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Abstract—Carpool commuting enables multiple individual
travelers with similar schedules and itineraries to share a
common vehicle during a trip, and travelers can split travel
costs in gas, parking and tolls with each other. It emerges
as an effective way to solve traffic congestion, parking space
tension and air pollution resulting from vehicle emissions.
One of the challenges that restrict widespread adoption of
carpool commuting lies in matching carpoolers. Existing car-
pooler matching methods include building carpool lanes in
main airports and bus stops, using centralized servers to
identify carpoolers based on historical travel data or real time
travel requests. However, these methods cannot be applied
to large scale adoption or incur long matching latency. To
overcome drawbacks of existing methods, we propose VShare,
a dynamic carpool system that leverages the wireless social
network characteristic and hierarchical cloud server architec-
ture. VShare incorporates two design components: matching
through the wireless social network and a hierarchical cloud
server structure. Upon receiving a user travel request, VShare
first identifies possible carpoolers from neighbors in nearby
locations, which reduces latency of sending travel requests to
remote servers. If no carpool is found within nearby locations,
a hierarchical cloud server architecture is used to match the
travel requests. We have implemented the design of VShare
and conducted trace-driven experiments. Experimental results
show the effectiveness of VShare in substantially reducing
matching latency while providing high success rate in matching
carpollers.

Keywords-Wireless social networks; Car sharing; Carpool
commuting; Cloud servers

I. INTRODUCTION

With rapid development of automobile industry, traffic
congestion and air pollution resulting from automobile ex-
haust now become two of the greatest challenges in in-
creasingly crowded urban areas all over the world. Carpool
commuting (also known as carsharing and ridesharing),
enables multiple passengers to share a single vehicle, which
saves travelers’ costs in fuel, parking and tolls and be-
comes an effective way to mitigate traffic congestion and
pressure in parking spaces. Recently, companies like Uber
[1] and Lyft [2] offer cheap peer-to-peer taxi services, in
which a driver shares rides with other passengers mainly
for the purpose of earning taxi fare. Carpooling is getting
popularity and it represents 10% of all commute trips in

the United States in 2009 [3]. However, instead of sharing
vehicles with nearby travelers who are heading to the same
destination, the majority (over 60%) of carpoolers commute
with family members [4]. Various policies can be enforced
by the government to encourage travelers to participate in
carpooling, such as reducing the toll fares and parking fees
for carpoolers and deploying high occupancy vehicle (HOV)
lanes. For example, a vehicle carrying at least one passenger
is able to gain access to HOV lanes or reduced tolls, which
can motivate travelers with similar itineraries to share a com-
mon vehicle. Besides prompting carpooling by endowing
travels with particular benefits, we also need mediums where
travelers are easy to identify potential carpoolers who have
similar travel schedules.

One of the most straightforward ways to match carpoolers
is building carpool lanes in airports and bus stops [5]–[7],
where passengers meet each other without specific prior ar-
rangements and share taxis based on mutual agreement. For
example, a number of carpool lanes are built at designated
locations in the Washington DC area and East Bay of San
Francisco [5], [6], where travelers wait in queues and make
up informal carpools spontaneously on a first-come-first-
service basis. Applications are also developed to facilitate
carpool matching at designated locations. Bandwagon [7] is
an practical application of rideshare car service, which helps
travelers in long taxi lines at LaGuardia Airport to share
taxis. However, matching travelers in carpool lanes at des-
ignated locations is defective as travelers identify carpoolers
only when they are waiting in taxi lines, and the locations
need to have a large volume of travelers in order to provide
acceptable matching rate. Travelers are more likely to find
carpoolers when they can make arrangements beforehand,
e.g., they can schedule carpooling before coming to the
airport. Also, this strategy only works in small-scale user
population in a number of designated locations.

In large urban areas where thousands of vehicles running
hundreds of thousands of trips per day, building scattered
carpool lanes is not sufficient to greatly boost the possibility
of carpooling. The optimization of carpool assignments with
different departure and destination locations of travelers
is challenging due to the large scale of the participants.
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Figure 1: The architecture of the VShare carpooling system.

The increasing ubiquity of mobile devices provide potential
solutions to this problem, in which prior user mobility
knowledge is utilized to make potential carpools [8]–[10]. In
this theme, portable devices such as smartphones and tablets
are used to collect individual trips automatically without
any explicit user involvement. Travel routes and mobility
models are generated for each user, that is, we can infer
the itineraries and travel schedules based on past observa-
tions. Potential carpoolers can be identified by using these
travel routes and mobility models. However, this carpooler
matching theme works in a static manner and can not be
adaptive to real time scenario where users upload their travel
requests on demand. Also, it cannot be used for a person’s
travel (e.g., business trip, unplanned shopping) that is not in
his/her routine mobility.

To match carpoolers with real-time travel requests, some
works propose using a centralized server to gather all real-
time travel requests sent from users, and then calculate
carpooling schedules that reduce users’ travel costs and at
the same time minimize total travel time [11]–[15]. In these
dynamic carpooling systems, both riders and drivers provide
preferred travel information including desired departure time
window, location and maximum travel distance. A number
of predefined objectives in determining carpool matches are
also specified by the systems, such as minimizing total
travel time and trip costs. The carpool matching problems is
typically formed into a linear programming problem, where
objectives are optimized subject to a set of constraints. The
problem is then solved and carpool assignments are returned
to the travelers.

Using a centralized server to match carpoolers requires
long computation latency. Also, it takes long transmission
latency since user travel requests are sent from portable
devices to the remote server. To reduce the matching latency,
we propose VShare, a dynamic carpool system that leverages

the wireless social network characteristic and hierarchical
cloud server architecture. Figure 1 shows the architecture of
the VShare carpooling system, which is formed by utilizing
the wireless social network and the cloud servers. When
a user sends out a travel request, VShare aims to identify
carpoolers through the wireless social network in the first
step. It broadcasts this request to a number of the requester’s
neighbors in his/her neighborhood. A neighbor heading
to the same destination will respond to the request with
a matching score towards the request that measures the
similarity of their itineraries and travel times. After receiving
a number of responses from the requester’s neighbors, a car-
pool of multiple passengers is formed and all carpoolers are
notified of the travel schedule. If no carpoolers are identified
within a neighborhood, VShare then sends this request to
cloud servers. As the cloud has proved to be an effective
platform to host a variety of applications [16]–[18], it is used
to store and match travel requests. In VShare, a hierarchical
cloud server architecture is used to store all travel requests
with the same departure location and destination in the same
server. The server responsible for the target request will then
identify potential carpoolers by calculating the matching
scores between existing requests and target request. Finally,
this server then returns the schedule of carpooling to all
passengers involved when matches are found. In VShare, the
carpool matching latency is substantially shortened by first
looking for carpoolers within nearby neighbors. Also, the
hierarchical cloud server architecture is effective in matching
travel requests with short latency. VShare can be used for
different vehicles including taxis, personal vehicles, rented
vehicles.

We summarize the contribution of this paper as follows:

• We have proposed VShare, a wireless social network
aided vehicle sharing system using hierarchical cloud
architecture. In VShare, carpoolers are matched by
broadcasting messages to neighbors and using a hier-
archical cloud server architecture.

• We have designed algorithms to calculate a matching
score between two travel requests that measures the
similarity of their itineraries and travel times, we then
identify potential carpoolers by refering to the mathcing
scores.

• We have conducted trace-driven experiments by using
a PlanetLab node to simulate cloud servers. We have
presented the experimental results in a number of
performance metrics, which show the effectiveness of
VShare in matching carpoolers with short latency.

The remainder of the paper is organized as follows.
Section II presents an overview on the related work. Section
III-A describes the detailed design of VShare with descrip-
tion of each step. Section IV presents the performance
evaluation. Section V concludes this paper with remarks on
our future work.
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II. RELATED WORK

Carpooling aims to match travelers with similar itineraries
and traveling schedules, and it provides both economical
and environmental benefits by increasing the number of
passenger on taxis [19]–[25]. Existing works on matching
carpoolers can be broadly grouped into three categories.

The first type of carpooling systems are matching at
designated locations, where drivers and a larger number of
travelers line up in queues and establish carpoolings to save
taxi and toll fares [5]–[7], [26]. For example, the Washington
DC area and East Bay of San Francisco have developed
a number of carpool lanes at designated locations [5], [6].
Applications such as Bandwagon have been developed to
enable carpool commuting at major airports [7], campuses
[27] and large companies [28]. The main disadvantage of
spontaneous matching is that it does not allow to make
carpool arrangements beforehand. Also, this strategy only
works in a number of designated locations where high den-
sity of travelers are waiting in lines, which limits widespread
adoption of this carpooling systems.

The second type of carpooling systems are static match-
ing, where itineraries, routes and travel schedules are col-
lected based on historical records [29]–[31]. These systems
take advantage of the fact that a user’s travel routes and
locations can be predicted based on some mobility context
such as time and positions [32]. MobiCrowd [8] leverages
smartphones to collect trip information for users without
any explicit effort from them. This scheme generates daily
trips and mobility models for each user, and then makes
carpooling schedules using these mobility models. Naoum
et al. [33] proposed a stochastic mixed integer programming
model to optimize the carpool assignment of employees
in large organizations such as companies and government
offices. In this model, employees’ home locations are de-
noted by vertices on the graph, which are then clustered
based on proximity from each vertex to a specific company.
All vertices in the same cluster share a common vehicle.
Some works applied optimization models to identify the
most suitable locations to build carsharing stations [34], [35],
with the objective of improving system performance like the
average number of rides per day.

The third type of carpooling systems are dynamic match-
ing, where carpooling schedules are made based on real-
time user requests. Ma et al. [11] used a spatio-temporal
index to retrieve candidate taxis that matches a user’s travel
schedule; they then selected a taxi with minimum additional
incurred travel distance if this user shares the taxi with
existing passengers. Huang et al. [36] proposed kinetic tree
algorithms which can efficiently schedule dynamic travel
requests and adjust travel routes on demand. Zhang et al.
[22] proposed a carpool service system named coRide,
which aims to reduce total travel mileage for less gas
consumption in a large-scale taxicab network. coRide uses
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Figure 2: An overview of matching carpoolers in the VShare
carpooling system.

the linear programming to solve the route selection problem
under different practical constraints. As users call for taxis
on demand and this dynamic ride-sharing problem is a
NP-hard optimization problem [37]. Some works [38]–[41]
propose heuristic approaches to solve the car sharing and
route planning problem with reduced computational com-
plexity. BlueNet [17], [42] is a cloud-based carpool match-
ing module, which uses a genetic algorithm to accurately
find the optimum carpool schedule and matching results
by simulating natural evolution. Simulation methodologies
[43]–[46] are also used to assist the decision makers in
selecting optimal carpool scheduling strategies, with the
objectives of maximizing the participants’ satisfaction level
and minimizing the number of vehicles used. This strategy
requires long computation latency as all user travel requests
are processed by centralized servers which may be far away
from the travelers.

To reduce the matching latency, in VShare, when a user
sends out a travel request, this request will be broadcasted
to a number of neighbors in nearby locations. A neighbor
heading to the same destination will respond to the request
and a carpool is formed. If no carpool is identified within
neighborhood, this request is then sent to a cloud. A hier-
archical cloud server architecture is used to match the new
request with existing requests, it then returns the schedule
of carpooling when matches are found. The carpool match-
ing latency is substantially shortened by first looking for
carpoolers within nearby neighbors. Also, the hierarchical
cloud server architecture is effective to match travel requests
with short latency.

III. SYSTEM DESIGN OF VSHARE

Matching carpoolers is challenging as users’ travel re-
quests and positions are highly dynamic and difficult to
predict. The goal of a ride sharing system is to increase
the carpooler matching success rate and at the same time
minimize the matching latency. VShare achieves this goal
by leveraging the wireless social network and hierarchical
cloud server architecture to help the matching of carpoolers.
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We will describe the detailed design of each component in
this section. Important notations used in this paper are listed
in Table I. Note that we use “predefined” to indicate that
the parameter is predefined by the vehicle sharing service
provider.

Table I: Table of major notations.

pi passenger i
ri the travel request for passenger pi
P the list of passengers
R the list of candidate travel requests
ti the travel time for passenger pi
wi the maximum wait time for passenger pi
mij the matching score between ri and rj
C a carpool
t(C) travel time for carpool C
S vehicle capacity, i.e., number of passenger seats
φ predefined max # of neighbors to forward a request
T̃ predefined latency threshold of matching with neighbors

A. Overview of VShare

Our proposed VShare carpooling system incorporates two-
step operations: matching via the wireless social network
and matching using a hierarchical cloud server architecture.
Figure 2 shows an overview of the VShare carpooling
system. When a user sends out a travel request from its
mobile app, this request will be transformed into a request
numerical string.

To reduce the matching latency, in the first step, VShare
tries to match carpoolers within nearby locations instead
of forwarding the request to the remote cloud. The travel
request is broadcasted to a number of neighbors in nearby
locations. Each neighbor user’s mobile app receiving the
request will then check its travel schedule. If its user is
heading to the same destination at a close time, it will
respond to the request. Based on the responses, a carpool is
formed. The detailed description of the first step is presented
in Section III-D.

If no carpoolers are returned, in the second step, this
request numerical string will be sent to the cloud. Through
a hierarchical cloud server architecture, this request will be
forwarded to the host server where travel requests with the
same departure location and destination location are stored.
This server will match the departure time and maximum
wait time between the new request and existing ones, and
then returns the matching carpooler results to all users in
the carpool. The detailed description of the second step is
presented in Section III-E.

Before we present the matching process, we first introduce
how to transform a request to a string for easy matching
operations in Section III-B. Then, we introduce how to find
carpoolers for a given travel request in Section III-C2.

Travel request

Dep ID Dest ID Time Max wait time
002 001 0930 30

JFK airport
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9:30am

30min
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Park Ave
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JFK airport
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…
000

001

002

003
…

Departure
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Travel time

Max wait time

Numerical string

Figure 3: The process of the travel request transformation.

B. Transformation of Travel Requests

In the VShare carpooling system, it is critical to match
potential carpoolers who have similar itineraries and travel
schedules. For this purpose, VShare needs to compare the
similarity of the travel requests. For the ease of the com-
parison, in this section, we introduce how to transform
a user travel request to a numerical string. Compared to
text representation, numerical strings are more effective in
fast storage and information retrieval and quick comparison.
Each user travel request is first represented by a number
of attribute values, which indicate the travel schedule. The
travel request can be entered by a user through the VShare
mobile phone app, where each request is represented by four
attributes, i.e., departure location, destination, travel time and
maximum wait time. For example, a user is traveling from
the John F. Kennedy (JFK) airport to the 5th AVE at 9:30am
and his/her maximum wait time is 30 minutes. This travel
request is then presented with four attribute values “JFK
airport; 5th AVE; 9:30am; 30min”. Note that these attributes
are determined by users’ travel preferences. Actually, the
attributes used in the system can be flexible based on the
requirements from carpool service providers.

The carpool service provider defines a table of address
codes that use a number of digits to represent each address.
An address code is generated in a similar way as using a
zipcode to represent an area. An example of such an address
code table is shown on top right of Figure 3. Each mobile
phone installed with the VShare app stores the address code
table. We then transform each user request into a numerical
string. As the attributes of departure location and destination
are important in travel requests, we set them as primary keys
and transform them into IDs. We use Dep ID and Dest ID
as abbreviations for the departure ID and destination ID.
The mapping process is conducted by applying the address
code. For instance, location “JFK airport” is denoted by code
“002” (i.e., a number of digits) and “5th AVE” is denoted
by “001”. Thus, the Dep ID and Dest ID in our example
are “002” and “001”, respectively. We also represent the
travel time and maximum wait time as numerical values.
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Figure 4: Process of matching two travel requests.

For example, “9:30am” is represented by “930” and “30min”
is represented by “30”. We then combine the digits of all
attribute values together and get an n-digit numerical string.

Figure 3 shows the process of transforming a travel
request into a numerical string. The top left row lists all
travel schedule attributes in the system. When a user sends
out a travel request with attribute values “JFK airport; 5th
AVE; 9:30am; 30min”. After we infer the address codes for
Dep ID and Dest ID, the travel request is transformed to
a numerical string “00200193030”. This numerical string is
used to match users who have similar travel schedules and
are likely to share the same vehicle.

C. Matching of Potential Carpoolers

In this section, we first discuss how to match two travel
requests by comparing the corresponding numerical strings
of these travel requests, which can help identify two potential
carpoolers. We then extend the method to form carpools with
more than two passengers.

1) Matching of Two Travel Requests: In VShare, we
define a matching score to measure the likelihood that
passenger pi is able to share vehicle with passenger pj . The
matching score is measured by the similarity between these
two passenger’s travel numerical strings ri and rj . When
VShare identifies potential carpoolers for a given request via
using the wireless social network or the cloud, it needs to
calculate the matching score between two passengers. Figure
4 shows the process of matching two travel requests, which
includes 3 step operations. We first compare the values of
Dep ID and Dest ID sequentially in the first two steps. If two
travel requests have different Dep ID or Dest ID, the process
stops and these two requests are not matched. Otherwise, we
continue to examine the values of Travel time and Maximum
wait time (denoted by t and w, respectively).

Given two travel requests ri and rj that are initiated by
passengers pi and pj , rj has an earlier travel time than ri
(i.e., ti > tj). We use (ti − tj) to calculate the travel time
gap between ri and rj in minutes. When (ti − tj) > wj ,
i.e., pj’s waiting time is not long enough to share vehicle
with pi, pj will not respond to the pi. When (ti− tj) < wj ,
i.e., the travel time gap is less than the maximum wait time
of pj and pj is able to share vehicle with pi, we calculate

the matching score mij between them by:

mij = 1− (ti − tj)/wj , (1)

mij represents the degree of satisfaction in waiting for
possible carpoolers. A large value of mij means that one
traveler does not need to wait long for another traveler to
share a common vehicle.

Algorithm 1 Matching of two travel requests.
1: Input: travel numerical strings of ri and rj ;
2: Output: matching result;
3: if Dep ID(ri) 6=Dep ID(ri) then //Departure locations are un-

matched
4: return false
5: end if
6: if Dest ID(ri)6=Dest ID(ri) then //Destinations are unmatched
7: return false
8: end if
9: if (ti − tj) > wj then //Travel time gap exceeds maximum wait

time
10: return false
11: end if
12: calculate mij by mij = 1− (ti − tj)/wj

13: return mij

Algorithm 1 shows the pseudocode of matching two travel
requests. The algorithm first matches these requests by their
departure locations (Lines 3-5). It then matches requests by
traveling destinations (Lines 6-8). It continues to check if
the travel time gap between two requests is less than the
maximum wait time (Lines 9-11). It finally calculates the
matching score based on travel time and maximum wait time
and returns the matching result (Lines 12-13). Two potential
carpoolers are identified when mij > 0, and this matching
result will be return to both pi and pj .

2) Matching of Multiple Travel Requests: Given travel
request ri, and a list of candidate travel requests R =
(r1, r2, ...ru) initiated by a list of passengers P =
(p1, p2, ..pu). All requests in R are order by their matching
scores towards ri in descending order. When pi carpools
with p1, these two passengers can travel earlier compared
to carpoolers of pi and p2. Our strategy to form a carpool
(denoted by C) is adding one candidate from R at a time and
check if all passengers in the carpool are satisfied with the
carpool travel schedule, i.e., the wait time of each passenger
is within its maximum wait time. If the carpool’s travel time
is beyond a passenger’s maximum wait time, we then remove
the newly added passenger and return the current carpool
schedule.

When adding a travel request to the carpool, we select
requests from R in order. Assume that carpool C is built
when we add rj to the carpool. We use t(C) to denote
carpool C’s travel time, which is the latest travel time of
all passengers in C, i.e., t(C) = max(t1, t2, ..tj). For each
travel request rk in C, we sequentially calculate t(C)−tk as
wait time of pk in minutes. C is invalid if t(C)− tk > wk,
i.e., pk does not agree with the travel time of carpool C.
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In this case, we remove rj from C and return current
carpool schedule to all passenger involved. Otherwise, we
continue this process until the number of passengers in
current carpool reaches the capacity S of the vehicle. S is
determined as the number of passenger seats on a vehicle.

Algorithm 2 Matching of multiple travel requests.

1: Input: travel request ri and candidate list R = (r1, r2, ...ru);
2: Output: carpool C;
3: for rj ∈ R do
4: if size of C equals S then //Vehicle capacity is reached
5: return C
6: end if
7: add rj to carpool C //Increase the size of the carpool
8: calculate C’s travel time t(C) = max(t1, t2, ..tj)
9: for rk ∈ C do

10: if t(C)− tk is greater than wk then
11: remove rj from carpool C
12: return C
13: end if
14: end for
15: end for

Algorithm 2 shows the pseudocode of matching multiple
travel requests. When we input a target travel request and
a list of candidate requests R, Algorithm 2 aims to identify
multiple carpoolers from R to share a vehicle with the
requester. The algorithm first examines if the number of
passengers in current carpool reaches the capacity of a ve-
hicle (Lines 4-6). When |Cj | = S, the algorithm returns the
current carpool schedule. Otherwise, it adds rj to the carpool
and calculates the travel time of this carpool (Lines 7-8).
For each travel request in the new carpool, the algorithm
continues to check if the carpool’s travel time satisfies all
passengers’ maximum wait time (Lines 9-14). If one of the
passenger does not agree with the carpool’s travel time, the
algorithm removes rj from the carpool and returns the result.

D. Matching Via the Wireless Social Network

A passenger pi’s wireless social network consists of
users in pi’s neighborhood in the same area. We consider
a passenger’s wireless social network first in forming a
carpool for the passenger because these users tend to have
the same departure location and similar travel time. The
local carpooler matching rather than the global matching can
expedite the speed for finding carpoolers for the passenger.

When a user sends out a travel request, he/she is required
to enter travel information, this information is then broad-
casted to a number of neighbors in the area. VShare defines
a time-to-live (TTL) value, which is the maximal number of
hops that a travel request can be forwarded to. In our paper,
we set TTL to 2 hops for all travel requests. VShare defines
a constant φ, which is the largest number of neighbors to
forward a user travel request in each hop. After a user pi
submits a travel request, the VShare app will transform the
request into a numerical string ri and forward ri to φ random
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Figure 5: Demonstration of matching via the wireless social
network.

neighbors. A neighbor pj receiving this request will apply
Algorithm 1 to check if its travel request is matched with
pi’s. If the matching score mij is greater than 0, pj replies
to pi with the value of mij . Also, pj will forward the travel
request to φ neighbors in its own neighbor list and reduce the
travel request’s TTL by 1. The request is forwarded along
wireless social links until TTL=0.

From this process, we can see that a problem needs to
be resolved is how to determine carpoolers for pi when it
receives a number of replies from its neighbors. pi’s VShare
app first puts all received responses from pi’s neighbors
in a list R = (r1, r2, ...ru) so that elements in R are
ordered in decreasing order of their matching scores with
ri. The app then uses Algorithm 2 to make a carpool
of multiple passengers. When a number of passengers are
identified as potential carpoolers for pi, the app then starts
an instant conversation with these passengers to confirm the
plan of sharing vehicles. Figure 5 demonstrates the steps
of matching via the wireless social network with TTL=2.
VShare aims to identify carpoolers through the wireless
social network in step 1 and step 2. After receiving all
responses from neighbors in step 3, VShare makes a carpool
of multiple passengers among all received responses and
notifies all passengers in step 4.

If the travel requester pi has not received a response after
a certain latency threshold T̃ that is specified corresponding
to TTL (e.g., 5 minutes), this travel request is forwarded
to the cloud, where the request is matched with existing
requests by the hierarchical cloud.

In the wireless social network, neighbors may not be
acquainted with each other in real life, so they may have
concern about their safety and privacy when sharing a
vehicle with strangers. This issue will prevent users from
actively participating in the vehicle sharing activities. In
order to provide trust among ridesharing travelers, we may
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integrate VShare with some existing social networks (e.g.,
Facebook and LinkedIn), so that participants can acquire
more personal information of their travel partners. However,
this issue is beyond the scope of this paper and it is our
assumption that users are honest and reliable when using
the VShare system.

E. Matching Via Hierarchical Cloud Architecture

If no carpool is identified within a requester’s wireless
social network, this request is then sent to cloud servers,
where carpoolers are matched. In a cloud data center, there
are a larger number of servers and each server stores and
processes a large amount of user requests. A fundamental
challenge in the cloud datercenter is to efficiently identify
potential carpoolers in the complex environment character-
ized by distributed requesters and large scale data volume.
In such an environment, thousands or even millions of user
travel requests are scattered across distributed servers inside
cloud datacenters. Thus, matching carpoolers requires the
communication between different servers when they need
to calculate matching scores between travel requests. In
order to match travel requests efficiently, we need to reduce
the number of communications between different servers.
To achieve this goal, we organize the cloud servers in a
hierarchical structure.

Figure 6 shows the three-level hierarchical cloud server
architecture. Specifically, the cloud servers are formed into
a three-level hierarchy from the top to the bottom: a cen-
tralized server (CServer), departure managers (DepM) and
destination managers (DesM). The first level is a centralized
server and it is responsible for distributing travel requests to
different departure managers in the second level based on
the departure IDs of the requests. Each departure manager
is responsible for travel requests with a specific departure ID
and distributes the requests to different destination managers
in the bottom level based on the destination IDs of the
requests. Each destination manager receives, handles and
stores user travel requests with the same departure ID
and destination ID. For this purpose, the centralized server
maintains an index of departure IDs and their responsible
departure managers, and each departure manager maintains
an index of destination IDs and their responsible destination
managers.

We then describe the function of each level by using
Figure 6 as an example. All requests received by the cloud
are assigned to the centralized server. Upon receiving a
travel request, the centralized server passes this request to
the departure manager that is responsible for the request’s
departure ID. The departure manager then forwards the
request to the destination manager that is responsible for
the request’s destination ID. From this process, we can see
that the travel requests with the same departure ID and
destination ID will go to the same destination manager. To
find potential carpoolers for a newly received request, each
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Figure 6: An example of three-level hierarchical cloud server
structure.

destination manager only needs to match the travel time and
maximum wait time of the request with the requests stored
in itself. If no potential carpoolers are found, it stores the
new request in order to match it with subsequently received
requests. After a destination manager stores a request for a
time period, it notifies the requester that carpoolers cannot be
found. This time period can be specified by the users or the
system based on the departure time of users. Thus, VShare
does not need to involve multiple servers when matching
potential carpoolers, which reduces the matching latency.
The servers in the second and third levels are independently
scalable, i.e., the carpool service provider can adjust the
number of servers dynamically according to the data size
of user requests.

For example, after the centralized server receives a travel
request ri represented by numerical string “00200193030”,
it dispatches ri to DepM 6 which is responsible for requests
with departure ID “002”. DepM 6 then forwards ri to
DesM 20, which is responsible for travel requests with both
departure ID “002” destination ID “001”. DesM 20 has all
requests with the same departure ID “002” and destination
ID “001”. Inside each destination manager, all travel requests
are ordered sequentially by their travel times. The destination
manager will then selects a number of u existing travel
requests that have the closest travel time to that of ri, and
puts them in a list R = (r1, r2, ...ru). All travel requests
in R are ordered in decreasing order of their closeness of
travel time with ri. Next, the destination manager matches
carpoolers for travel request ri using Algorithm 2 described
in Section III-C2.

After a number of carpoolers are identified for ri, if
none of the carpoolers drive a car, the destination manager
randomly assigns an available vehicle (like taxi) currently
in the departure location to these carpoolers and sends the
travel schedule to them. The VShare app will start an instant
conversation for these carpoolers to confirm the plan of
sharing vehicles.
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IV. PERFORMANCE EVALUATION

We conducted trace-driven experiments using the Cab
mobility trace dataset [47].

A. Experimental Settings

The Cab mobility trace contains mobility traces of taxi
cabs in San Francisco, USA. It contains GPS coordinates
of approximately 500 taxis collected over 30 days in the
San Francisco Bay Area. We used the DBSCAN clustering
algorithm [48] to identify 338 locations in this trace. We
generated user requests from the Cab mobility dataset using
the following process: 1) at a specific time ti, if a cab
turns from vacant to occupied in location A, we assume
that this cab picks up one passenger in location A at time
ti; 2) at next time point tj , this cab turns from occupied
to vacant in location B, we assume that this passenger gets
off in location B at time tj ; 3) when a cab is occupied, we
assume that there is only one passenger in the cab. Thus,
a user travel request was generated as “a passenger wants
to travel from A to B at time ti”. We then assigned this
travel request to a random node and set its maximum wait
time randomly in [5,30] minutes. Before a user gets on a
cab in location A, we assumed that this user has stayed in a
location for 10 minutes, and users stay in the same location
form a wireless social network. We used the number of cabs
in the Cab mobility trace dataset as the default number of
cabs, which is 536; and we used an approximate value of
the average number of travel requests per day in this dataset
as the default number of nodes, which is 14000. In order to
vary the number of users, we also created additional users
and randomly assign requests to these uses. We assumed
that each user is a single traveler, i.e., originally, it does not
travel with any other users. Each cab’s capacity is 4, i.e., it
accommodates at most 4 passengers at one time.

In our proposed VShare system, when a user sends out
a travel request including its departure time, location and
destination, this request is broadcasted to 10 neighbors in
this location. We set TTL=2, i.e., each neighbor will forward
this request to its neighbors before the forwarding procedure
halts. A neighbor heading to the same destination at close
departure time will respond to the request and a carpool is
formed. If no responses are returned after 5 minutes (i.e.,
T̃ =5 minutes), this request is then sent to the central
processor in the cloud, where the request is matched with
all other requests and possible carpoolers are identified. The
cloud then selects a vehicle in this area and allocates to
the carpoolers. We compared VShare with Cloud and No-
Sharing. In the Cloud system, all user travel requests are
gathered and processed by the cloud. It uses a hierarchical
cloud server architecture introduced in Section III-E to store
travel requests and match potential carpoolers. We also
implemented the Cloud system without using a hierarchical
cloud server architecture (denoted by Cloud-D). In Cloud-
D, a user request is stored in a random cloud server. To

match potential carpoolers for a target travel request, each
server first selects 4 travel requests from its storage that
have the same departure ID, the same destination ID and
closest travel time to the target request. It then sends them
to a centralized server. The centralized server collects all
similar travel requests and matches potential carpoolers for
the target request. In the No-Sharing system, there is no
carpool commuting, and each user occupies a single cab.
Each user will wait in a queueing line of the location, when
there are available cabs, these users will be picked up on a
first-come-first-serve (FCFS) manner. If a user cannot get on
a cab within its maximum wait time, it will leave the queue
and we regard it a failure in catching a cab.

We used a PlanetLab [49] node to simulate cloud servers,
which is with IP 128.112.139.43 in Princeton University.
The experiment simulates a 7 day scenario. Each user takes
one or two cabs per day with equal probability, we recorded
the experimental results for each day and report the average
values during the 7 day period. In our experiment, each
user will get on an available cab if he/she cannot find any
carpooler, otherwise, all carpoolers share one available cab.
If there is only one passenger on the cab, he/she pays all
travel fare; otherwise, the travel fare is evenly split between
all passengers in the carpool. We are interested in the
following metrics:

• The number of carpools. The number of cabs that
carry more than one travelers at the same time. This
metric indicates the effectiveness of the proposed sys-
tem in matching users to carpools.

• Average travel expense. Users can find travelers who
are willing to share rides with in carpool commuting.
The travel expense is reduced as travelers split the travel
fare and users are motivated to use the VShare system
to find carpoolers.

• Average matching latency. It is the latency in identify-
ing a user that can share a ride with another user, which
is the time span from when a user submits a travel
request until the time he/she receives the carpooler and
cab information. This metric is used to show that using
the wireless social network based matching can quickly
identify a user that can share rides.

• Success rate of catching a cab. It is the probability that
a user can catch a cab within its maximum wait time,
which is calculated as the ratio of travel requests that
can travel within its maximum wait time over all travel
requests. By sharing cabs, more cabs will be available
and users are easier to catch a cab.

• The number of cabs needed. Assume we have un-
limited number of cabs and we need to transport all
users within their maximum wait times, we record the
minimum number of cabs needed to use. When users
can share cabs with each other, a smaller number of
cabs are needed to transport a specific number of users,
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Figure 7: Performance with different number of users.
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Figure 8: Average matching latency.

which mitigates the traffic load in urban areas.

B. Experimental Results

We present the experimental results with respect to all
metrics introduced above.

1) The Number of Carpools: If a user shares a cab with
at least one passenger, we regarded it as a carpool, i.e., a cab
carries more than one user. Figure 7(a) shows the number
of carpools with different number of users in the system.
We see that the number of carpools in VShare increases
steadily when the user population gets larger. This is due to
the reason that as user density becomes higher in a location,
a user is easier to find carpoolers. In No-Sharing, each user
occupies a single cab, so the number of carpools in this
system remains 0. Figure 7(a) shows that VShare is effective
in identifying potential carpoolers for users.

2) Average Travel Expense: One of the potential benefits
of sharing vehicles for users is reducing the travel expense.
In this experiment, we assume that the travel fare for a single
trip costs f dollar regardless of the travel distance, and f
was randomly selected in [20,40]. We also define a travel
fare increment factor α, which is the ratio of increase in
travel fare when the number of passenger is increased by
one. We set the travel fare increment factor α defined to
0.1. Therefore, if there are n carpoolers sharing the same
vehicle, the total travel fare that the driver receives from
all passengers is (1 + α)n−1f , and the travel fare is evenly
split between all passengers in the cab. Figure 7(b) shows the

average travel expense of all users with different number of
users in the system. We see that compared to No-Sharing, the
proposed VShare system is effective in saving users’ travel
fares as users can find carpoolers who can share payment to
the taxi service. We also see that the average travel expense
drops as the number of user increases in the system. This
is due to the reason that users are more likely to potential
carpoolers when user density is high. Figure 7(a) and Figure
7(b) show that VShare can effectively match travel requests
and identify carpoolers, thus save travel expense for users.

3) Average Matching Latency: Next, we plot the average
matching latency with different number of users and various
number of cabs in Figure 8(a) and Figure 8(b), respectively.
These metrics are important in that users are generally
reluctant to wait long in the queue and they prefer to
find carpoolers quickly. We see that the proposed VShare
system generates substantially lower matching latency than
the Cloud system. As VShare first matches a user’s travel
request with nearby users using the wireless social network,
and a user is likely to identify carpoolers within a short
latency. On the other hand, Cloud processes all user requests
by using remote cloud servers, which incurs a relatively long
transmission delay from the user mobile device to the cloud.
Also, the matching results need to travel long distance back
to the users. Cloud-D generates longer matching latency than
Cloud due to the reason that the centralize server needs
to collect similar travel requests from all servers before
it matches potential carpoolers for the target request. On

9



80

85

90

95

100

105

4000 6000 8000 10000 12000 14000
# of users

No‐Sharing VShare
A
v
e
ra
g
e
 s
u
c
c
e
ss

ra
te
 (
%
)

(a) Performance with different number of users.

0

20

40

60

80

100

120

200 300 400 500 600
# of cabs

No‐Sharing VShare

A
v
e
ra
g
e
 s
u
c
c
e
ss

ra
te
 (
%
)

(b) Performance with different number of cabs.

Figure 9: Success rate of catching a cab.

0

2000

4000

6000

8000

10000

12000

14000

16000

4000 6000 8000 10000 12000 14000
# of users

No‐Sharing Vshare#
 o
f 
c
a
b
s 
n
e
e
d
e
d

(a) Number of cabs needed.

Figure 10: Performance at different # of users.

the other hand, Cloud uses a hierarchical server structure
to quickly locate the destination manager that stores all
travel request with the same departure ID and destination
ID as the target request, and this destination manager then
matches potential carpoolers for the target request with short
latency. By comparing the matching latency of Cloud-D and
Cloud, we can see that the hierarchical cloud architecture
is advantageous in storing and matching travel request
efficiently. Figure 8(a) and Figure 8(b) show that VShare is
able to provide satisfactory carpool matching service with
relatively short latency.

4) Success Rate of Catching a Cab: Figure 9(a) shows
the success rate of catching a cab with different number of
users. We see that VShare produce higher success rate than
No-Sharing. In the No-Sharing strategy, each cab is occupied
by only one passenger, given a limited number of cabs and a
large number of travelers during peak hours, some travelers
may not ba able to catch a cab as all cabs are generally
busy. While in VShare, multiple users heading to the same
destination can identify each other and share one cab, thus,
more passengers are transported with the same amount of
cabs. As a result, users in VShare are easier to catch a cab
when more empty vehicles are available to use. The success
rate drops slightly as the number of users increase due to
the reason that the capacities of cabs are fully utilized with
larger number of users, so some users are not able to get an
available cab.

Figure 9(b) shows the success rate of catching a cab with

various number of cabs. We see that the success rate rises
substantially when the number of cabs increase due to the
reason that more passengers can be accommodated with
larger number of cabs in service. We also see that VShare
produce higher success rate than No-Sharing due to the same
reason explained in Figure 9(a). That is to say, VShare aims
to let multiple users heading to the same destination share
rides with each other. From Figure 9(a) and Figure 9(b),
we infer that VShare can effectively mitigate the tension in
catching taxis during rush hours by enabling travelers to
share rides with each other.

5) The Number of Cabs Needed: Figure 10(a) shows
the number of cabs needed to transport different number
of users. We see that more cabs are needed when the user
population increases from 4,000 to 14,000 due to the same
reason explained in Figure 9(a) and Figure 9(b). Also, given
the same amount of users, VShare uses smaller number of
cabs than No-Sharing. This is due to the reason that each
user in No-Sharing takes one cab, while users in VShare
are able to identify carpoolers nearby and share cabs with
each other, the number of cabs needed to transport all users
are thus reduced. When the number of cabs on the road
are decreased in urban areas, some problems emerging in
the process of urbanization can be mitigated, e.g., traffic
congestion and air pollution. Figure 10(a) shows that VShare
is an environment-friendly carsharing system that can be
applied to improve transportation system.
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V. CONCLUSIONS

Dynamic carpool commuting systems are getting popular
and provide promising benefits to both the society and
environment protection. To promote carpool commuting by
effectively matching carpoolers, one solution is to build
carpool lanes in main airports and bus stops where travelers
are crowded, but this method works in designated locations
and cannot be widely adopted. Another solution is using
centralized servers to identify carpoolers based on historical
travel data or on demand travel requests, but this method
incurs long matching latency. To overcome the drawbacks of
these methods, we propose VShare, a dynamic carpool sys-
tem that leverages the wireless social network characteristic
and hierarchical cloud server architecture. Upon receiving a
user travel request, VShare first utilizes the wireless social
network to match possible carpoolers from nearby neigh-
bors. If no carpools are matched through the wireless social
network, VShare then matches potential carpoolers through
a hierarchical cloud server architecture. VShare is able to
identify carpoolers with short latency due to its usage of
the wireless social network and the hierarchical architecture
in the cloud for carpooler matching. We evaluated the
performance of VShare using a cab mobility dataset. Experi-
mental results show the effectiveness of VShare in matching
carpoolers, reducing user travel expense, minimizing carpool
matching latency, increasing users’ success rate of catching
a cab and minimizing the number of cabs needed to transport
a specific number of users. In our future work, we will
improve the design of VShare so that traveler with different
destinations can also be identified as carpoolers. Also, we
aim to develop a real application of VShare that can deploy
on mobile phones.
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