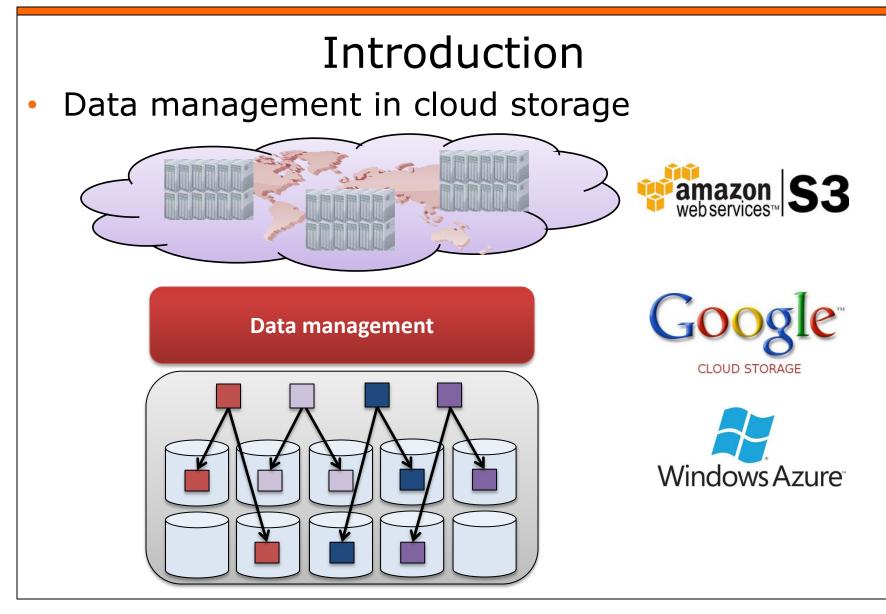


A Popularity-aware Cost-effective Replication Scheme for High Data Durability in Cloud Storage


Jinwei Liu* and Haiying Shen⁺

 Dept. of Electrical and Computer Engineering Clemson University, SC, USA
Dept. of Computer Science, University of Virginia, Charlottesville, VA, USA

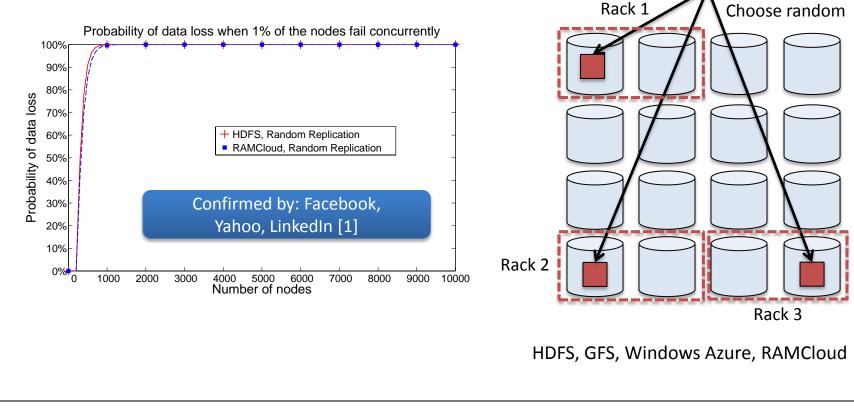
- Introduction
- Popularity-aware multi-failure resilient and cost-effective replication (PMCR)
- Design of PMCR
- Performance Evaluation
- Conclusions

Motivation

- Data loss and machine failures in emerging cloud systems
 - Non-correlated machine failures
 - Multiple machines fail concurrently
 - Correlated machine failures
 - Machines fail individually
 - Power outages
 - » 1-2 times a year [Google, LinkedIn, Yahoo]
 - Large scale network failures
 - » 5-10 times a year [Google, LinkedIn]
 - And more
 - » Rolling software/hardware updates
- Design principle
 - Multi-failure resilient replication scheme

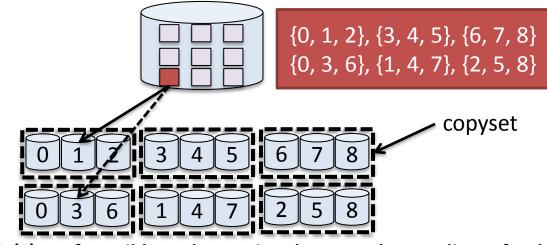
Linked in.

YAHOO!


facebook

Random replication

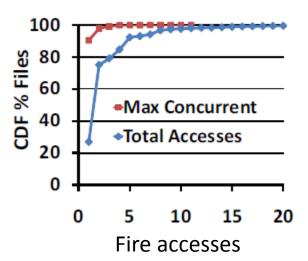
Prob. of data loss in random replication



[1] A. Cidon, S. Rumble, R. Stutsman, S. Katti, J. Ousterhout, and M. Rosenblum. Copysets: Reducing the frequency of data loss in cloud storage. In *Proc. of ATC*, 2013.

Motivation (cont.)

- Limitation of existing approaches
 - Random Replication
 - High data loss probability, high storage cost and bandwidth cost
 - Copyset Replication & Tiered Replication
 - High storage cost and bandwidth cost


Scatter width (S): # of possible nodes storing the secondary replicas of a chunk

- Design principle
 - Cost-effective replication scheme

Motivation (cont.)

- Data popularity existing in cloud storage systems [2-3]
 - File popularity
 - CDFs of the total # of jobs that access each file and the # of concurrent accesses [2]

- Design principle
 - Popularity-aware replication
- [2] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica, D. Harlan, and E. Harris. Scarlett: Coping with skewed content popularity in mapreduce clusters. In *Proc. of EuroSys*, 2011.
- [3] A. Khandelwal, R. Agarwal, and I. Stoica. BlowFish: Dynamic Storage-Performance Tradeoff in Data Stores. In Proc. of NSDI, 2016.

- Introduction
- Popularity-aware multi-failure resilient and cost-effective replication (PMCR)
- Design of PMCR
- Performance Evaluation
- Conclusions

PMCR

- Problem statement
 - Replicate the chunks of data objects so that the request failure probability, storage cost and bandwidth cost are minimized in both correlated failures and non-correlated failures

Goal

 Design a popularity-aware replication scheme for achieving high data durability while reducing storage cost and bandwidth cost caused by replication

Proposed Solution

- PMCR: Popularity-aware multi-failure resilient and costeffective replication
 - Features of PMCR
 - Popularity awareness
 - Multi-failure resilience
 - Cost-effectiveness

Popularity-aware multi-failure resilient and cost-effective replication (PMCR)

Challenges

- Challenges of PMCR design
 - How to significantly reduce data loss probability in both correlated and non-correlated machine failures
 - How to leverage data popularity to reduce cost (storage cost and bandwidth cost) caused by replication without compromising data durability and availability
 - How to determine popularity of data objects
 - How to effectively perform data compression and deduplication for both read-intensive and write-intensive data

- Introduction
- Popularity-aware multi-failure resilient and cost-effective replication (PMCR)
- Design of PMCR
- Performance Evaluation
- Conclusions

Design of PMCR

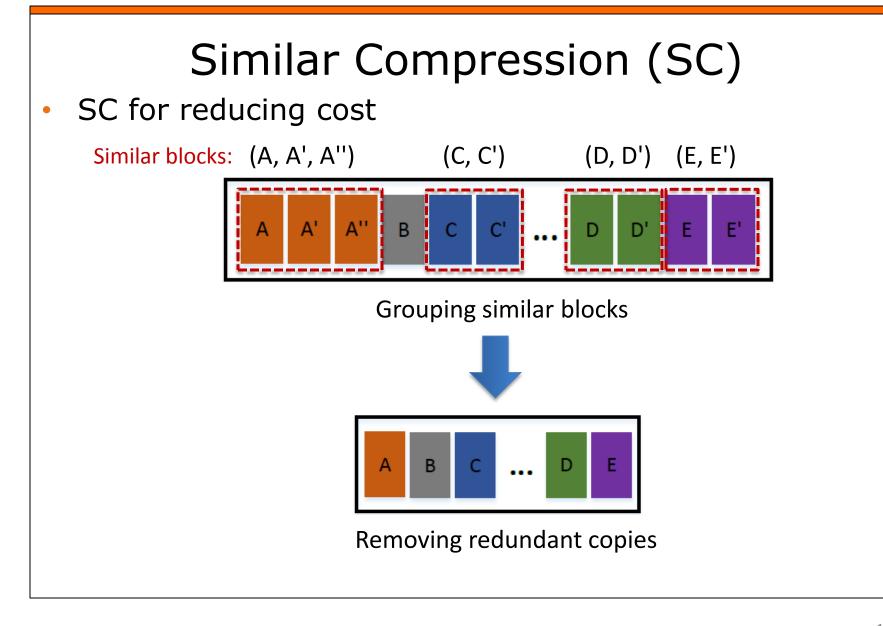
- Reduce data loss probability
 - BIBD-based method with data popularity consideration; replicates the first two replicas of each data chunk in primary tier, the third replica in remote backup tier; the three replicas of each data chunk are stored in one FTS

Reduce cost

- Compress the third replicas of warm data and cold data in the backup tier
 - For read-intensive data, PMCR uses the Similar Compression (SC); for writeintensive data, PMCR uses the Delta Compression (DC), which records the differences of similar data objects and between sequential data updates
- Choose storage mediums for data objects based on data popularity

Data Classification

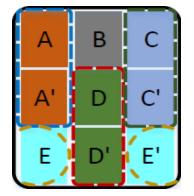
- Determining data popularity value
 - The Popularity φ_i of a data object (d_i) is measured by its visit frequency (denoted by v_i), i.e., # of visits in a time epoch (say epoch t)


 $\varphi_i = \alpha v_i$

– where α is a coefficient. The popularity at epoch t+1 is

$$\varphi_i^{t+1}(\cdot) = \beta \varphi_i^t + \alpha v_i$$

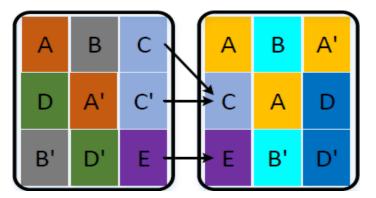
- where β (0 < β < 1) is a coefficient
- Determine popularity type
 - Calculate the popularity of each data object; rank them based on their popularity values
 - Hot data: popularity rank within top 25%
 - Warm data: popularity rank in (25%, 50%]
 - Cold data: popularity rank in (50%, 100%]



Similar Compression (cont.)

Extending SC for reducing cost

Similar blocks within a file:


(A, A')(C, C')(D, D')(E, E')

Intra-file similarity

Similar blocks b/w two files

(C, C) (C', C) (E, E')

Inter-file similarity

Similarity Detection

- Bloom filter for similarity detection
 - PMCR uses the Bloom filter to detect similarity b/w data blocks and extends this algorithm for detecting similarity b/w data chunks
 - The chunks can be uniquely identified by SHA-1 hash signature (i.e., fingerprint). As the amount of data increases, more fingerprints need to be generated, which consume more storage space and incur more time overhead for index searching
 - To overcome the scalability of fingerprint-index search, PMCR groups a certain number of chunks into a block, and detects the similarity between blocks
 - The blocks with percentage of common 1s higher than a certain threshold are considered as similar blocks

- Introduction
- Popularity-aware multi-failure resilient and cost-effective replication (PMCR)
- Design of PMCR
- Performance Evaluation
- Conclusions

Performance Evaluation

Methods for comparison

Random replication (RR)

Choose secondary replica holders from a window of nodes around the primary node based on Facebook's design

- Copyset Replication (Copyset) [1]
 - [1] A. Cidon, S. Rumble, R. Stutsman, S. Katti, J. Ousterhout, and M. Rosenblum. Copysets: Reducing the frequency of data loss in cloud storage. In *Proc. of ATC*, 2013.

Tiered Replication (TR) [4]

[4] A. Cidon, R. Escriva, S. Katti, M. Rosenblum, and E. G. Sirer. Tiered replication: A cost-effective alternative to full cluster geo-replication. In *Proc. of ATC*, 2015.

WAN Optimized Replication (WOR) [5]
[5] P. Shilane, M. Huang, G. Wallace, and W. Hsu. WAN optimized replication of backup datasets using stream-informed delta compression. In *Proc. of FAST*, 2014.

Experiment Setup

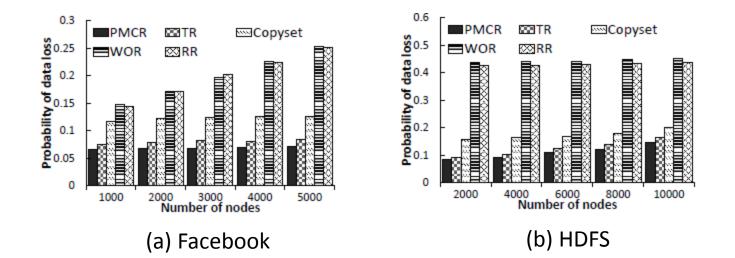
• Set parameters in Facebook and HDFS environments

Parameters from publicly available data [1]

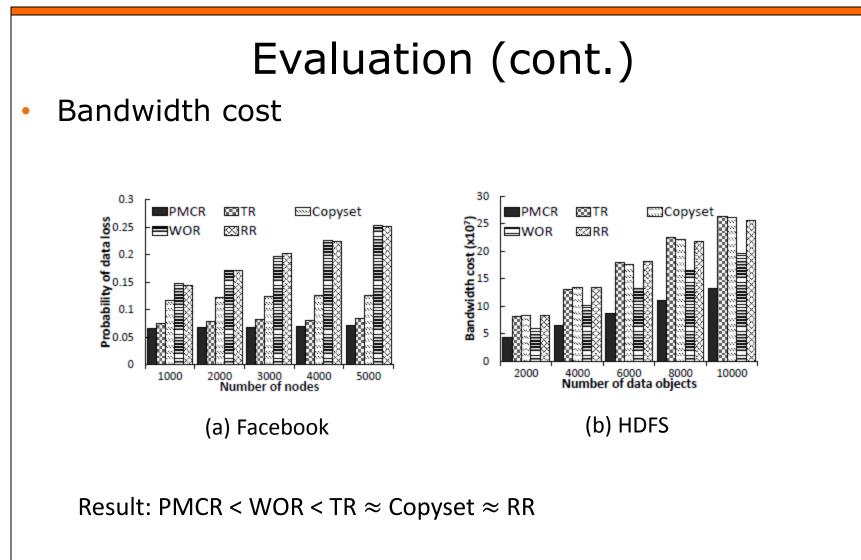
System	Chunks per node	Cluster size	Scatter width
Facebook	10000	1000-5000	10
HDFS	10000	100-10000	200

- Distribution of the file popularity and the updates follow those of FIU trace
- 7 simulated data centers

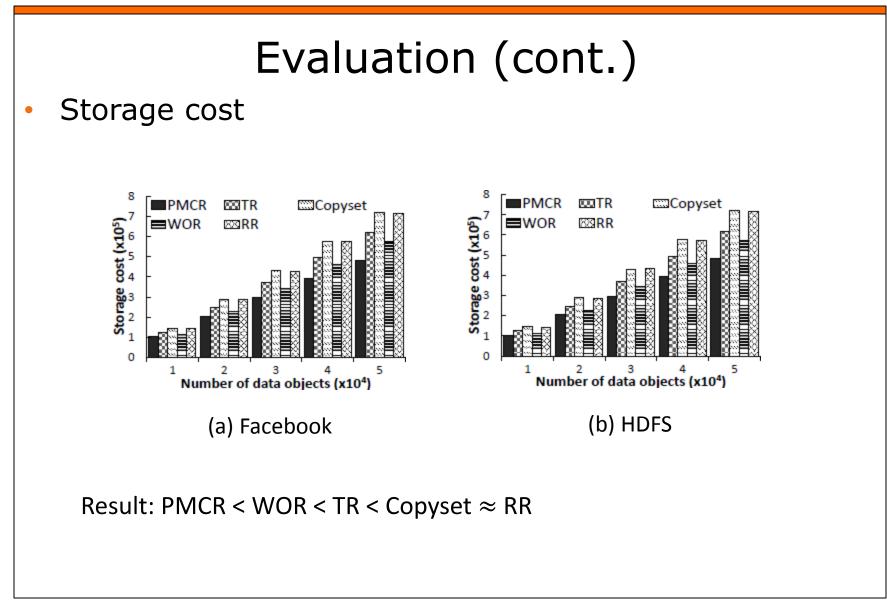
Experiment Setup (cont.)


• Parameter settings

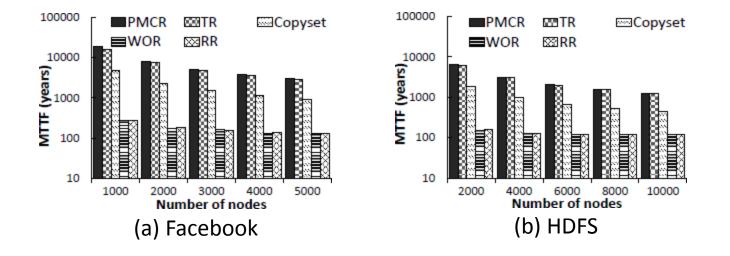
Parameter	Meaning	Setting
Ν	# of servers	1000-10000
М	# of chunks of a data object	50
R	# of servers in each FTS	3
λ	# of FTSs containing a pair of servers	1
S	Scatter width	4
p	Prob. of a server failure	0.5
т	# of data objects	10000-50000


Evaluation (cont.)

Probability of data loss



Result: PMCR < TR < Copyset < RR \approx WOR



Evaluation (cont.)

Mean time to failure (MTTF)

Result: PMCR \approx TR > Copyset > RR \approx WOR

- Introduction
- Popularity-aware multi-failure resilient and cost-effective replication (PMCR)
- Design of PMCR
- Performance Evaluation
 - Conclusions

Conclusions

Our contributions

- PMCR restricts replicas of a data chunk into an FTS and puts the first two replicas in primary tier and the third replica in backup tier, which reduces data loss probability
- PMCR classifies data into hot data, warm data and cold data, and selectively compresses the third replicas in backup tier to reduce costs;
 PMCR uses different storage mediums for data objects based on data popularity to further reduce storage cost
- PMCR enhances SC by eliminating redundant chunks between different data objects
- Conduct extensive trace-driven experiments to compare PMCR with other state-of-the-art replication schemes

Future work

- Consider network failures
- Node joining and node leaving
- Power consumption of machines

Thank you! Questions & Comments?

Jinwei Liu, PhD

jinweil@clemson.edu

Electrical and Computer Engineering

Clemson University