as the ratio

between the uncompressed size and compressed size. The total

storage consumption for three-way replication is

Os =
m

∑
i=1

(2 · si + Ic(di) · si +(1− Ic(di)) · s′i) (4)

where m is the number of data objects in the storage system.
Denote c1, c2, c3 as the unit cost of SSD, disk and tape, re-

spectively. The total storage cost (denoted by Cs) of PMCR is

Cs =
m

∑
i=1

((c1 +(c1Ic(di)+ c2(1− Ic(di))))si + c3(Ic(di)si +(1− Ic(di))s′i)) (5)

where s′i is compressed data object di’s storage consumption.

B. Data Durability Enhancement
1) Correlated Machine Failures: Recall that PMCR adopts

FTS [8] to handle correlated machine failures. Each FTS is

a single unit of failure because at least one data object is

lost when an FTS fails. As the number of FTSs increases,

the probability of data loss caused by correlated machine

failures increases because the probability that the failed servers

constitute at least one FTS increases. Hence, the data loss

probability caused by correlated machine failures can be

minimized by minimizing the number of FTSs.
The probability of data loss in correlated machine failures

(denoted by pcor) is the ratio of the number of FTSs over the

maximum possible number of sets. Based on [8], we have

pcor = #FT Ss/max{#sets}= S
R−1

N
R
/

(
N
R

)
(6)

where S denotes the scatter width (the number of servers that

could be used to store the secondary replicas of a chunk),

R denotes the size of FTS (i.e., the number of servers in

one FTS). Based on [8], the data loss probability caused

by correlated machine failures in random replication can

be obtained by substituting “#FT Ss” in Formula (6) by the

number of FTSs created in random replication.
2) Non-correlated Machine Failures: In non-correlated

machine failures, the failure events of machines are statistically

independent of each other. They can be categorized into

uniform and nonuniform machine failures. In the scenario of

uniform machine failures, each machine fails with the same

probability, denoted by p (0 < p < 1). The data object is lost

if any chunk of the data object is lost, and a chunk is lost

only if all the replicas of the chunk are lost. In this analysis,

we assume each chunk has three replicas. Hence, the expected

probability of data loss due to uniform machine failure is

puni = (
m

∑
j=1

M · p3)/m (7)

where M is the number of chunks for each data object, and

m is the number of data objects.



In the scenario of nonuniform machine failures, we assume

replicas of data objects are placed on machines with no

concern for individual machine failures. Denote p1, ..., pN
as the failure probabilities of N servers in the cloud storage

system, respectively. According to [12], the expected data

object failure probability is the same as that on uniform

failure machines with per-machine failure probability equaling

∑N
i=1 pi/N. Hence, the expected probability of data loss caused

by nonuniform machine failure is

pnon = (
m

∑
j=1

M · (
N

∑
k=1

pk/N)3)/m (8)

3) Correlated and Non-correlated Machine Failures: De-

note F as the event that failure occurs, U1, U2 and U3 as the

event that correlated machine failures occur, the event that

uniform machine failure occurs and the event that nonuniform

machine failure occurs, respectively. Based on previous work-

s [8, 12], both correlated and non-correlated machine failures

(uniform and nonuniform machine failures) exist in cloud

storage system, and any type of machine failures can incur data

loss. Then, the probability of data loss caused by correlated

and non-correlated machine failures is obtained as follows

P(F) =
3

∑
i=1

P(F |Ui)P(Ui) (
3

∑
i=1

P(Ui) = 1) (9)

where P(F |U1) (pcor in Formula (6)), P(F |U2) (puni in Formu-

la (7)) and P(F |U3) (pnon in Formula (8)) are the probabilities

of a data object loss due to correlated machine failures,

uniform machine failure and nonuniform machine failure,

respectively. P(U1), P(U2), and P(U3) are the probabilities

of the occurrences of correlated machine failures, uniform

machine failure and nonuniform machine failure, respectively.

C. Bandwidth Cost Reduction

Based on [10, 23, 30, 31], the total bandwidth cost of all da-

ta objects caused by maintaining the consistency between the

replicas of data objects [23, 32] can be calculated as follows:

Cc
b =

m

∑
j=1

(3 ·M · suE[∑
i, j

dis(Si,S j) ·σ ]) (10)

where su is the average update message size, dis(Si,S j) is the

geographic distance between the server storing the original

copy Si (called primary server) and a replica server S j. The

geographic distance is an expectation of all possible distances

between primary server and replica servers, which is calculated

from a probabilistic perspective. We use the method in [10, 23]

to compute the geographic distance between servers. σ is the

average communication cost of a unit data per unit distance.
Failure recovery also results in bandwidth cost. When a n-

ode fails, all data chunks it was hosting need to be recreated on

a new node (We assume a new node is available for replacing

the faulty ones [18]), that is, a new node needs to download the

data stored on the faulty node to repair the data and replace the

failure node. For simplicity, we assume the data in primary tier

and backup tier is evenly distributed over the servers. Hence,

the total bandwidth cost for recovering data, denoted by Cr
b, is

Cr
b =(

m

∑
i=1

(2 · si)/�2N/3��2NP(F)/3�+
m

∑
i=1

(Ic(di)si

+(1− Ic(di))s′i)/�N/3��NP(F)/3�) ·δd

(11)

TABLE I: Parameters from publicly available data [8].

System Chunks per node Cluster size Scatter width
Facebook 10000 1000-5000 10
HDFS 10000 100-10000 200

TABLE II: Parameter settings.

Parameter Meaning Setting
N # of servers 1000-10000
M # of chunks of a data object 50 [33]
R # of servers in each FTS 3
λ # of FTSs containing a pair of servers 1
S Scatter width 4
p Prob. of a server failure 0.5 [34]
m # of data objects 10000-50000

where s′i and si are the size of data object di with and

without compression, respectively, ∑m
i=1(2si)/�2N/3� and

∑m
i=1(Ic(di)si +(1− Ic(di))s′i)/�N/3� are the average amount

of data stored on a server in primary tier and backup

tier for three-way replication, respectively. �2NP(F)/3� and

�NP(F)/3� are the number of failure nodes in primary tier and

backup tier, respectively. δd is the average communication cost

per unit of data between primary servers and replica servers in

the storage system, and it is calculated as E[∑i, j dis(Si,S j) ·σ ].
Based on Formulas (10) and (11), the total bandwidth cost

caused by consistency maintenance and data recovery is

Cb =Cc
b +Cr

b (12)

IV. PERFORMANCE EVALUATION

We conducted the experiments based on the parameter-

s in [8] (TableI) under various scenarios.We compare our
method with the other replication schemes: Random Repli-

cation (RR), Copyset Replication (Copyset) [8], Tiered Repli-

cation (TR) [9] and WAN Optimized Replication (WOR) [35].

RR is based on Facebook’s design, which chooses secondary

replica holders from a window of nodes around the primary

node. We use R to denote the number of replicas for each data

chunk. Specifically, RR places the primary replica on a random

node (say node i) in the system, and places the secondary repli-

cas on (R−1) nodes around the primary node (i.e., nodes i+1,

i+2,...). Copyset splits the nodes into a number of Copysets,

and constrains the replicas of every chunk to a single Copyset

so that it can reduce the frequency of data loss by minimizing

the number of Copysets for correlated machine failures. TR

stores the first two replicas of a data chunk in the primary tier

for protecting against independent node failures, and stores the

third replica in the backup tier for protecting against correlated

failures. WOR uses three-way random replication and Delta

Compression for replication of backup datasets. The storage

medium for the third replica is disk in RR, Copyset and WOR,

and is disk or tape that is randomly chosen in TR. The number
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Fig. 4: Probability of data loss vs. # of nodes.

of nodes that experience concurrent failures in the system was
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Fig. 5: Bandwidth cost vs. # of data objects.

set to 1% of the nodes in the system [8]. We randomly gener-

ated 6 bit number from reasonable ranges for each node to rep-

resent its location. The distributions of the file popularity and

updates follow those of FIU trace [36]. Table II shows the pa-

rameter settings in the experiment unless otherwise specified.
We first calculate the probability of data loss for each

method. We use Formula (9) to calculate the probability of

data loss for PMCR and Formula (6) for Copyset. We use

the method in [8] to calculate the data loss probability of

random replication for RR and WOR, and use the method

in [9] to calculate the data loss probability for TR. Fig. 4(a)

and 4(b) show the relationship between the probability of

data loss and the number of nodes in the Facebook and HDFS

environments, respectively. We see that the probability of data

loss follows PMCR<TR<Copyset<RR≈WOR. PMCR, TR

and Copyset generate lower probabilities of data loss than RR

and WOR because they constrain the replicas of a data chunk

to an FTS which can reduce the probability of data loss in

correlated machine failures. TR and PMCR generate lower

probabilities of data loss than Copyset because they separate

the primary data from the backup data by storing the backup

data on a remote site, which can further reduce the correlation

in failures between nodes in the primary tier and the backup

tier [9]. The probability of data loss in PMCR is slightly lower

than TR because PMCR chooses different storage mediums

for data with different popularities, which decreases the

probability of the occurrence of correlated machine failures.
We use Formula (12) to calculate the bandwidth cost for

PMCR. For RR, Copyset and TR, we use Formula (12)

without considering compression. For WOR, we use Formula

(12) with the consideration of compression. Fig. 5(a) and 5(b)

show the relationship between the bandwidth cost and the

number of data objects. We see that the bandwidth cost follows

PMCR<WOR<TR≈Copyset≈RR. PMCR and WOR generate

lower bandwidth cost than TR, Copyset and RR because they

use compression and deduplication to reduce the data size in

storage, which can reduce the bandwidth cost for data transfer.
We use Formula (5) to calculate storage cost for PMCR.

For RR and Copyset, we use Formula (5) without considering

compression or the selection of different storage mediums

for storing data objects. For WOR, we use Formula (5) with

considering compression and without the selection of different

storage mediums for storing data in backup tier. For TR, we

use Formula (5) without considering compression but with

the selection of different storage mediums for storing replicas

in backup tier. Fig. 6(a)-6(b) show the relationship between

storage cost and the number of data objects. We see the storage

cost follows PMCR<WOR<TR<Copyset≈RR because TR

uses less expensive storage medium to store the third replicas
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Fig. 6: Storage cost of various methods.
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Fig. 7: MTTF of various methods.

of data objects to reduce storage cost, which is not considered

in Copyset and RR. WOR utilizes data compression and

data deduplication to reduce storage cost. PMCR has the

lowest storage cost because PMCR uses compression and

deduplication to reduce the amount of data stored in the

system, and considers data popularity neglected in all the other

methods and chooses less expensive storage media for storing

unpopular data objects, which further reduces the storage cost.

Fig. 7 shows the results of MTTF (mean time to failure).

In Fig. 7, we see that the MTTF decreases as the number of

nodes increases because the probability of correlated machine

failures increases as the number of nodes increases, which

increases the probability that the nodes fail. We also see

that the MTTF follows PMCR≈TR>Copyset>RR≈WOR.

Copyset, TR and PMCR have larger MTTF than WOR and

RR, and Copyset has relatively smaller MTTF than TR and

PMCR due to the same reasons in Fig. 4.

V. RELATED WORK

Many methods have been proposed to prevent data loss

caused by correlated or non-correlated machine failures.

Zhong et al. [12] assumed independent machine failures,

and proposed a model that achieves high expected service

availability. However, this model does not consider correlated

machine failures and hence cannot handle such failures. Cidon

et al. [8] proposed Copyset Replication to reduce the frequency

of data loss caused by correlated machine failures by limiting

the replica nodes of a chunk to a single Copyset. Chun et al. [7]

proposed the Carbonite replication algorithm for keeping data

durable at a low cost. Cidon et al. [9] proposed Tiered Repli-

cation that splits the cluster into a primary tier and a backup

tier. The first two replicas of the data are stored on the primary

tier to protect against independent failures; the third replica is

stored on the backup tier to protect against correlated failures.

However, these methods do not try to reduce storage cost

and bandwidth cost caused by replication though data replicas

bring about considerably high storage and bandwidth costs.
There is a large body of work on enhancing data availability

and durability. Zhang et al. [37] proposed Mojim to provide

the reliability and availability in large-scale storage systems.

Colgrove et al. [4] presented Purity, an all-flash enterprise



storage system to support compression, deduplication and

high-availability. However, these works fail to consider data

popularity to reduce the storage cost and bandwidth cost

without compromising data request delay greatly.
In order to reduce storage cost and bandwidth cost caused

by replication, many methods have been proposed. Shilane et
al. [35] proposed stream-informed delta compression for repli-

cation of backup datasets across a wire area network (WAN).

Puttaswamy et al. [38] proposed FCFS to reduce the cost of

operating a file system in the cloud. However, these methods

do not consider data popularity to reduce the storage cost

and bandwidth cost. Also, these methods neglect correlated

machine failures, which can result in data loss in such failures.
To resolve the problems in the existing replication schemes,

we propose PMCR that can effectively handle both correlated

and non-correlated machine failures and also considers

different data popularities to increase data durability and

availability and reduce the bandwidth cost and storage cost

without compromising data request delay greatly.

VI. CONCLUSION

In this paper, in order to improve data durability and

availability, and reduce costs caused by replication, we

propose PMCR. PMCR classifies data into hot data, warm

data and cold data based on data popularity. PMCR puts the

first two replicas of data objects to primary tier and puts the

third replicas to backup tier. The replicas of the same chunk

are put into one FTS to handle correlated machine failures.

PMCR uses SC for read-intensive data and DC for write-

intensive data to compress the third replicas of warm data and

cold data to reduce both storage cost and bandwidth cost. Our

extensive experiment results show that PMCR outperforms

other replication schemes in different performance metrics. In

the future, we will further consider network failures to further

reduce data loss and improve data durability. Also, we will

consider the effects of node joining and node leaving. Further,

we will consider energy consumption [39] of machines and

design a replication scheme to save energy.
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[33] S. Acedański, S. Deb, M. Médard, and R. Koetter. How good is random
linear coding based distributed networked storage. In NetCod, 2005.

[34] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-
area cooperative storage with cfs. In Proc. of SOSP, 2001.

[35] P. Shilane, M. Huang, G. Wallace, and W. Hsu. Wan optimized
replication of backup datasets using stream-informed delta compression.
In Proc. of FAST, 2012.

[36] Webserver workload. http://visa.lab.asu.edu/web/resources/traces/.
[37] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson. Mojim: A reliable

and highly-available non-volatile memory system. In ASPLOS, 2015.
[38] K. P. N. Puttaswamy, T. Nandagopal, and M. Kodialam. Frugal storage

for cloud file systems. In Proc. of EuroSys, 2012.
[39] J. Liu, L. Yu, H. Shen, Y. He, and J. Hallstrom. Characterizing data

deliverability of greedy routing in wireless sensor networks. In Proc. of
SECON, Seattle, June 2015.


