RoadAware: Learning Personalized Road Information on Daily Routes with Smartphones*

Kang Chen¹ and Haiying Shen² ¹Dept. of ECE, Southern Illinois University, IL, USA ²Dept. of ECE, Clemson University, SC, USA

* Work was done when at Clemson

Outline

- Introduction
- System Design
- Performance Evaluation
- Conclusion

- Automobile is common in modern society
 - Boosting social and economical development
 - Meanwhile raising problems: traffic delay & safety
 - Americans spend over 100 hours a year on commuting cars
- Road and traffic monitoring is necessary
 - Provide traffic information for better management
 - Dedicated sensor networks can serve this purpose but are expensive

- Vehicles are natural data source for road and traffic condition
 - Large amount of distributed "sensing nodes"
 - Offer first hand data at a low cost
- Vehicles are not yet ready for this purpose
 - Cars are relatively "closed" nowadays
 - Lacking interfaces to report collected data
 - Limited amount of sensors

- Smart phones can be a suitable sensing tool on vehicles
 - Wide availability
 - Around 2 billion smart phone users now
 - Rich sensing & computing capability on smart phones
 - GHz level CPUs
 - Various sensors: GPS/Microphone/Accelerometer
 - Open environment for application development

- Rich investigation in this direction
 - Traffic light sensing (Infocom'12)
 - Traffic signal scheduling advisory (MobiSys'11)
 - Traffic delay estimation (SenSys'09)
 - Road & traffic condition monitoring (SenSys'08)
 - Etc.
- Most of current works are for overall road status
 - Few are for individual drivers to collect information on commute roads

- Propose RoadAware for individual road information collection
 - Exploit smartphones carried by drivers
 - Collect and deduce some data on commuting roads
 - Travel distance and time between traffic lights
 - Average duration of red/green lights
 - Traffic volume on the roads between traffic lights
- Exclude road information during events such as football games and holidays because
 - 1) RoadAware aims to provide benchmark data during normal daily commute
 - 2) people are more sensitive to working day traffic status

Outline

- Introduction
- System Design
- Performance Evaluation
- Conclusion

System Design : Route Model

- Route *R*
 - A set of traffic lights (L) and road segments (S) in sequence

- A_0 is the start point and E_{m+1} is the ending point
- There are total m traffic lights, whose GPS positions are already known
- Only consider two traffic light statuses: red (yellow)/stop and green/pass

System Design : Measurement

- Measurement unit
 - Each segment and the traffic light at its end, e.g., S_1 and L_1

- Collect data daily to deduce information of each unit
 - Average travel length and time
 - Average traffic volume
 - Average length of the red/green signal

System Design : Measurement

- Trip Length & Time
 - Rely on periodically reading GPS data

 $D(P_j, P_{j+1}) = (t_{j+1} - t_j)(v_{j+1} + v_j)/2$

- $(t_{j+1}-t_j)$ means the amount of time between two GPS readings
- $(v_{j+1}+v_j)/2$ means the average speed during this period of time
- More accurate than calculating the distance directly with two GPS positions

- Traffic signal information
 - A car cannot get such information directly (does not always stay before the traffic light)
 - Observation:
 - A car's **waiting time** in front of a traffic light is related to the **traffic rate** and the **length** of red light
 - Solution:
 - Modeling the waiting queue before a traffic light
 - Combining daily collected waiting time and queue length information and use the model to deduce traffic signal information

- Waiting queue modeling
 - λ_{ia} and λ_{id} denote the rate that cars enter and leave the queue, respectively
 - The traffic light turns to red at t_{irs}
 - A car stops at t_{ia} and starts to move at t_{id}
 - When it stops, the red light has elapsed for $T_{irp} = t_{ia} t_{irs}$
 - The waiting time in the queue is $T_{iw} = t_{id} t_{ia}$
 - Y_{ir} : the length of the red light

Waiting queue modeling

$$T_{iw} = Y_{ir} - T_{irp} + T_{irp} * \lambda_{ia} / \lambda_{id}$$

= $Y_{ir} + T_{irp} * (\frac{\lambda_{ia}}{\lambda_{id}} - 1)$

- Waiting queue modeling
 - First, we have

$$T_{iw} = Y_{ir} - T_{irp} + T_{irp} * \lambda_{ia} / \lambda_{id}$$
$$= Y_{ir} + T_{irp} * (\frac{\lambda_{ia}}{\lambda_{id}} - 1)$$

- Y_{ir} : the length of the red light
- $Y_{ir} T_{irp}$: the remaining amount of time of the red light
- $T_{irp} * \lambda_{ia} / \lambda_{id}$: the time used by cars before the sensing car to leave the queue

- Waiting queue modeling
 - On the other hand:

$$T_{irp} = (d_{is}/\bar{r})/\lambda_{ia}$$

- d_{is} : the length of the queue in front of the red light
- \bar{r} : average length of a car
- d_{is}/\bar{r} : the number of cars in front of the sensing car in the waiting queue
- $(d_{is}/\bar{r})/\lambda_{ia}$: the amount of time used by those cars to enter the waiting queue

- Waiting queue modeling
 - Combine the above two equations, we have

where

$$T_{iw} = Y_{ir} + d_{is} * \kappa_i$$

$$\kappa_i = \frac{\lambda_{ia} - \lambda_{id}}{\lambda_{ia}\lambda_{id}\bar{r}}$$

• κ_i usually is negative as cars leave the queue quicker than entering it

- Deduce traffic light information
 - Collect multiple pairs of waiting time (T_{iw}) and the distance to the traffic light when stopped (d_{is}) over multiple days
 - Apply to the equation

where

$$T_{iw} = Y_{ir} + d_{is} * \kappa_i$$

$$\kappa_i = \frac{\lambda_{ia} - \lambda_{id}}{\lambda_{ia}\lambda_{id}\bar{r}}$$

- Obtain red light length (Y_{ir}) and traffic volume (λ_{ia})
- Use linear regression to enhance accuracy

- Deduce traffic light information
 - Use the probability to meet green light and red light to deduce the length of green light

$$Y_{ig} = Y_{ir} * N_g / N_r$$

where N_g is number of green lights the car has met and N_r is the number of red lights

• Require accumulating data over a longer period of time to get good accuracy

Evaluation

• Toy implementation on Windows phones

(a) Main interface.

(b) Information panel when the vehicle is on road.

Evaluation

- Toy implementation on Windows phones
- Tested over three routes
 - Home2Campus(H2C), Campus2Home(C2H), and LongRoute(LRt)

Route	# of traffic light	Length (m)	Test period
H2C	5	1900	7:30AM - 8:10AM
C2H	5	1900	4:30PM - 5:10PM
LRt	6	4900	5:20PM - 6:00PM

TABLE II: Experiment settings.

Evaluation : Travel Length & Time

TABLE IV: '	Travel	distance	of each	1 route	segment	(m)).
-------------	--------	----------	---------	---------	---------	-----	----

Traffic light	H2C	C2H	LRt
L_1	181.6	106.7	767.8
L_2	226.6	245.4	600.6
L_3	523.6	270.3	1299.7
L_4	325	311.2	726.3
L_5	271.5	521.2	897.3
L_6	350.4	416.6	436.3
L_7	-	-	195.7
Total	1878.7	1871.4	4923.7
Actual Total	1900	1900	4900

TABLE V: Travel time of each route segment (s).

Traffic light	H2C	C2H	LRt
L_1	29.1	66.5	110.1
L_2	49.9	72.7	66.2
L_3	39.8	37.1	89.9
L_4	39.3	24.3	50.7
L_5	91.1	67.9	67.9
L_6	28.7	35.8	42.5
L_7	-	-	23.5
Total	277.9	304.3	450.8

The travel distance match with the ground truth well (the ground truth is from Google map)

Evaluation : Red Light Length

Fig. 8: The duration of red lights on the three routes.

The deduced value is close to actual value measured manually

L6

Evaluation : Traffic Volume

TABLE VI: Traffic volume at each L_i in *Home2Campus*.

	L_1	L_2	L_3	L_4	L_5
RoadAware	0.090	0.067	0.131	0.234	0.130
Actual Value	0.102	0.072	0.140	0.232	0.119

TABLE VII: Traffic volume at each L_i in Campus2Home.

	L_1	L_2	L_3	L_4	L_5
RoadAware	0.068	0.218	0.243	0.244	0.116
Actual Value	0.059	0.245	0.233	0.252	0.103

TABLE VIII: Traffic volume at each L_i in LongRoute.

	L_1	L_2	L_3	L_4	L_5	L_6
RoadAware	0.22	0.22	-	0.12	0.14	0.12
Actual Value	0.25	0.23	0.13	0.13	0.13	0.15

The deduced traffic volume is also close to manually counted data

Conclusion

- Exploit smartphones to record and deduce the traffic and trip information on commuting routes for a driver
- Solution:
 - Model a car's waiting time in front of a traffic light with the traffic rate and the length of red light
 - Use GPS to collect data and deduce more information
- Future work:
 - Large scale experiment and evaluation
 - Integrate data from multiple drivers for more useful applications

Thank you! Questions & Comments?