
Probabilistic Network-Aware Task Placement for
MapReduce Scheduling

Haiying Shen∗, Ankur Sarker∗, Lei Yu†, and Feng Deng∗
∗Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA

†College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280, USA
∗{shenh, asarker, fengd}@clemson.edu, †lyu79@gatech.edu

Abstract—Maximizing data locality in task scheduling is crit-
ical for the performance of MapReduce job execution. Many
existing works on MapReduce scheduling decide the placement
of map and reduce tasks on a coarse granularity of locations
measured by located machines and racks. They do not explicitly
consider the network topology and data transmission cost, which
may cause task straggling and degrade the job performance. In
order to improve MapReduce job performance, in this paper,
we consider the task placement with the goal of minimizing the
overall data transmission cost for a job execution while balancing
the transmission cost reduction and resource utilization. We
propose a probabilistic network-aware scheduling algorithm that
selects a task (map task or reduce task) to be scheduled on a given
available task slot that leads to the minimum transmission cost
among the task candidates, and then schedule the selected task
on the slot with a probability determined by its transmission cost;
a lower expected transmission cost leads to a higher probability
and vice versa. We also propose a method to more accurately
estimate the intermediate data size based on the progress of
map tasks, which is needed to calculate the transmission cost of
reduce tasks but is unknown at the time of reduce task schedul-
ing. We implement our probabilistic network-aware scheduling
algorithm on Apache Hadoop and conduct experiments on a
high-performance computing platform. The experimental results
show that our scheduling algorithm outperforms the previous
approaches in terms of job completion time and cluster resource
utilization.

Index Terms—MapReduce, task scheduling, job scheduling

I. INTRODUCTION

MapReduce [1], with its open-source implementation
Hadoop [2], has become a popular paradigm for large-scale
data processing in clusters. A MapReduce job is decomposed
to map tasks and reduce tasks running in parallel. As shown
in Figure 1, a job’s input data is divided into blocks, which
are stored in the cluster machines (called data nodes). Each
machine has a specific number of map slots and reduce slots.
Each map task processes an input data block using the user-
defined map function and produces intermediate data in the
local disk. The intermediate data is then shuffled to the reduce
tasks that apply the user-defined reduce function to generate
the final output.

In MapReduce, the task scheduler is centralized and a single
node is responsible for scheduling tasks to different nodes. One
key factor contributing to the efficient parallel computation of
MapReduce is the principle of moving computation towards
data, which is achieved by the task scheduler. Specifically, the
task scheduler assigns a mapper to a machine to handle an

Fig. 1: Map, shuffle and reduce phases in MapReduce [6].

input data block (which may or may not be in this machine),
and assigns a reducer to a machine to handle shuffled data
(which may or may not be in this machine). With each map
task being scheduled on a machine as close to its handled input
data as possible, the network bandwidth is saved. Similarly,
with each reduce task being scheduled on a machine as close
to its handled shuffled data as possible, the network bandwidth
is saved. Therefore, maximizing data locality (i.e., scheduling
map tasks and reduce tasks to their handled data) is a primary
goal of task scheduling in MapReduce. Several schedulers
have been proposed to improve the existing scheduler in
Hadoop for data locality. Delay Scheduler [3] schedules map
tasks, LARTS [4] schedules reduce tasks and Coupling Sched-
uler [5] schedules both map tasks and reduce tasks.

Although data locality is desired, it is not always possible
to place all tasks on the machines where their handled data is
stored. Due to the capacity constraints, the machines storing
the handled data may not have enough resources to accom-
modate the tasks at the scheduling point. Delay Scheduler [3]
extends the Fair Scheduler [7]. It improves the data locality
by delaying the execution of map tasks for a period of time to
find available machines storing their handled data for them.
However, as pointed out in [5], such execution delay can
lead to resource under-utilization, i.e., the number of map
tasks running simultaneously can be far below a desired level.
Also, it causes the number of running map tasks to change
significantly over time when the input data is not uniformly
distributed. Coupling Scheduling [5] shows that launching
remote map tasks (i.e., scheduling tasks to machines not close
to their handled data) to avoid delay can be beneficial. In this
case, the task scheduled machine must fetch data from another
machine that stores its handled data.



When it is necessary to schedule tasks on machines with
remote data accesses, the placement of tasks is important for
the performance of MapReduce. The distances between tasks
and their remote handled data as well as the data size decide
the data transmission cost and access latencies, which have
great impact on the job completion time. Thus, it is critical to
find optimal task placement that minimizes the transmission
cost and access latencies to reduce job execution time. Existing
works on task scheduling [3–5, 7–9] only decide the task
placements on a coarse granularity (e.g., on local machines,
on machines in the same rack and on off-rack machines)
without explicitly considering the network topology and the
resulting latencies. As a result, these methods may lead to task
straggling and degrade the job performance when data replicas
are distributed among different racks or stored in NAS or SAN
devices located in a subset of the nodes in a cloud system [10].

In this paper, we aim to design a task scheduler with
optimal task placements to minimize overall data transmission
cost and delays and hence to reduce job execution time
while balancing the transmission cost reduction and resource
utilization. This task is faced with three challenges. First,
because the limited resources are shared among multiple jobs,
the available machines for running tasks dynamically change
due to resource allocation and release over time. The tasks
of a job are gradually scheduled in an on-line manner in
the MapReduce clusters. Thus, it is not possible to obtain
a global optimal placement of all tasks for a job. Second,
the data fetching time of reduce tasks depends on not only
the placement of reduce tasks but also the locations and
sizes of the intermediate data produced by map tasks. The
placement of reduce tasks must consider the distribution of the
intermediate data in the cluster. However, at the time of reduce
task scheduling, the complete information of intermediate data
is not available. Third, the link load on the routing path also
has a significant impact on the data access latency. In order
to reduce the latency, the link status of the network must be
considered in the scheduling decision, which however may
greatly increase the complexity of the scheduler for achieving
the optimality.

To address these challenges, we propose a probabilistic
network-aware on-line scheduling algorithm for map task and
reduce task. The algorithms select a map task or a reduce
task to be scheduled on a given available mapper or reducer
computing slot that leads to the minimum transmission cost
(hence latency) for using this slot among the task candidates,
and then schedule the selected task on the slot with a prob-
ability determined by its transmission cost; a lower expected
transmission cost leads to a higher probability and vice versa.
In this way, we can reduce the expected data transmission cost
while enabling tasks to have fair opportunities to be allocated.
Also, we propose a method to more accurately estimate the in-
termediate data size based on the progress of map tasks, which
is needed to calculate the transmission cost of reduce tasks but
is unknown at the time of reduce task scheduling. Further, we
consider the network condition in calculating the transmission
cost; data transmission in a link with a higher transmission rate

generates a lower transmission cost and vice versa. Instead of
using task execution delay [3], our probabilistic network-aware
approach schedules the tasks on available computing slots
immediately as long as the expected network cost is low with
the calculated probability. We use the probabilistic approach
rather than the deterministic approach in order to enable tasks
to have fair opportunities to be allocated. We implement our
probabilistic network-aware scheduling algorithm on Apache
Hadoop version 1.2.1 and conduct various experiments on the
Palmetto high-performance computing platform [11] which is
located at Clemson University. The experimental results show
that our scheduling algorithm achieves better job completion
time, data locality and cluster resource utilization than the
existing Fair Scheduler and Coupling Scheduler. The rest of
this paper is organized as follows. Section II describes the
problem and our scheduling algorithms. Section III presents
our experimental results and evaluation. Section IV introduces
the related work. Section V concludes the paper with remarks
on our future work.

II. PROBABILISTIC NETWORK-AWARE TASK SCHEDULING

A. System Model and Problem Description

A MapReduce cluster uses slot-based resource management
model. Each physical node is configured as multiple com-
puting slots for map tasks and reduce tasks. With multiple
jobs simultaneously running in the cluster, the MapReduce
scheduler essentially implements two levels of scheduling:
job-level scheduling and task-level scheduling. The job-level
scheduling first decides for which job its tasks should be
scheduled, and the task-level scheduling further decides which
task of this job is assigned to which computing slot. The
MapReduce scheduler makes scheduling decisions at the time
of receiving a heartbeat from a node indicating slot availability.
In this paper, we mainly focus on the task-level scheduling.
For the job-level scheduling, we can use an existing scheduler
such as FIFO Scheduler [2], or Fair Scheduler [7], or Capacity
Scheduler [12]. Our method is focused on how to place the
map and reduce tasks to available computing slots for a job
of which tasks should be scheduled at this time. The main
idea is to minimize the overall data transmission cost from
map tasks to their input blocks and from reduce tasks to their
intermediate data produced by map tasks, while balancing the
transmission cost reduction and resource utilization. To solve
this problem, we propose a probabilistic network-aware task
scheduling scheme. In the following sections, we first present
the computation of the transmission cost for a given task
placement in Section II-B, and then present transmission cost
based placement algorithms for map tasks and reduce tasks in
Section II-C and Section II-D, respectively.

B. Transmission Cost Computation

The data transmission cost of a task is determined by the
distance between the task and its handled data and the total
size of the data to be transferred. We denote the data nodes
in the cluster as a set, D = {D1, D2, ..., Dk}. Below, we
introduce how to calculate the transmission cost for map tasks

2



TABLE I: Notations.
Symbol Definition
Di ith data node
Ji ith job
Mi ith available map task
H Distance matrix
hab The number hops between Da and Db

Bj The size of data block for Mj

Lij Di stores the data for Mj

Ri ith reduce task
xij Mi is assigned to Dj

Ijf The amount of intermediate data Mj

generates for Rf

C Sum of transmission cost
diread The number of byes Mi has read
Aij The size of current intermediate data

for Rj generated by Mi

Pmj Probability Mj being assigned
Pmin Probability threshold
Nm The number of data nodes available

for map tasks

and for reduce tasks, respectively. For easy reference, Table I
presents the main notations used in this paper.

1) Transmission Cost for Map Tasks: Let M1,M2, ..., Mm

be the available map tasks of a job to be assigned to the data
nodes. Each map task processes a particular data block. We
assume that the network topology is known and represented
by a distance matrix H , where each element hab denotes the
number of hops of the path between Da and Db. Suppose
that the data block required by map task Mj is stored in data
node Dl. If map task Mj is assigned to node Di, the latency
for map task Mj to fetch the data from data node Dl can be
simply measured by the distance between local node Di and
data node Dl. We will introduce a more accurate method to
measure the latency by considering network condition later. A
local task (which is assigned to the data node, i.e., Di = Dl)
will have zero latency or no data transmission cost at all. Let
Bj be the size of the data block for Mj . Based on the cost
measurement for data transfer in [13, 14], we measure the cost
of the task placement by the product of the data block size
and the distance between Di and Dl, that is, Bjhil. The cost
equals zero if i = l, which indicates assigning a map task
to a node with local data. Generally, multiple nodes store the
same data block (replica) required by Mj . For map task Mj ,
if data node Dl stores the data block which Mj requires, we
let a binary variable Llj = 1; otherwise Llj = 0. Let Cmij

be the transmission cost for map task Mj placed on node Di.
Suppose Mj reads the data block from the nearest node that
stores the data block, Cmij can be calculated by

Cmij = Bj min
Llj=1

hil (1)

2) Transmission Cost for Reduce Tasks: Let R1, R2, ..., Rn

be the reduce tasks. Each reduce task processes a different
partition in the key space of the shuffled data, generally
produced by several map tasks. The transmission cost of
assigning a reduce task to a data node equals the sum of
the costs to transfer the intermediate data in the reduce task’s

corresponding responsible partition from all map tasks to this
node. When scheduling reduce tasks, the assignments of map
tasks are already finished and all map tasks are placed for
execution. We represent the map task placement by a binary
matrix X where xjp (j ∈ {1, ...,m}, p ∈ {1, ...k}) is set to 1
if map task Mj is assigned to data node Dp, or 0 otherwise.

Let I be a m × n matrix. Each element Ijf
(j ∈ {1, ...,m}, f ∈ {1, ..., n}) represents the amount of
intermediate data which the map task Mj generates for the
reduce task Rf . For a map task Mj placed on the data node
Dp and a reduce task Rf placed on the data note Di, the
transmission cost between map task Mj and reduce task Rf

is Ijfhpi. Then, the transmission cost for each reduce task Rf

when it is assigned to the data node Di, denoted by Crif , is
the sum of the transmission cost from each of the map task
to the reduce task, which can be represented by

Crif =

m∑
j=1

k∑
p=1

xjphpiIjf (2)

Estimation of Intermediate Data Size. Unlike map tasks,
the size of complete intermediate data for each reduce task
(i.e., Ijf ) in the above formula, may be not available at
the scheduling time, because the reduce tasks are normally
launched before map tasks have completed processing the
data. Coupling Scheduler [5] uses the current in-progress
intermediate data size at the time of reduce task scheduling to
compute the transmission cost [5] and decides the placement
that minimizes the transmission cost. However, such a method
may cause a large deviation from the optimal placement and
leads to sub-optimal placement. For example, assume a map
task M2 has a data size of 10MB for the reduce task R1 at
the time of its completion, but at time t1, it only has finished
10 percent of its work. Then, the data is approximately 1MB.
At the same time, map task M1 has already generated 5MB
of data for R1 and it has finished 90 percent of its work.
If R1 is to be assigned at time t1 with the goal of lower
transmission cost, it is most likely to be assigned to the node
with M1 or a node near it if we estimate the transmission cost
based on current intermediate data size, even though the node
with M2 is actually a better location. To avoid this drawback,
in our approach, when scheduling a reduce task, we use the
current intermediate data size and the progress of the map
tasks to estimate the size of completed map output for each
reduce task. However, it is difficult to learn the progress of
the map tasks. To handle this problem, we smartly use the
progress of input data processing as the progress of a map
task since a map task always aims to complete handling its
input data. Specifically, each map task, Mj , reports its progress
information to the scheduler periodically as a heartbeat [15],
which includes the number of bytes it has already read from
its input data, denoted by djread, and the size of current
intermediate data for reduce task Rf , denoted by Ajf . With
the size of the input data that Mj needs to process (i.e., Bj),
the scheduler predicts how many bytes Mj would produce for
reduce task Rf using the model Ajf× Bj

dj
read

. By replacing Ijf

3



 

 

 

 

 

 

 

 

 

 

0 

0 

Data Nodes  Map Tasks Reduce Tasks 

D2 

M1

M2

R1

R2

D1 

D3 

D4 

0 0 

0
0 

0 

0 

256 

100

80

20

2 

4 
10 

0 
0 

10

4 
6 

2

4

0

10

Data Nodes  Map Tasks Reduce Tasks 

D1 
M1

M2

R1

R2

D2 

D4 

D3 

(a) Distance

 

 

 

 

 

 

 

 

 

 

0 

0 

Data Nodes  Map Tasks Reduce Tasks 

D2 

M1

M2

R1

R2

D1 

D3 

D4 

0 0 

0
0 

0 

0 

256 

100

80

20

2 

4 
10 

0 
0 

10

4 
6 

2

4

0

10

Data Nodes  Map Tasks Reduce Tasks 

D1 
M1

M2

R1

R2

D2 

D4 

D3 

(b) Cost

Fig. 2: Distance and transmission cost of task assignment.

in Formula (2) with Ajf × Bj

dj
read

, then the transmission cost
Crif is computed by

Crif =

m∑
j=1

k∑
p=1

xjphpiAjf
Bj

djread
(3)

An Example. To illustrate our proposed transmission cost
function, we analyze a simplified cluster in Figure 2. In this
example, there are four nodes D1, D2, D3, D4, two map tasks
M1, M2 and two reduce tasks R1, R2. The data block of M1

is on D1 and that of M2 is on D2. The size of both data
blocks is 128MB. The distance matrix H between data nodes
is:

D1

D2

D3

D4

D1 D2 D3 D4
0 4 2 8
4 0 10 4
2 10 0 6
8 4 6 0


Based on existing information, we could get a cost value for

each task-slot assignment using our transmission cost function.
Let we want to know the transmission cost of assigning M1

to D3 and M2 to D2. The distance between M1 (i.e., D3)
and D1, D2, D3 and D4 is 2, 10, 0 and 6, respectively. By
using Formula (1), we can get the transmission cost of each
assignment of a map task to a node. The distance between
between M1 (i.e., D3) and its data node D1 is 2, the distance
between M2 (i.e., D2) and its data node D2 is 0. Therefore,
the transmission cost for M1 is 128 × 2 = 256 and the cost
for M2 is 128 × 0 = 0. Assume reduce task R1 is assigned
to D1 and R2 is assigned to D3. Similarly, we can have the
distance matrix from two mappers to the reducers:

M1

M2

R1 R2[
2 0
4 10

]
As a result, Figure 2(a) shows the distance map for the

cluster with this assignment. The size of intermediate data is
represented in megabytes by matrix I, which is:

M1

M2

R1 R2[
10 5
20 10

]
With the distance map, we can get the transmission cost

for each assignment on each link. By using Formula (3), we

can get the transmission cost of each assignment of a reduce
task to a node. For the assignment shown in Figure 2(a), the
transmission cost is the sum of all the link costs shown in
Figure 2(b).

3) Considering Network Condition: We further increase the
accuracy of the transmission cost measurement by considering
network condition. As the network bandwidth is shared among
multiple jobs and the links have varied available bandwidths,
the number of hops between two nodes may not accurately
reflect data access latency through a path. However, it is
not easy to consider the network condition in calculating
the transmission cost. We notice that the network condition
of a path from node Da to Db can be reflected by the
data transmission rate of this path. Also, there can be link
status monitoring in the cluster or active measure for path
throughput [16]. Then, we can replace each element hab in
distance matrix H by the inverse of the transmission rate
of the path from node Da to Db. In this way, we can take
into account the bandwidth factor for computing transmission
cost function, which helps to produce a more efficient task
placement.

C. Map Task Placement

When a job is being scheduled, its map tasks are first
assigned to the available computing slots. When a node sends
a heartbeat to the scheduler indicating that it has available slots
for placement, the transmission cost of assigning a map task
to its slot can be calculated based on Formula (1). To assign a
map task, we could use a similar approach as previous work [3]
to wait for a period to capture the opportunity of running
the task on the node with the smallest transmission cost, but
the delay may lead to lower resource utilization and longer
job completion time [5]. Thus, to avoid delay, we propose a
transmission cost based probabilistic network-aware solution,
which determines the probability of an assignment of a map
task to an available slot as a function of data transmission
cost under this assignment. Rather than assigning the task
with the lowest transmission cost instantly (that improves
resource utilization with degraded data locality), we use such a
probability to determine whether a task can be assigned to the
slot in order to achieve a balance between the transmission cost
reduction and resource utilization. Though our approach and
Coupling Scheduling [17] are both probabilistic for map task
scheduling, Coupling Scheduling decides task placement based
on a coarse granularity of locations that differentiates data
locations by local machines, the same rack and different racks,
while our approach considers a fine-grained granularity on
network cost based on transmission cost for better scheduling
placement.

Given a list of candidate map tasks to be launched and a list
of data nodes that have available map slots, the algorithm first
randomly selects a node Di and then selects the map task that
leads to the maximum transmission cost saving by assigning it
instantly to Di than assigning it to other nodes for scheduling.
For the map task selection, based on the data transmission
cost, our algorithm first determines the probability Pmj

of

4



each map task Mj being assigned to node Di. Probability Pmj

reflects how much cost is saved by assigning Mj instantly to
Di rather than assigning it to other nodes with available map
slots; higher Pmj

means that more cost is saved. Then, the
algorithm picks the map task with the highest probability Pmj

among all the candidates in the list. If Pmj
is too low (lower

than a threshold Pmin), the algorithm skips the current node
Di and then randomly selects another node with available map
slot for scheduling. Otherwise, the algorithm assigns the map
task to node Di with its probability Pmj

. Pmin is determined
based on historical data to ensure that a certain amount of cost
can be saved in a map task scheduling. After the completion of
map task scheduling on node Di, the algorithm will randomly
select another data node from the list and repeat the map
task scheduling process for that data node. The pseudocode

Algorithm 1 Probabilistic network-aware map task placement
algorithm.
Input: A list of map tasks of job J to be scheduled; Node

Di with available map slots; Distance matrix H
1: if Di has an available map slot then
2: for each unassigned map task Mj in the list do
3: . Calculate the cost of assigning map task Mj to Di

using H
4: Cmij = Bj minLlj=1

hil

5: . Calculate the expected cost of assigning map task Mj

uniformly to the available nodes
6: Cmave

=
∑Nm

k=1 Cmkj
/Nm

7: Pmj
= 1− e

−Cmave
Cmij

8: end for
9: Choose the map task Mj with the largest Pmj

10: if Pmj < Pmin then
11: Return
12: end if
13: P = random(0,1)
14: if P < Pmj

then
15: Assign Mj to Di

16: end if
17: end if

of the map task scheduling algorithm on node Di is shown
in Algorithm 1. The algorithm is triggered when JobTracker
receives a heartbeat and there is available map task to be
scheduled. The inputs of the algorithm include a list of map
tasks of a job to be scheduled, a data node Di with available
map slots, and distance matrix H . For each map task Mj in the
list, the algorithm calculates its Pmj

(Lines 2-8). Specifically,
the algorithm calculates Cmij

, which represents the cost of the
placement of Mj to Di computed by Formula (1) (Line 4). It
then calculates the expected cost Cmave of assigning a map
task M j to the cluster by

∑Nm

k=1 Cmkj
/Nm, where Nm be the

number of data nodes that have available map slots (Line 6).
The probability Pmj

is determined by the ratio of the expected
cost Cmave to the data transmission cost for Mj being placed
on Di, and computed as:

Pmj
= 1− e

−Cmave
Cmij

= 1− e
−

∑Nm
k=1

Cmkj
/Nm

Cmij

(4)

where we let Pmj
= 1 if Cmij

= 0 (Line 7). The intuition
behind this algorithm is to give a higher priority to the map
task if assigning it instantly to Di is expected to incur much
lower cost than assigning it to other nodes. When the average
placement cost is much less than the cost incurred by assigning
the task to Di, there should be nodes which have much lower
cost than Di for the assignment. When the ratio increases,
the benefit of assigning the map task later to other nodes
decreases. If the data is available in Di to the map task, the
task is always assigned to Di with Pmj = 1.

Our algorithm selects the map task with the highest prob-
ability Pmj

(Line 9), which is actually corresponding to the
task with the minimum cost among all the map task candidates.
Then, the algorithm decides whether to assign it based on the
value of Pmj . If Pmj < Pmin, the algorithm does not assign
any map task to Di due to large transmission cost (Lines 10-
12). When the probability Pmj

is no less than threshold Pmin,

we have Cmij
≤

∑Nm
k=1 Cmkj

/Nm

− ln (1−Pmin)
based on Formula (4). That

is, the task is assigned to Di only if the cost is no less than
1

− ln (1−Pmin)
of the expected cost. If Pmj

≥ Pmin, Mj is
assigned to Di with probability Pmj (Lines 13-16).

Algorithm 2 Probabilistic network-aware reduce task place-
ment algorithm.
Input: A list of reduce tasks of job J to be scheduled; Node

Di with available reduce slots; Distance matrix H
1: if Di has available reduce slots and has no running reduce

tasks of J then
2: for each unassigned reduce task Rf in Job J do
3: Calculate the distance map for task Rf

4: . Calculate the cost of assigning reduce task Rf to Di

using H
5: Crif =

∑m
j=1

∑k
p=1 xjphpiAjf

Bj

dj
read

6: . Calculate the expected cost of assigning reduce task
Rf uniformly to the nodes (matrix I)

7: Crave
=
∑Nr

k=1 Crkf
/Nr

8: Prf = 1− e
−Crave

Crif

9: end for
10: Choose the reduce task Rf with the largest Prf

11: if Prf < Pmin then
12: Return
13: end if
14: P= random(0,1)
15: if P < Prf then
16: Assign Rf to Di

17: end if
18: end if

D. Reduce Task Placement
For reduce task scheduling, we aim to assign each reduce

task to a node that would incur the least transmission cost

5



of intermediate data. The reduce task scheduling algorithm
shares the similar idea as the map task placement algorithm.
Algorithm 2 shows the pseudocode of the reduce task schedul-
ing algorithm on node Di. The algorithm is triggered when
a heartbeat is received and there is available reduce task to
be scheduled. The algorithm also computes a probability Prf

for each reduce task Rf of the job to be scheduled, considers
the reduce task with the highest probability Prf among all the
reduce tasks, and then assigns this task to the node Di with its
probability Prf . Besides, in the algorithm, we avoid running
multiple reduce tasks of a job on the same node as in [5, 15] in
order to decrease their I/O contention and avoid the downlink
congestion on the node (Line 1).

The probability Prf is computed in a similar way as Pmj

(Line 8). Let Nr be the number of nodes that have available
reduce task slots. The expected cost Crave of assigning the
reduce task Rf to the cluster is calculated by

∑Nr

k=1 Crkf
/Nr,

where Crkf
represents the cost of the placement of Rf to Dk

computed by Formula (3) (Line 7). The probability Prf for
each reduce task launched on the slot can be calculated by

Prf = 1− e
−

∑Nr
k=1

Crkf
/Nr

Crif (5)

If Prj < Pmin, the algorithm does not assign any reduce task
to Di due to large transmission cost (Line 11-12). Otherwise,
Rf is assigned to Di with probability Pfj (Lines 15-16).
As we can see, the probabilistic strategy for reduce task
assignment is the same as that for map task. The key difference
between the assignments for map tasks and reduce tasks is the
computation of the transmission cost for the assignment.

III. PERFORMANCE EVALUATION

To evaluate our probabilistic network-aware scheduling
method, we implement our method and the coupling schedul-
ing method [5] on Apache Hadoop version 1.2.1. Apache
Hadoop version 1.2.1 uses the fair scheduling method [7],
which uses the delay scheduling in the map task allocation.
The fair scheduling method delays the map task assignment for
data locality, achieve fairness among jobs and randomly selects
a reduce task to be assigned to an available reduce slot. In the
coupling scheduling method, for an available map task slot, a
randomly picked map task is assigned to it with a probability
that balances data locality and resource utilization; the reduce
tasks can be postponed to be launched in order to be assigned
to the data “centrality” nodes and can wait at most three
rounds of heartbeats before being assigned. Here, the data
“centrality” node means the data node that is approximately
located in the middle of all data nodes and can greatly decrease
the data transmission overhead if the reduce task is assigned
to it. We conduct various experiments on the Palmetto high-
performance computing platform [11] located at the Clemson
University. The Palmetto cluster currently comprises of 1,978
slave nodes (the nodes that do the computational work), and a
few service nodes that handle managing activities. The entire
Palmetto cluster is connected to Internet2’s 100 GbE (gigabit
Ethernet) Advanced Layer 2 Service. All nodes are connected

TABLE II: The description of the 30 jobs.

JobID Job Map (#) Reduce (#)
01 Wordcount 10GB 88 157
02 Wordcount 20GB 160 169
03 Wordcount 30GB 278 159
04 Wordcount 40GB 502 169
05 Wordcount 50GB 490 127
06 Wordcount 60GB 645 187
07 Wordcount 70GB 598 165
08 Wordcount 80GB 818 291
09 Wordcount 90GB 837 157
10 Wordcount 100GB 930 197
11 Terasort 10GB 143 190
12 Terasort 20GB 199 186
13 Terasort 30GB 364 131
14 Terasort 40GB 320 149
15 Terasort 50GB 490 189
16 Terasort 60GB 480 193
17 Terasort 70GB 560 178
18 Terasort 80GB 648 184
19 Terasort 90GB 753 171
20 Terasort 100GB 824 193
21 Grep 10GB 87 148
22 Grep 20GB 163 174
23 Grep 30GB 188 184
24 Grep 40GB 203 158
25 Grep 50GB 285 164
26 Grep 60GB 389 137
27 Grep 70GB 578 179
28 Grep 80GB 634 178
29 Grep 90GB 815 164
30 Grep 100GB 893 184

to a top of rack switch within a rack. Most top of rack
switches are uplinked to the core switch at 10Gbps, and some
switches are aggregated to a Z9000 switch that is uplinked
to the brocade at 40Gbps. We chose 60 slave nodes from the
Palmetto cluster with 4 map slots and 2 reduce slots per node.
Each node has 16 cores (2300MHz), 16GB of memory and
37GB of disk. To find the appropriate value of Pmin, we ran
10 Wordcount jobs together several times with different Pmin

values and picked the highest Pmin value at the time when the
all jobs finished successfully. Accordingly, we set Pmin to 0.4.
The input workload in the experiments was generated based
on representative Hadoop applications including Wordcount,
Terasort, and Grep.

We compared our probabilistic network-aware scheduling
method with the coupling scheduling method [5] and the fair
scheduling method [7] in terms of job completion time, task
completion time, cluster resource utilization, and data locality.
Recall that our method focuses on the task-level scheduling,
we used the default fair scheduling method of Hadoop for job
scheduling. In our experiment, we created 3 batches of jobs,
which consists of 10 Wordcount jobs, 10 TeraSort jobs, and 10
Grep jobs, respectively, and run these 3 batches separately on
the Palmetto cluster. In the batches of the Wordcount, TeraSort,
and Grep jobs, the input data size was varied from 10GB
to 100GB. For the Wordcount and Grep jobs, we generated
the input data by BigDataBench [18] based on the Wikipedia
datasets. BigDataBench is an open-source big data benchmark

6



0

0.2

0.4

0.6

0.8

1

0 5E+10 1E+11 1.5E+11

C
D
F

Data size (bytes)

Shuffle Size

Input Size

Fig. 3: CDF of data size.

suite, which includes 14 real-world data sets and 33 big data
workloads. For the Terasort jobs, we generated the input data
using Teragen (another example job from Hadoop benchmark).

The generated files are stored in slave nodes with the
replication factor being set to 2. We run each of the three
batches at one time. Table II show the input data size, number
of map task and reduce task of each job in the three batches in
the experiments. To further illustrate the characteristics of the
input workload, Figure 3 shows the Cumulative Distribution
Function (CDF) of input data size and the shuffle data size
from map tasks in the submitted jobs. We can see that about
60 percent of jobs have more than 50GB shuffle data size, and
about 20 percent of jobs have more than 100GB shuffle data
size. These jobs are considered as shuffle-intensive jobs. There
are about 20 percent of jobs having less than 10GB shuffle
data size, which can be considered as computing (or map)
intensive jobs that mainly rely on map tasks to process data.
For these map intensive jobs and shuffle intensive jobs, the
total execution time is sensitive to the delay of map tasks and
the placement for both map tasks and reduce tasks. Therefore,
these jobs also give a better illustration of the performance
of job completion time of different schedulers under heavy
network bandwidth usage.

A. Job Completion Time

We first measured the job completion time using our
proposed probabilistic network-aware scheduling method and
compared it with the coupling scheduling method and fair
scheduling method. Figure 4 shows the CDF of the job
completion time when the replication factor equals to 2.
Replication factor is the number of replicas of each file. We
can see that given a running time t, the probabilistic network-
aware scheduling method produces a higher percentage of
jobs that complete within t time than other two methods.
Actually, our experimental results show that using the prob-
abilistic network-aware scheduling method, the completion
time of each job is shorter than the job completion time
using the coupling scheduling method or the fair scheduling
method. To demonstrate this, we draw Figure 5 to show the
reduction of the job processing time for replication factor 2
achieved by the probabilistic scheduling method compared
with the coupling scheduling and fair scheduling methods.
The x-axis is the reduction percentage of job processing

0
0.2
0.4
0.6
0.8
1

150 450 750 1050 1350

C
D
F

Time (seconds)

Probabilistic
Coupling
Fair

Fig. 4: CDF of job completion time.

0
0.2
0.4
0.6
0.8
1

15 25 35 45 55 65

C
D
F

Reduction (%)

wrt Coupling
wrt Fair

Fig. 5: Reduction of job processing time.

time calculated by ((coupling − probabilistic)/coupling or
(fair − probabilistic)/fair), and the y-axis represents the
CDF of the jobs versus the reduction percentage. The Fig-
ure 5(a) shows that, when the replication factor is 2, with the
probabilistic network-aware scheduling method, the comple-
tion times of about 28 percent of jobs decrease by more than
47 percent compared with the coupling scheduling method and
about 24 percent of jobs have more than 43 percent reduction
compared with the fair scheduling method. On average, the
probabilistic network-aware scheduling method decreases the
job processing time by 17 percent and 46 percent compared
with the coupling scheduling and fair scheduling, respectively.

The above results demonstrate that our proposed prob-
abilistic network-aware scheduling method outperforms the
coupling scheduling and fair scheduling methods in terms of
job completion time. It is mainly caused by three reasons.
First, unlike the other two methods, our method uses fine-
grained transmission cost measurement instead of coarse-
grained measurement that only considers the located machine
and rack. It can more accurately measure the delay caused
by the task placement and generate better task placement.
Its consideration of network condition in transmission cost
calculation further improves its performance. Second, the fair
scheduling method delays the map task assignment for data
locality and randomly selects a reduce task to be assigned to
an available reduce slot. In the coupling scheduling method,
the reduce tasks are postponed to be launched and can wait at
most three rounds of heartbeats before being assigned. The
delay strategy could increase the job completion time due
to the delay though it achieves high data locality. In our
method, a task is assigned probabilistically once a slot is

7



available, which increases the opportunity of its assignment
to the cluster at an earlier time, as long as the resulted
transmission cost is low enough. The third reason is the
estimation of the data size of the intermediate data for reduce
tasks in our probabilistic network-aware scheduling method.
We use the progress information of map tasks to estimate the
complete input data size for each reduce task. However, the
coupling scheduling method uses the current intermediate data
to compute the data “centrality” nodes for reduce tasks, which
could be insufficiently accurate and results in sub-optimal
placement.

B. Task Running Time

To further examine the completion time of each job, we
draw the CDF of the running time for map tasks and reduce
tasks in Figure 6 for replication factor 2. The figures show that
both map tasks and reduce tasks finish earlier by using our
probabilistic network-aware scheduling method than using the
coupling scheduling and fair scheduling methods. As shown
in Figure 6(a), when the replication factor is 2, all map tasks
can finish within 493 seconds in the probabilistic scheduling
method, while only 76 percent of map tasks using the coupling
scheduling method and only 48 percent of map tasks using
the fair scheduling method can finish within 493 seconds.
Figure 6(b) shows that all reduce tasks can finish within
574 seconds in the probabilistic scheduling method, while
only around 65 percent of reduce tasks using the coupling
scheduling method and only around 85 percent of reduce
tasks using the fair scheduling method can finish within
574 seconds. The reasons for the higher performance of our
probabilistic network-aware scheduling method are the same
as explained previously.

C. Percentage of Local Tasks

A map or reduce task that is assigned to a machine with
data for that task is referred to as a local task. A map or reduce
task that is assigned to a machine without local data but in
the rack having the machine with local data is referred to as
a local rack task, and other map or reduce tasks are referred
to as remote tasks. Local tasks increase, then either local rack
tasks or remote tasks decrease, and vice-versa.

Table III shows the percentage of the three types of tasks
using three different scheduling methods. We can see that
although the fair scheduling method tries to delay map tasks in
order to execute them in the data nodes, both our method and
the coupling scheduling method achieve higher percentage of
local tasks than it. This is because the fair scheduling method
randomly assigns reduce tasks to slots, while our method tries
to assign both map tasks and reduce tasks to nodes that lead
to low transmission costs and the coupling scheduling method
also considers locality in assigning both map and reduce tasks.
Our method generates a higher percent of local node tasks
than the coupling scheduling method because the coupling
scheduling method assigns a reduce task to a random slot if it
is postponed for a certain time. A higher percentage of local
node tasks leads to a lower percentage of local rack tasks. We

0

0.2

0.4

0.6

0.8

1

50 150 250 350 450 550 650 750

C
D
F

Time (seconds)

Probabilistic
Coupling
Fair

(a) Map tasks (2 replications)

0
0.2
0.4
0.6
0.8
1

0 250 500 750 1000

C
D
F

Time (seconds)

Probabilistic
Coupling
Fair

(b) Reduce tasks (2 replications)

Fig. 6: CDF of task completion time.

75

80

85

90

95

40 50 60 70 80 90 100

D
a
ta
 l
o
c
a
li
ty
 (
%
)

Input sizes (GB)

Probabilistic Coupling Fair

Fig. 7: The percentage of map tasks with local data.

do not find remote tasks in the experiment because the slave
nodes we requested were all assigned to the same rack by
Palmetto.

Figure 7 gives a further illustration for the performance
of data locality with different input data sizes. The x-axis
represents the input data size for jobs, the y-axis represents
the percentage of local node tasks. The figure shows that
our method constantly achieves better data locality among
different scheduling methods under different input sizes due
to the same reasons explained above. The coupling scheduling
method considers data locality for both map task and reduce
task assignment. The fair scheduling method does not consider
the data locality for the reduce tasks. Therefore, the coupling
scheduling method incurs a higher percentage of local node
tasks than the fair scheduling method.

IV. RELATED WORK

Three schedulers commonly used in the MapReduce cluster
are FIFO Scheduler [2], Fair Scheduler [7] and Capacity
Scheduler [12]. FIFO Scheduler is limited in its ability to run

8



TABLE III: Details on data locality using the three schedulers.

Probabilistic Coupling Fair
% of local node tasks 89.84 88.30 85.59
% of local rack tasks 10.16 11.70 14.41
% of remote tasks 0 0 0

heterogeneous jobs from different users because it determines
which job to schedule in the order of job arrivals without job
priority mechanism. Fair Scheduler and Capacity Scheduler
aim to manage and arbitrate the scheduling of jobs to satisfy
the need of different jobs and achieve fairness among jobs
by allocating equal share of the available resources among
jobs and among users, respectively. In Fair Scheduler, jobs
are organized into pools, and slot resources are fairly divided
between these pools. In each pool, jobs can be scheduled using
either Fair Scheduler or FIFO Scheduler. Capacity Scheduler
is designed to run jobs as a shared, multi-tenant cluster to
maximize the throughput and the utilization of the cluster. It
gives a higher priority to a job that can achieve higher data
locality when assigning available slot resources in the map task
allocation and delays reduce tasks to achieve data locality in
the reduce task allocation. These schedulers place all the tasks
of each job to the nodes in the cluster with a primary goal of
data locality by running the tasks on nodes where the required
input blocks reside or as close to those nodes as possible.

A number of works have been proposed to improve the task
scheduling for MapReduce jobs. Delay Scheduling [3] extends
Fair Scheduler [7] to improve data locality by letting map tasks
wait for the opportunities to run on a node with local data.
LARTS [4] is a location-aware reduce task scheduler, which
schedules the reduce tasks as close to their maximum amount
of input data as possible and thus decreases the bandwidth
cost during shuffling. In existing schedulers, either greedily
launching reduce tasks or delaying the launching of map tasks
to improve data locality can lead to resource under-utilization.
Coupling Scheduler [5] addresses these problems by gradually
launching the reduce tasks according to the progresses of map
tasks, and randomly launching the map tasks with a probability
of balancing data locality and resource utilization. Dominant
Resource Fairness Scheduler [19] achieves a max-min fairness
for multiple resources (e.g., CPU, memory and I/O resources).
Quincy Scheduler [20] uses the min-cost flow algorithm to find
out the optimal task placement by calculating the cost of map
task assignment based on the data locality and fairness. All
these scheduling schemes, however, do not explicitly take into
account the network cost for deciding the placement of tasks,
which may lead to excessive latency in shuffling and degrade
the performance of job execution.

Considering that placing reduce tasks to slots with the
lowest transmission cost for a job can prevent a subsequent job
from being launched on these occupied slots with better data
locality for it, Tan et al. [21] proposed a stochastic optimiza-
tion framework to improve the data locality for reduce tasks
within sequential map reduce jobs. Kondikoppa et al. [22]
proposed a network aware scheduling in Hadoop to minimize
the transmission cost of the data among clusters. However,

they enable the Delay Scheduling [3] to take maximum use of
data locality in scheduling tasks, which would lead to under-
utilization of the cluster resources. Tang et al. [23] proposed
a scheme for MapReduce task scheduling with deadline con-
straints in the Hadoop platform, in which nodes are classified
by their computing capacity and tasks are scheduled to these
nodes according to the map and reduce task slot requirements
for meeting deadlines. Wang et al. [24] proposed a map
task scheduling algorithm with a new queueing architecture,
with the goal of striking an appropriate balance between data
locality and load balancing to maximize throughput and min-
imize delay. Alicherry et al. [10] proposed a virtual machine
placement algorithm to minimize overall data access latency
for a job. However, it assumes static resource availability
on nodes and one-time placement for all virtual machines.
Another recent work [25] deploys a cluster scheduler, which
packs tasks to machines based on their requirements along
multiple resources by adaptively learning task requirement
and monitoring available resources at machines to overcome
the limitation of the existing schedulers based on only one
resource (e.g., memory). Dogar et al. [26] demonstrated a
decentralized task-aware network scheduling algorithm, which
schedules a group of tasks together regarding their network
flow by dynamically adapting the level of multiplexing in
the network to reduce the average waiting time and tail task
completion. The above works on MapReduce scheduling
decide the placement of tasks on a coarse granularity of
locations that differentiates data locations measured by located
machines and ranks. Unlike these previous works, we consider
fine-grained granularity on network cost based on transmission
latency for better task placement.

V. CONCLUSION

In this paper, we focus on the problem of task placement in
MapReduce task scheduling. Previous works on MapReduce
scheduling consider the placement of map/reduce tasks on a
coarse granularity of locations without taking into account the
network topology and link bandwidth. As a result, they may
lead to degraded job performance in cloud systems that have
data replicas stored among different racks, in NAS or SAN
devices located in a subset of nodes, or in a shared cluster with
varied and dynamic bandwidth utilization of links. To address
this issue, we proposed a transmission cost based probabilistic
scheduling method. Based on the data transmission cost,
our method decides the probability to assign a task to an
available computing slot. The transmission cost computation
takes into account the network condition and data size. A
lower transmission cost leads to a higher probability of task
placement and vice versa. The probabilistic approach relaxes
the condition to assign a task to a computing slot, which helps
avoid the delay while reducing the data transmission cost with
a high probability. The experimental results conducted on the
real testbed demonstrate that our method improves the job
completion time and resource utilization compared with the
coupling scheduling and fair scheduling methods.

9



Currently, we determine the probability of assigning a task
to a slot based on an exponential model based on the ratio of
the expected transmission cost to the transmission cost resulted
from the corresponding assignment. However, the optimality
of this model is not known. In the future, we will conduct a
theoretical analysis for the performance of our probabilistic
network-aware scheduling method. We will further explore
various probabilistic computation models for the probability
determination and study their impacts on the job performance.
We will also evaluate the performance of our method under
different network conditions (e.g., bandwidth utilization), and
implement it in the most recent YARN [27] framework and
evaluate its performance.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
NSF-1404981, IIS-1354123, CNS-1254006, IBM Faculty
Award 5501145, and Microsoft Research Faculty Fellowship
8300751.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Communications of the
ACM, vol. 51, no. 1, pp. 107–113, 2008.

[2] “Hadoop,” http://hadoop.apache.org/ [Accessed in Febru-
ary 2016].

[3] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica, “Delay scheduling: a simple
technique for achieving locality and fairness in cluster
scheduling,” in Proc. of Computer systems, 2010.

[4] M. Hammoud and M. Sakr, “Locality-aware reduce task
scheduling for mapreduce,” in Proc. of CloudCom, 2011.

[5] J. Tan, X. Meng, and L. Zhang, “Coupling task progress
for mapreduce resource-aware scheduling,” in Proc. of
INFOCOM, 2013.

[6] “Admin New Day HPC,” http://www.admin-
magazine.com/HPC/Articles/MapReduce-and-Hadoop
[Accessed in February 2016].

[7] “Fair scheduler,” http://hadoop.apache.org/docs/r1.2.1/
fair scheduler.html [Accessed in February 2016].

[8] G. Liu, H. Shen, and H. Wang, “Computing load aware
and long-view load balancing for cluster storage system-
s,” in Proc. of Big Data. IEEE, 2015, pp. 174–183.

[9] Z. Li, H. Shen, W. B. L. III, and J. Denton, “An
exploration of designing a hybrid scale-up/out hadoop
architecture based on performance measurements,” IEEE
Transactions on Parallel and Distributed Systems, vol. P-
P, no. 99, pp. 1–1, 2016.

[10] M. Alicherry and T. Lakshman, “Optimizing data access
latencies in cloud systems by intelligent virtual machine
placement,” in Proc. of INFOCOM, 2013.

[11] “Clemson Palmetto HPC Cluster,”
http://citi.clemson.edu/palmetto/. [Accessed in February
2016].

[12] “Capacity scheduler,” http://hadoop.apache.org/docs/r2.3.0
/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
[Accessed in February 2016].

[13] A. Beloglazov and R. Buyya, “Optimal Online Determin-
istic Algorithms and Adaptive Heuristics for Energy and
Performance Efficient dDnamic Consolidation of Virtual
Machines in Cloud Data Centers.” CCPE, 2011.

[14] C. Peng, M. Kim, Z. Zhang, and H. Lei, “VDN: Virtual
Machine Image Distribution Network for Cloud Data
Centers.” in Proc. of INFOCOM, 2012.

[15] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Sto-
ica, Y. Lu, B. Saha, and E. Harris, “Reining in the outliers
in map-reduce clusters using mantri,” in Proc. of OSDI,
2010.

[16] K. LaCurts, S. Deng, A. Goyal, and H. Balakrishnan,
“Choreo: network-aware task placement for cloud appli-
cations,” in Proc. of IMC, 2013.

[17] J. Tan, X. Meng, and L. Zhang, “Coupling scheduler for
mapreduce/hadoop,” in Proc. of international symposium
on High-Performance Parallel and Distributed Comput-
ing, 2012.

[18] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He,
W. Gao, Z. Jia, Y. Shi, S. Zhang et al., “Bigdatabench:
A big data benchmark suite from internet services,” in
Proc. of HPCA, 2014.

[19] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica, “Dominant resource fairness:
Fair allocation of multiple resource types,” in Proc. of
NSDI, 2011.

[20] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Tal-
war, and A. Goldberg, “Quincy: Fair scheduling for
distributed computing clusters,” in Proc. of SOSP, 2009,
pp. 261–276.

[21] J. Tan, S. Meng, X. Meng, and L. Zhang, “Improving
reducetask data locality for sequential mapreduce jobs,”
in Proc. of INFOCOM, 2013, pp. 1627–1635.

[22] P. Kondikoppa, C.-H. Chiu, C. Cui, L. Xue, and S.-J.
Park., “Network-aware scheduling of mapreduce frame-
work on distributed clusters over high speed networks,”
in Proc. of FederatedClouds. ACM, 2012, pp. 39–44.

[23] Z. Tang, J. Zhou, K. Li, and R. Li, “A mapreduce task
scheduling algorithm for deadline constraints,” Cluster
computing, vol. 16, no. 4, pp. 651–662, 2013.

[24] W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang,
“Map task scheduling in mapreduce with data locality:
Throughput and heavy-traffic optimality,” in Proc. of
INFOCOM, 2013, pp. 1609–1617.

[25] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao,
and A. Akella., “Multi-resource packing for cluster
schedulers,” in Proc. of SIGCOMM. ACM, 2014, pp.
455–466.

[26] F. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron.,
“Decentralized task-aware scheduling for data center
networks,” in Proc. of SIGCOMM. ACM, 2014, pp.
431–442.

[27] “Hadoop NextGen MapReduce (YARN),”
http://hadoop.apache.org/docs/current/hadoop-yarn
/hadoop-yarn-site/YARN.html [Accessed in February
2016].

10


