
RoadAware: Learning Personalized Road
Information on Daily Routes with Smartphones

Kang Chen#
Department of Electrical and Computer Engineering

Southern Illinois University, Carbondale, IL, USA 62901
Email: kchen@siu.edu

Haiying Shen
Department of Electrical and Computer Engineering

Clemson University, Clemson, SC, USA 29631
Email: shenh@clemson.edu

Abstract—In this paper, we introduce RoadAware, an
infrastructure-less system that leverages a smartphone to collect
road information on people’s daily routes to and from work.
Unlike previous research that utilizes moving vehicles equipped
with sensors to collect road information, RoadAware does not
need the support from infrastructure, road-side facilities or
other users and focuses on serving individuals during his/her
daily commute to and back from work. RoadAware can provide
road information including 1) travel distance and time between
traffic lights; 2) duration of red and green signals of each traffic
light; and 3) traffic volume on the road between traffic lights.
RoadAware builds a model that can deduce the road information
based on the wait time and the length of the waiting queue
in front of the car when it stops at a traffic light. The road
information not only benefits individuals in their daily commutes
(e.g., predict waiting at red lights and remind whether there
is a delay on daily route) but can also be collected for traffic
optimization that otherwise requires costly sensor deployment.
We developed RoadAware on Windows smartphones, and our
extensive real-world test shows that RoadAware can provide road
information with acceptable accuracy.

Index Terms—Road Information, Sensing, Smartphone

I. INTRODUCTION

Automobile has been a fast and convenient transportation
tool in modern society. However, the increasing amount of
vehicles also raises many issues and problems on the plan-
ning and management of traffic systems. Statistics show that
Americans spend over 100 hours a year commuting to work in
cars [1]. As a result, there have been active research efforts on
large-area road information sensing to improve traffic system
efficiency. In these researches, considering it is costly to build
and maintain a sufficient number of cameras or sensors on
the roadside or at intersections, moving vehicles equipped
with various sensors have been utilized as probing nodes
to collect traffic information such as traffic conditions (e.g.,
volume, delay, and fuel consumption) [2]–[6], road status (i.e.,
potholes) [2], [7], and traffic light status [8], [9].

Though current road sensing systems can effectively and
accurately collect general road status, they are not designed
specifically for individual drivers. While people are aware of
the general situation on their daily commuting routes, they
cannot easily acquire accurate data such as traffic volume,
traffic light schedules, and travel times and distances between
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traffic lights. Such data, if obtained, can potentially benefit
drivers and the transportation system in several aspects.

First, if people can acquire accurate road information on
their daily routes, they can know whether they are delayed
on their daily routes and change schedules accordingly. Both
applications can reduce driver’s frustration caused by slow
traffic [10]. Secondly, the durations of red/green light can be
used by the Green Light Optimal Speed Advisory (GLOSA)
system [11] to provide drivers with speed suggestions to avoid
red lights, which reduces fuel consumption and travel time.
Thirdly, once network connection becomes available, the road
information collected by individual users can be gathered as
the input for Intelligent Transportation System (ITS) [12] to
improve the overall transportation system efficiency.

Consequently, in this paper, we propose RoadAware, an
infrastructure-less and independent system aiming to col-
lect road information on individual drivers’ daily commuting
routes, which includes (1) travel distance and time between
traffic lights; (2) time duration of red and green light signals
of each traffic light; and (3) traffic volume on the road between
traffic lights. RoadAware is built upon smartphones and only
requires the GPS and the clock on smartphones. In recent
years, the number of smartphone users has been increasing at a
very rapid rate, reaching an 85% year-over-year increase rate.
More than 100 million Americans now own a smartphone.
Therefore, the popularity of smartphones ensures that the
developed system can easily be deployed.

We first model the relationship between the wait time and
waiting queue length of a car when it stops at a traffic
light, which is related to both the duration of red light
signal and traffic volume. Then, RoadAware collects wait time
and waiting queue length during daily commuting, identifies
datasets obtained with similar traffic volume, feeds them to
the model, and deduces the traffic signal duration and traffic
volume. RoadAware can be regarded as a self-learning system
that learns road information gradually and independently. We
implemented RoadAware on Windows smartphones and tested
it on daily commutes to campus to show its effectiveness.

The rest of the paper is organized as follows. Section II
introduces the design goal and usage condition. Section III
and IV introduce baseline techniques and design of Road-
Aware. The performance of RoadAware is evaluated through
real-world test in Section V. Section VI provides the related



work. The last section concludes the paper with future work.

II. PRELIMINARY

A. Design Goal

In this paper, we focus on the collection of road information
and regard it as the basis for aforementioned potential ben-
eficial applications. Specifically, RoadAware aims to collect
the following information on a user’s daily commuting route
without the support of infrastructure or other users/systems.

• Information (1): The travel distance and average travel
time between traffic lights;

• Information (2): The duration of red light signal and
green light signal for each traffic light;

• Information (3): The traffic volume on a road between
traffic lights, which is measured as the average number
of cars passing the traffic light per second.

RoadAware provides Information (1) between any two con-
secutive traffic lights, including those at which the car turns
right or left. For Information (2) and (3), RoadAware can only
provide such information for traffic lights where the car passes
through in a straight line. This is because whether a car can
pass through a left-turn or right-turn traffic light is decided by
both the traffic signal and the traffic status on other directions,
i.e., a car can possibly turn right with the red light and may
not be able to turn left even under the green light. Therefore,
additional information is needed to determine the traffic status
on other directions, which is out of the scope of this paper.

We exclude the road information during events such as
football games and holidays in RoadAware because1) Road-
Aware aims to provide benchmark data during normal daily
commute and 2) people are more sensitive to working day
traffic status. As previously mentioned, such measured infor-
mation can bring about many benefits. With the general traffic
information on daily routes, drivers can detect exceptions
to better understand current traffic status, which can reduce
potential frustration caused by traffic [10]. Also, the collected
information can be feed to the Green Light Optimal Speed
Advisory (GLOSA) system [11] and Intelligent Transportation
System (ITS) [12] for more efficient transportation system.

B. Route Model

We define a route R as a set of traffic lights (L) and road
segments (S) in sequence:

R := {A0, S1, L1, S2, L2, S2, L3, · · · , Sm, Lm, Sm+1, Em+1}
where A0 is the starting point, Li is the ith traffic light, Si is
the road segment between Li−1 and Li, Ek+1 is the ending
point, and m is the total number of traffic lights. A road
segment can contain different types of roads including freeway,
highway, and local road. Figure 1 demonstrates a route.

As we only focus on driving experience and cars stop at
either a red light or a yellow light, we only consider two light
states {red/stop, green/non-stop}. For a traffic light, say Li,
the durations of its red and green light signals are denoted by
Yir and Yig , respectively.
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Fig. 1: An example of a home-office route.

There are mainly two types of traffic signal systems:
• Fixed-time signaling: the traffic light’s signal schedule is

pre-determined with fixed red and green light duration.
• Adaptive signaling: adaptive signaling control tech-

niques [13] are used to adjust the signal schedule dynam-
ically to improve traffic efficiency. Thus, the durations of
red and green light signals change dynamically.

Information (2) in the adaptive signaling system and In-
formation (3) on all roads change dynamically at different
times. This means it is hard to provide a constant measurement
regarding the two kinds of information. In this case, we focus
on the average values for each adaptive traffic light on a
user’s commuting trips. People usually commute to and back
from work during approximately the same period of time each
day, during which the traffic volume on the road tends to be
similar. Then, RoadAware uses the measurement under such
an assumption as the average case of the road information.

III. BASELINE TECHNIQUES

A summary of the notations used in this paper is shown in
Table I for easy reference.

TABLE I: Notations
R route to or from work
Pj j-th sample point on road
Li i-th traffic light in route
Si road segment between Li and Li+1

SPi start point of Si

Yir duration of red light signal of Li

Yig duration of green light signal of Li

~Ci GPS coordinate vector of traffic light Li

fr car position measurement frequency
λia rate that cars stop in a waiting queue at Li

λid rate that cars start to move in a waiting queue at Li

dis length of waiting queue in front of a car
tia time when a car enters a waiting queue at Li

tid time when a car starts leaving waiting queue at Li

tirs start time of red light signal of Li where a car stops
Tirp elapsed time of Li’s red light signal when a car stops
Tiw wait time in front of Li

Tirgs time period a car uses to pass Li after stopping

A. GPS Reading

To obtain the road information, RoadAware reads the car’s
positions and speeds from the GPS when the car moves
on route periodically, i.e. fr times per second. A larger fr
leads to more accurate measurements but also higher energy
consumption. We set fr = 1 in this paper. As [8], we do
not consider energy to be a bottleneck for RoadAware since
smartphones can be charged in cars. RoadAware needs to know
the GPS positions of traffic lights on the route. We assume
such information has already been obtained off-line, e.g., from
online map services such as Google Maps [14].
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Fig. 2: Measuring waiting queue length.

B. Measuring the Time and Length of a Trip

When a car moves for a period of time, by reading the
car’s positions from the GPS, RoadAware generates a series
of sampling position points {P1, P2, P3, · · · , Pn}, where Pj

is represented by a GPS coordinator, P1 is the starting point
and Pn is the ending point. Since the timers on smartphones
have high accuracy, we directly calculate the travel time by
T = tn − t1, where t1 and tn are the time stamps at starting
point (P1) and ending point (Pn) of the trip, respectively.

We can measure the length of a trip by accumulating
the distances between consecutive GPS positions. However,
purely relying on GPS positions may lead to a low accuracy
because 1) the GPS may provide insufficiently accurate co-
ordinators [15] and 2) cars are continually moving. Our on
road measurement also shows that the error can gets up to
20% on average. To solve this problem, we use the speed to
deduce the travel distance, which is more accurate since it
considers the Doppler shift in the pseudo range signals from
the satellites [16]. Suppose the speed readings at Pj and Pj+1

are vj and vj+1, respectively. Then, the distance between the
two points is D(Pj , Pj+1)=(tj+1− tj)(vj + vj+1)/2. Finally,
the travel distance L =

∑n−1
j=1 D(Pj , Pj+1). This method

assumes that the car moves steadily or speeds up evenly during
[tj , tj+1], which generally holds since the sampling interval is
small (i.e., 1s). The experiment results in Section V-C1 verifies
the accuracy of such a method.

C. Detecting Movement Status

Since the GPS can provide driving speed directly, we again
use the periodically measured driving speed to detect the
movement status. We regard a car as stopped if its speed
readings are all less than THs meters per second (m/s) for Ns

consecutive sampling points, and moving otherwise. Generally,
a larger Ns and a smaller THs lead to a higher probability of
false negative while a smaller Nt and a larger THs lead to a
higher probability of false positive. After a set of real-world
tests, we found that Ns = 2 and THs = 2 m/s lead to the
best performance with our Windows phones.

D. Measuring the Waiting Queue Length

The waiting queue length is the length of the queue in front
of a car when it stops at a traffic light. As shown in Figure 2,
each traffic light has a white stop bar in front of it in the
moving direction of cars, which is perpendicularly divided into
several sections by traffic lanes. Recall RoadAware obtains
the GPS coordinates of the middle point of each section with
Google Maps off-line. Then, when a car stops in front of
traffic light Li, RoadAware measures the car’s distances to

SP
i

road

SP
i+1

L
i

L
i+1

(a) Examples of start points of
traffic lights.

P
1

P
2

(b) Two cases of the start point
identification.

Fig. 3: Example of possible false positive

these middle points and takes the minimum distance as the
waiting queue length of the car, denoted by dis.

IV. THE DESIGN OF ROADAWARE

In this section, we introduce how RoadAware collects
information to deduce the information listed in Section II.

A. Measuring the Travel Time and Distance

To calculate the travel time and distance of each road
segment, RoadAware needs to determine the start point for
each segment. As shown in Figure 3(a), RoadAware identifies
the sampling point once a vehicle passes traffic light Li as the
start point of road segment Si+1, denoted by SPi.

A car’s distance to a traffic light usually keeps decreasing
before it passes the light and keeps increasing after it passes
the light. Accordingly, if two sampling points exhibit increas-
ing distance to traffic light Li, the latter one is identified as
Li’s start point SPi. However, this method may generate false
positives for certain curved roads, as shown in Figure 3(b), in
which even when D(Li, P2) > D(Li, P1), the car has not
passed the traffic light. Note D(Li, Pj) denotes the distance
between Pj and Li, which is measured as the distance between
Pj and the middle point of Li’s stop bar.

We add an additional requirement that a SPi’s distance to
Li must be less than a predefined threshold (denoted by THp

meters) considering the road close to a traffic light usually is
straight. In our real-world test, we set THp to 80, which leads
to a 100% accuracy on start point detection in our road test.
Then, RoadAware uses the baseline technique introduced in
Section III-B to obtain the travel distance and time between
consecutive start points. RoadAware obtains one set of travel
time and distance of each route segment each day, and provides
the user the average values for reference.

B. Modeling the Waiting Queue at a Traffic Light

When a car stops at a traffic light, we define a car’s wait
time as the time the car stops in the waiting queue. We define
a car’s waiting queue length as the length of the queue in front
of the car. We model the relationship between the wait time
and the waiting queue length, which is related to the duration
of red light signal and traffic volume, in this section.

This model assumes that after stopping at the traffic light,
the car can leave the traffic light in the next green light.
Sections IV-C1 and IV-C2 introduce how to utilize this model
to deduce the durations of red/green signals in this case.
Section IV-C3 introduces how to deduce such information for
traffic lights that do not satisfy such an assumption.
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Fig. 4: Modeling of the process when a car stops at traffic light Li.

1) General Model for One Waiting Queue: For a waiting
queue at light Li, we use λia and λid to denote the rate that
cars enter and leave the queue respectively. Specifically, λia
denotes the number of cars that stop at light Li per second
from the moment when it turns red, and λid denotes the
number of cars that leave the waiting queue per second from
the moment when Li turns green. We measured λid at our local
traffic lights and found it is around 0.9 per second. As shown
in Figure 4(a), we let tirs be the start time of the red light
signal that creates a waiting queue of cars, tia and tid be the
time that a car stops and starts to move in the waiting queue,
respectively, Tirp be the length of elapsed red light signal when
the car stops in the queue, and Tiw be the car’s wait time in
the queue. Thus, Tirp = tia − tirs and Tiw = tid − tia.

We also use Niw to denote the number of cars waiting in
front of the testing car, denoted car C, in the queue. Then,
Niw/λid is the total time for these cars to start to move when
the light turns to green. The remaining duration of the red
light when car C stops in the queue equals Yir − Tirp. As a
result, the wait time of car C at Li can be calculated as:

Tiw = Yir − Tirp +Niw/λid. (1)
Niw also means the number of cars that stops in the waiting

queue before car C during Tirp. Therefore, Niw = Tirp ∗λia.
Then, Equation (1) is transformed to

Tiw = Yir − Tirp + Tirp ∗ λia/λid
= Yir + Tirp ∗ (λia/λid − 1). (2)

On the other hand, Niw can also be deduced by the length
of the cars in front of the car: Niw = dis/r̄, where dis is the
length of the waiting queue in front of the car and r̄ denotes
average length of a car. dis can be calculated by the baseline
technique introduced in Section III-D. Then, we have

Tirp = Niw/λia = dis/λiar̄ = dis/λiar̄ (3)

Combining Equations (2) and (3), we have

Tiw = Yir + dis ∗ κi (4)
where

κi = µi/βi =
λia − λid
λiaλidr̄

. (5)

Equation (4) describes the relationship between the wait
time (Tiw) and the length of the waiting queue in front of the
car (dis). Since the rate cars start to move usually is faster than
the rate cars stop in a waiting queue (λid > λia), κi usually
is less than 0. Then, Tiw has a reserve relationship with dis,
as shown in Figure 4(b).

Proposition 1. Generally, the wait time is reversely related
to the waiting queue length; drivers have a short wait time in
the queue when the waiting queue is long, and vice versa.

2) Measuring Model Parameters: The parameters in the
model (i.e, Equation (4)) include Tiw, dis, λia, λid, r̄ and Yir.
RoadAware measures the period of time between car stopping
and starting to move as Tiw. RoadAware also uses the method
introduced in Sections III-D to accurately measure a car’s
waiting queue length (dis). For one stopping at a traffic light,
RoadAware can collect a pair of (Tiw, dis) dataset.

Intuitively, λia is determined by the traffic volume. In
contrast, λid is not affected by the traffic volume. When a
light turns green, the cars in the light’s waiting queue leave
sequentially. Once the first car sees the green light, it starts to
move, and then once the succeeding car sees that its preceding
car starts to move, it starts to move. Without loss of generality,
we assume that each car takes approximately the same time to
move after it sees the green light or the moving of its preceding
car. This means that the rates that cars start to move in different
queues can be considered as the same. Thus, λid can be pre-
determined. The average length of a car (r̄) can also be pre-
determined. A study shows that r̄ is about 4.12 meters [17].
Considering there are spaces between cars in a queue, we use
4.12+c meters as r̄, where c is the length of the estimated
average space between stopped cars.

Therefore, only the duration of red light (Yir) and the rate
cars stop in the waiting queue (λia) are unknown in the model
(Equation (4)). Then, based on Equation (4), given multiple
pairs of measured (Tiw, dis), we can calculate Yir and λia.

3) A Challenge of Using the Model: We refer to the (Tiw,
dis) pairs of multiple cars in a given waiting queue at a traffic
light as spatial sample, and refer to the (Tiw, dis) pairs of a
given car at a traffic light at different days (queues) as temporal
sample. Since RoadAware aims to derive road information
only from the daily driving records of an individual driver,
it can only collect temporal samples.

However, though we assume the traffic status remains stable
daily on commuting route, λia may vary when the car passes
Li. As a result, given a set of temporal sample (Tiw, dis)
determined by different λia, how to deduce Yir and λia?
Below, we introduce a method to deal with this challenge.

C. Deducing the Duration of Red/Green Light Signals

In this section, we first introduce how to deduce red/green
signal durations when the assumption in the proposed model
is satisfied in Sections IV-C1 and IV-C2 and then present how
to deduce these information when the assumption cannot be
satisfied in Section IV-C3.

1) Deducing the Duration of Red Light Signal: If the queue
entering rate λia remains stable for a given car each day,
based on Equation (4), we can derive Yir and κi (determined
by λia) given two measured datasets (i.e., (dis1, Tiw1) and
(dis2, Tiw2)) by solving the equations below:{

Tiw1 = Yir + dis1 ∗ κi;
Tiw2 = Yir + dis2 ∗ κi.

(6)

However, as previously discussed, the queue entering rate
λia is not the same for a given car each day. The temporal
samples collected by RoadAware actually include datasets
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Fig. 5: Grouping measured datasets and deducing the length of red light signal.

caused by different λia values. To resolve above issue, we
examine Equation (4) and Figure 4(b) and find that the
waiting queue of a dataset (Tiw, dis) is represented by the
line connecting point (0, Yir) and (dis, Tiw) with slope κi,
which is decided by the λia. This means that the waiting
queues experienced by a given car can be represented by lines
originating from (0, Yir) with different slopes.

To verify this observation, in our real-world test, we mea-
sured Yir and 10 pairs of (dis, Tiw) at a traffic light, which are
plotted in Figure 5(a). We connected point (0, Yir) with each
(dis, Tiw) (blue line) to observe its slope determined by λia.
We find that based on the slope, the lines (representing waiting
queues) can be categorized into three groups (approximation
lines in red), i.e., lines in each group have very close slope.
This means that queues represented by lines in each group
have similar λia. Our measured datasets from other traffic
lights in the road test also present such a grouping pattern,
which is not presented due to page limit.

Therefore, once we can identify one approximation line, we
can derive a Yir. However, we aim to identify all approxima-
tion lines and use the average of identified Yir values as the
final result to increase the accuracy. We first introduce how to
identify one approximation line to infer Yir and then discuss
how to find all approximation lines.

Approximation line identification: We adopt a heuristic
method to find (dis, Tiw) datasets with similar car stopping
rates (λia). It is based on the fact that when the lines
connecting (0, Yir) and each of a set of points have similar
slopes, these points are generally on the line connecting the
most left-up point and the most right-bottom point. As shown
in Figure 5(a), each group can also be represented by the line
connecting the most top-left point and the most bottom-right
point in the group. We can identify this approximation line to
infer Yir. Specifically, among all (dis, Tiw) datasets, we call
the most top-left dataset as head and the most bottom-right
dataset as tail. That is, the head is the dataset that has the
longest wait time (Tiw) and shortest queue length dis, and the
tail is the dataset that has the shortest wait time (Tiw) and
longest queue length dis. RoadAware first identifies the head
and tail from collected (dis, Tiw) datasets and then finds all
data sets around the line connecting the head and tail.

Dataset (disj , Tiwj
) is regarded as around the head-tail line

if it satisfies |Tiwj
− f(disj )|/f(disj ) < THc, where 0 <

THc < 0.5 is a threshold for the closeness and f(·) is the
function for the head-tail line. Finally, these identified datasets
together with the head and tail form a group of datasets with

similar λia. Figure 5(b) demonstrates the selected head and tail
as well as the identified datasets inside the circle in Figure 5(a).

Linear regression: We then use linear regression to in-
fer Yir. Suppose the selected datasets include (Tiw1, dis1),
(Tiw2, dis2), · · · , (Tiwn, disn), we calculate κi and Yir by

κi =

∑n
k=1(disk − dis)(Tiwk − Tiw)

n∑
k=1

(disk − dis)2
(7)

and Yir = Tiw − κidis (8)

where Tiw and dis represent the average values of Tiw and
dis, respectively. The dotted red line in Figure 5(b) shows an
example of the result of the linear regression.

Recursive approximation line identification: To increase
the accuracy, RoadAware continues to identify remaining
approximation lines and calculate corresponding Yir and κi
pairs. However, lines with fewer than 4 dots are not included
in the result since it can easily have a large error. Finally, the
average of the all resulted Yir is considered as the final value.
We will see in Section V-B that such a process can improves
the deduction accuracy.

2) Deducing the Duration of Green Light Signal: Since
cars pass through green traffic lights without stopping, it is
difficult to obtain data related to the duration of green signal
directly. We propose a heuristic method for this purpose.

When a car stops at a traffic light Li, the duration of this
light’s subsequent green light signal should be longer than
the time the car uses to pass it. We name this time period
as the red-green passing time period, denoted by Tirgp. After
stopping at a red light, a car usually passes the light after
it turns to green and before it turns to red again. That is,
Tirgp ≤ Yig , where Yig is the green light duration of Li.
Yig can also be estimated using another method. It is

reasonable to assume that the car arrives at each traffic light
randomly. Therefore, the ratio of the number of encountered
red signals (denoted Nr) to the number of encountered green
signals (denoted Ng) equals the ratio of the length of red
signal to that of green signal. Then, for traffic light Li,
Yig = Yir ∗Ng/Nr. As a result, given Yir calculated using the
method introduced in Section IV-C1, we can derive Yig .

RoadAware uses both methods to calculate Yig and consid-
ers the maximum as the final result. That is:

Yig = max{max{Tigrp}, Yir ∗Ng/Nr}. (9)

3) Traffic Signal Duration at Heavy Intersections: At
heavy intersections, a car may not be able to pass the traffic
light in one green light, which makes the proposed model
infeasible. However, we can obtain the traffic signal duration
easier in this case since the car can experience at least one full
red light and one full green light in front of the traffic light.
In each green light before the car passes through the traffic
light, the car moves forward and stops at a new position. The
decrease on the waiting queue length during this process can
deduce how many cars leave the traffic light during the green
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Fig. 6: User interface of RoadAware. In the main interface (Figure 6(a)), users can click the box showing route name to select route, and press corresponding
buttons to view, create, and save road information. When users are ready to go, they just need to press the “Start” button, which would lead the user to the
information panel, shown in Figure 6(b). The information panel shows related road information and real-time location (i.e., orange point in the map).

light, denoted Ngl. Then, the green light length is calculated
as Ngl divided by the car leaving rate, i.e., λid.

After stopping at the new position, the car has to wait for
a full red light plus the time needed for cars in front of it
to leave the traffic light when the second green light comes.
Then, the red light length can be approximately represented
as this period of time minus the time for the cars in front of
it to leave the traffic light, i.e., Ngl/λid.

If the car experiences multiple green/red signals, above
process repeats for each green/red signal. Then, the final result
is the average of these deduced red/green signal durations.

D. Deducing Traffic Volume
For the traffic light that satisfies the model in Section IV-B,

we can regard λia as the traffic volume. We first simply
follow Equation (7) and Equation (5) to calculate λia for each
identified approximation line. As previously mentioned, λid is
around 0.9 at our local traffic lights. However, each deduced
λia only represents the car arriving rate at the moment when
the car arrives at the traffic light, which may vary in different
cases. For example, the traffic volumes on different lanes are
slightly different, i.e., left lanes usually are faster. Then, we
average the deduced multiple λia to represent the average car
arriving rate.

For the traffic light that does not satisfy the model in
Section IV-B, the car arriving rate is larger than or equal to
the car leaving rate λid. Generally, the larger that car arriving
rate, the more time a car needs to pass through the traffic light.
Therefore we can regard the λia = Fv ∗ λid, where Fv is a
factor to reflect how long a car needs to wait before passing
through the traffic light. Fv can be obtained from empirical
measurement and is left to future work.

Finally, the overall traffic can be calculated as the average
single-lane traffic volume times the number of lanes.

E. Operation Procedure
RoadAware thus collects data through multiple trips. When

a car is moving, RoadAware samples a series of positions to
measure the travel distance and time between traffic lights
(Section IV-A). When a car stops at Li, RoadAware can detect
this stop (Section III-C). It then collects a new dataset (dis and
Tiw). After it collects sufficient data from multiple trips, it pro-
cesses the data in the following the procedure in Sections IV-C

and IV-D to calculate the durations of red/green signal and
traffic volume. Consequently, RoadAware can provide the
road information listed in Section II. RoadAware continues
collecting data during trips and updating road information.

F. Implementation and User Interface

We implemented RoadAware on Windows phones. Fig-
ure 6(a) and Figure 6(b) demonstrate the main interface and
the road information panel when the car is on the road, re-
spectively. To use RoadAware, the user first creates their daily
routes through the “Create Route” interface. In this process,
the user enters the route name and the traffic light sequence
number and their GPS coordinate vectors. This information
can be obtained off-line. When the user is ready to move,
(s)he just needs to choose a route and press “Start”. Then,
the application switches to the information panel interface in
Figure 6(b). On this interface, users are informed of real-
time road information, such as the location, speed, traffic
volume, travel distance and time since the last traffic light, and
remaining distance to the next traffic light. After each trip, the
user can view more detailed road information in the “View
Route” interface such as the length of each waiting queue dis
and the distance and travel time of each route segment.

V. PERFORMANCE EVALUATION

We implemented RoadAware on Windows phones, i.e.,
HTC Surround and LG QUANTUM. We conducted exper-
iments with a KIA 2005 Optima on three routes, namely
Home2Campus (H2C), Campus2Home (C2H), and LongRoute
(LRt). The first two routes represent the round trip between
campus and one author’s home. The third route (LongRoute)
is the route from a local gas station to campus. In both figures,
the white circles at the ends of the blue routes represent the
starting point or ending point of the route, and all other white
circles denote the locations of traffic lights. There are 5 traffic
lights in routes Home2Campus and Campus2Home, and 6 traf-
fic lights in route LongRoute. In our evaluation, the testing car
can pass all traffic lights in the next green signal, which means
these traffic lights suit for the model proposed in Section IV-B.
The lengths of routes Home2Campus, Campus2Home, and
LongRoute are about 1900 meters, 1900 meters, and 4900
meters, respectively, which are obtained through Google map.



These routes represent diverse road conditions and traffic
light types. They include busy roads (e.g., the first part
of LongRoute is on a major local highway) and relatively
small roads (e.g., Home2Campus and Campus2Home). They
include traffic lights with fixed signaling (i.e., the third in
Home2Campus and the fourth in Campus2Home) and adaptive
signaling (i.e., all other traffic lights). They include traffic
lights on major intersections with both directions having high
traffic volume (e.g., the second in Home2Campus and the fifth
in Campus2Home) and traffic lights having major traffic in
one direction (e.g., the third in Home2Campus and the fourth
one in Campus2Home). Therefore, the experiments show the
adaptability of RoadAware on different road conditions.

To simulate the scenario that people do not always commute
to or back from work at exactly the same time but roughly the
same period of time each day, we ran RoadAware during rush
hours 2 to 4 times on each route. Unless otherwise specified,
we ran RoadAware on routes Home2Campus, Campus2Home,
and LongRoute from 7:30AM to 8:10AM, 4:30PM to 5:10PM,
and 5:20PM to 6:00PM, respectively, on each day for 5
consecutive working days. A summary of the experiment
settings is shown in Table II.

TABLE II: Experiment settings.

Route # of traffic
light Length (m) Test period

H2C 5 1900 7:30AM - 8:10AM
C2H 5 1900 4:30PM - 5:10PM
LRt 6 4900 5:20PM - 6:00PM

We measured the actual durations of red and green light
signals of each traffic light with adaptive signaling for several
times during the test period each day. We found that they
do not change much. Therefore, we use the average of these
measurements to check the accuracy of RoadAware. Similarly,
the actual traffic volume for each traffic light is calculated as
the average number of cars in a waiting queue.

A. Verifying the General Model

We first validate the model (Equation 4) proposed in Sec-
tion IV-B1 that depicts the relationship between wait time and
distance to a traffic light. For more accurate model validation,
we created spatial sample of a waiting queue at a traffic light
to deduce Yir and λia based on the model. For each car in
a waiting queue, we measured its actual wait time (Tiw) and
the length of the queue in front of it (dis). Then, we use that
data to directly deduce the duration of red light signal and the
traffic volume based on Equations (7) and (8).

We selected two traffic lights for test: the second traffic
light in route LongRoute, named LRt L2, and the fourth
traffic light in route Home2Campus, named H2C L4. We
measured the data for 5 consecutive red light signals during
9:30AM-10:00AM for LRt L2 and during 7:40AM-8:10AM
for H2C L4, respectively. The deduced data of the two traffic
lights are compared with the actual data, as shown in Table III.

We see from the table that the deduced values are very close
to their actual values, which demonstrates the correctness of
our established model.

TABLE III: Results on verifying the general model.
Traffic light Red light duration (Yir) λia

LRt L2
Deduced 86.7 0.073
Actual 84.3 0.077

H2C L4
Deduced 38.2 0.116
Actual 40 0.124
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(a) L1 in Home2Campus.
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(b) L2 in Campus2Home.
Fig. 7: Effect of approximation line identification.

B. Verifying Approximation Line Identification

We evaluate the effectiveness of approximation line iden-
tification in this section. We compare the results of linear
regression with and without the approximation line identifi-
cation of each traffic light. We found that the regular linear
regression without data selection has very poor performance
with significant deviations from actual values. Due to page
limit, we only present the comparison results for two traffic
lights, as shown in Figure 7(a) and Figure 7(b).

We see that 1) there are indeed datasets that have different
car stopping rates (λia), and 2) when all datasets are fed into
the linear regression directly, it leads to inaccurate deduction,
as the two labeled lines differ from each other significantly.
Such results demonstrate the necessity of approximation line
identification and its effectiveness in handling the challenge
of using measured parameters in the general model.

C. Road Information

In this section, we evaluate the correctness and accuracy of
the road information provided by RoadAware.

1) Travel Distance and Time: Table IV and Table V show
the average of the deduced travel distances and travel times
between traffic lights of the three routes. Each row in the
table presents the averaged travel distance and time from the
previous traffic light to the current traffic light or ending point.

In Table IV, we find that for each route, the sum of the travel
distances is very close to the actual value measured by Google
Maps. This result demonstrates the accuracy of the baseline
method introduced in Section III-B. With such data, users can
understand their trips and predict the time needed to travel
each route segment, which helps reduce frustration caused by
waiting at traffic lights by adjusting people’s expectations.

2) The Duration of Red/Green Light: Figures 8(a), 8(b),
and 8(c) present the deduced value and actual duration of
red light of each traffic light in routes Home2Campus, Cam-
pus2Home, and LongRoute, respectively. We see from the three
figures that the deduced red light durations for almost all traffic
lights are very close to their actual values. In LongRoute,
RoadAware failed to deduce L3’s red light duration since L3

turns red only occasionally. These experimental results further
verify the correctness of the model proposed in Section IV-B1
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Fig. 8: The duration of red lights on the three routes.
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Fig. 9: The duration of green lights on the three routes.

TABLE IV: Travel distance of each route segment (m).
Traffic light H2C C2H LRt

L1 181.6 106.7 767.8
L2 226.6 245.4 600.6
L3 523.6 270.3 1299.7
L4 325 311.2 726.3
L5 271.5 521.2 897.3
L6 350.4 416.6 436.3
L7 - - 195.7

Total 1878.7 1871.4 4923.7
Actual Total 1900 1900 4900

TABLE V: Travel time of each route segment (s).

Traffic light H2C C2H LRt
L1 29.1 66.5 110.1
L2 49.9 72.7 66.2
L3 39.8 37.1 89.9
L4 39.3 24.3 50.7
L5 91.1 67.9 67.9
L6 28.7 35.8 42.5
L7 - - 23.5

Total 277.9 304.3 450.8

and the effectiveness of RoadAware in providing red light
duration data on individuals’ daily routes.

Figures 9(a), 9(b), and 9(c) present the deduced green
light durations of each traffic light in route Home2-Campus,
Campus2Home, and LongRoute, respectively. We see that the
accuracy of the deduced green light duration lies in the range
of [70%, 90%]. This is because we only use a heuristic model
to deduce the duration of green light. Though not as high as
that of the deduced red light duration, such an accuracy rate
is satisfying since it reflects the rough durations. Additionally,
drivers are usually less sensitive to the duration of green lights
than to the duration of red lights, as green lights require
no waiting. Therefore, the deduced green light duration with
slightly lower accuracy is still helpful to them.

We also see that RoadAware failed to deduce the green
light duration for L3 in route Home2Campus, L4 in route
Campus2Home, and L3 in route LongRoute. These failures
are caused by the same reason as explained previously.

3) Traffic Volume: Tables VI, VII, and VIII compare the
traffic volumes at each traffic light deduced by RoadAware to
their actual values measured by us. We used the rate that cars
stop at the waiting queue as the traffic volume in RoadAware.
Then, for the purpose of comparison, we calculated the mea-
sured traffic volume as the average number of cars stopped at
a red light divided by the duration of the red light. We see
from the three tables that RoadAware can accurately deduce
the traffic volumes at most traffic lights. Even with some
deviations (i.e., L4 in route Home2Campus and L1 and L2

in route LongRoute), the deduced traffic volumes still reflect
the degrees of traffic volumes in different road segments.

TABLE VI: Traffic volume at each Li in Home2Campus.
L1 L2 L3 L4 L5

RoadAware 0.090 0.067 0.131 0.234 0.130
Actual Value 0.102 0.072 0.140 0.232 0.119

TABLE VII: Traffic volume at each Li in Campus2Home.
L1 L2 L3 L4 L5

RoadAware 0.068 0.218 0.243 0.244 0.116
Actual Value 0.059 0.245 0.233 0.252 0.103

TABLE VIII: Traffic volume at each Li in LongRoute.
L1 L2 L3 L4 L5 L6

RoadAware 0.22 0.22 - 0.12 0.14 0.12
Actual Value 0.25 0.23 0.13 0.13 0.13 0.15

4) Summary: In summary, this one-week experiment
(around 13 runs) on three test routes demonstrates that Road-
Aware is able to successfully deduce three sets of road
information indicated in Section II. While the accuracy of



green light duration and traffic volume is slightly low, the
trends and differences among different traffic lights or road
segments are clearly reflected. These results prove the ability
of RoadAware in an individual’s smartphone to effectively
deduce information on the user’s daily route without requiring
infrastructure or collaboration from other users.

VI. RELATED WORK

Recent research has proposed using moving vehicles
equipped with sensors (including smartphones) as probing
nodes for various sensing applications [2]–[7], [9], [18]–[20].
Hoh et al. [18] used virtual trip lines to preserve the privacy of
probing vehicles. VTrack [3] combines WiFi signals and the
GPS data to save energy during delay sensing. Nericell [2]
utilizes multiple sensors on smartphones (i.e., accelerometer,
microphone, GSM radio, and GPS) to sense rich on-road
information such as potholes, bumps, braking, and honking.
SignalGuru [8] is a GLOSA system. It utilizes cameras to
detect the transition of traffic signals and disseminates the
information to other vehicles in order to provide speed sug-
gestions and avoid red lights. POVA uses reported vehicle
positions and speeds to decide traffic light status (i.e., red
or green) in urban areas. SEER [4] uses taxi sensory data
sensed by the GPS, which tends to be noisy and lossy, to
infer the traffic conditions at any site in Shanghai. The work
in [5] also utilizes probing vehicles for urban traffic sensing.
It uses compressive sensing to infer hidden structures in
sensory traffic data and solves the problem of data vacancies
caused by limited number of probing vehicles and uneven
distributions of cars. In ParkNet [19], the authors deployed
a GPS and an ultrasonic rangefinder on a vehicle to detect
available roadside parking spaces. Eriksson et al. [7] utilized
vibration and GPS sensors to detect potholes and other severe
road surface anomalies though probing vehicles. GreenGPS [6]
uses fuel consumption sensors to detect the fuel consumption
status of cars on different roads, which is further utilized to
guide drivers and reduce fuel consumption. CityDrive [20]
uses information collected from vehicles to deduce red/green
light length and provide speed suggestions to drivers.

RoadAware is motivated by several previous works [8], [9].
However, unlike these applications, RoadAware aims to collect
road information for individual drivers during their daily
commutes in an infrastructure-less and independent manner.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose RoadAware, an infrastructure-
less and independent system built on a user’s smartphone to
provide personalized road information on his/her daily route
to and from work. RoadAware uses the GPS and clock on the
smartphone to record the information on position and time
when the car is moving or stopped at traffic lights. Based
on such information, RoadAware can deduce the durations of
red and green light signals and traffic volumes on the road
using our established model. We implemented RoadAware on
Windows phones. Extensive real-world experiments demon-
strate the effectiveness and accuracy of RoadAware. Also, the

core function of RoadAware only requires a GPS and a clock,
enabling RoadAware to be easily ported to other GPS-enabled
devices and adopted by the general public.

RoadAware can help individual drivers to better understand
their daily routes and adjust their trip expectations. It can
also benefit the GLOSA system, distributed traffic monitoring
and traffic signal optimization. These promising potential
applications will be the focus of our future work.
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