
Goodbye to Fixed Bandwidth Reservation: Job
Scheduling with Elastic Bandwidth Reservation in

Clouds
Haiying Shen∗, Lei Yu†, Liuhua Chen‡, Zhuozhao Li∗
∗Department of Computer Science, University of Virginia

{hs6ms, zl5uq}@virginia.edu
†College of Computing, Georgia Institute of Technology

leiyu@gatech.edu
‡Department of Electrical and Computer Engineering, Clemson University

liuhuac@clemson.edu

Abstract—The shared nature of cloud network infrastructures
causes unpredictable network performance, which may degrade
the performance of these applications. Recently, several works
propose to explicitly reserve the network bandwidth in the
cloud with virtual network abstraction models, which pre-specify
the network bandwidth between virtual machines (VMs) for a
tenant job. However, the pre-specification fails to exploit the
elastic feature of the bandwidth resource (i.e., more reserved
bandwidth within no-elongation threshold bandwidth leads to
shorter job execution time and vice versa) in job scheduling.
It is difficult for ordinary tenants (without specialized network
knowledge) to estimate the exact needed bandwidth. In this paper,
we propose a new cloud job scheduler, in which each tenant only
needs to specify job deadline and each job’s reserved bandwidth
is elastically determined by leveraging the elastic feature to
maximize the total job rewards, which represent the worth of
successful completion by deadlines. Finally, the scheduler tries to
reduce the execution time of each job. It also jointly considers the
computational capacity of VMs and reserved VM bandwidth in
job scheduling. Using trace-driven and real cluster experiments,
we show the efficiency and effectiveness of our job scheduler in
comparison with other scheduling strategies.

I. INTRODUCTION

The shared and multi-tenant nature of cloud network lead-
s to significantly varying data transmission latency due to
bandwidth competitions among network flows, which further
causes unpredictable application performance [1–4]. Without
bandwidth guarantee, the job completion time could be two
orders of magnitude longer [5]. To address the performance
predictability, several works [6–8] proposed to augment cloud
computing with virtual network service models and explicitly
enable bandwidth reservation in datacenter networks.

Previous work [8] shows that a lower VM bandwidth for
a job may lead to longer networking time and hence longer
job execution time. Despite the fact that the job execution
time and the VM bandwidth of network abstractions have
such dependency, there exists little work that exploits the
relationship between them for high performance in band-
width reservation. Also, the bandwidth pre-specification is not
suitable for ordinary tenants who may not have specialized
network knowledge because it is difficult for them to estimate
the exact needed bandwidth. Rather than the VM bandwidth,
they most likely provide a job description with the required

job deadline and possibly a reward value representing the
worth of completing the job by its deadline [9, 10]. The
reward can be determined based on different objectives such
as maximizing the number of completed jobs, the number
of service-level agreement (SLA) conformances, the social
welfare of customers or the profit of the cloud provider. Then,
based on this provided information, it is the cloud provider’s
responsibility to decide appropriate VM bandwidth in the
virtual network abstraction.

In this paper, we propose a new cloud service model that
novelly leverages the elastic feature of the bandwidth resource
(i.e., the dependency between job execution time and the
VM bandwidth of a virtual network abstraction) to maximize
the total rewards of jobs (referred to as system reward) and
also reduce job execution time. In this model, tenants only
need to specify the job deadline and reward value if it is
determined by the tenants instead of the cloud provider. Based
on this information, for each job, the model determines the
VM bandwidth in the virtual network abstraction, the PM to
allocate each VM of the job, and the job start time.

In the framework, we leverage job profiling to model
the relationship between the job execution time and VM
bandwidth, i.e., the job execution time corresponding to
each level of provisioned VM bandwidth for each job. With
the input of such job profiles and job descriptions, the job
scheduler decides a scheduling of cloud resources for running
jobs. To determine the optimal schedule that maximizes the
total system reward, we formulate the problem. Due to its
hardness, we propose an approximate algorithm for schedul-
ing. The algorithm first uses the smallest VM bandwidth level
of each job that meets its deadline in job allocation. Then,
it increases the VM bandwidth level (i.e., reduce execution
time) of each job starting from the longest job gradually if its
VM allocation is still valid until job execution time cannot
be reduced anymore. Finally, it uses the highest level of VM
bandwidth for each job starting from the job with the most
VMs if its VM allocation is still valid in order to quickly
release more resources to allocate to other jobs.

The rest of the paper is organized as follows. Section II
presents our cloud service model and the system framework.



In Section III, we formulate the job scheduling problem.
Section IV presents our scheduling algorithm in detail. In
Section V, we evaluate our algorithm in comparison with a
number of typical scheduling strategies. Section VI presents
the related work and Section VII concludes this paper.

II. SYSTEM MODE AND FRAMEWORK

In this section, we describe the service model and our
system framework that integrates the bandwidth reservation
into the job scheduling.

A. Service Model

1) Job Model: In our service model, each tenant rents a
set of homogenous VMs to run his job. Each job or service
request from the tenant, denoted by j, is characterized by a
tuple {Nj , dj , vj}, where Nj is the number of VMs the tenant
requires, dj is the desired deadline of job j, and vj is the
job’s reward value that represents the worth of a successful
completion of the job before its deadline dj . As the tenants
usually specify the number of VMs when they buy VMs, it
is reasonable to assume that the number of VMs is fixed in
the model. The jobs with a fixed number of VMs are also
known as rigid jobs in the parallel scheduling research [11].
The reward value can be determined by the tenant or the cloud
provider. The goal of our model is to determine a schedule of
jobs under cloud capacity constraints to optimize a reward
value based objective function. In this paper, we choose the
sum of reward values of the jobs that are fully executed before
their deadlines as the objective function. The jobs that are
completed after their deadlines yield zero value.

2) Virtual Network Abstraction: To characterize the band-
width requirement of a job, we use a simple virtual

VM  1 VM N 

Virtual Switch 

Bandwidth  B B 

Fig. 1: Virtual cluster abstraction <
N,B >.

cluster abstraction proposed in
Oktopus [7], as shown in Fig-
ure 1. The virtual cluster ab-
straction, represented by <
N,B >, describes a virtual
topology comprising of N ma-
chines connected by bidirec-
tional links of capacity (i.e.,
VM bandwidth) B to a virtual
switch. That is, each VM can send and receive at rate B.
For each job j in a set of jobs to allocate, given the input
of {Nj , dj , vj}, the cloud scheduler generates the appropriate
virtual cluster abstraction < Nj , Bj > in offline scheduling,
which is used in resource allocation for the job. The elastic
feature means that a job has different execution times with
different reserved bandwidth resources. Bj is determined so
that the system reward is maximized and also the execution
time is reduced as much as possible.

B. System Framework

As shown in Figure 2, our system framework for realizing
the above service model consists of three components.

Job profiler. A novelty of this paper is that we consider
the elastic feature of the bandwidth resource to determine

Job 
profiler

Job 
Scheduler

{ 1ܰ, ݀1, {1ݒ { ݊ܰ, ݀݊, Jobs{݊ݒ
Tenants

job
performance 

model

job ݅ to be 
run, with its 

virtual cluster 
abstraction< ݅ܰ, ݅ܤ >

VM allocation

Bandwidth 
reservation

up-to-date 
network status Resource 

Manager

Fig. 2: System framework.
the reserved bandwidth in order to optimize a reward value
based objective function for the jobs that complete before their
deadlines. We will explain the details in Section II-C.

Job Scheduler. Given a batch of jobs and their profiles,
the job scheduler is responsible for determining the optimal
schedule of jobs. The job scheduler must have up-to-date infor-
mation of available resources in the datacenter. A job cannot
be scheduled if the datacenter does not have enough resources
to support the corresponding virtual cluster abstraction. Thus,
the job scheduler needs to obtain the up-to-date network status
information from the resource manager. The job scheduler
informs the resource manager of the determined schedule.

Resource Manager. Resource manager maintains and re-
ports to the job scheduler the up-to-date information of the
datacenter resource, including the datacenter network topolo-
gy, the empty VM slots in each physical machine, and the
residual bandwidth on each physical link, calculated from
tallying the resource allocations of currently running jobs. It
also performs the VM allocation and bandwidth reservation
given the scheduling decisions from the job scheduler. The
mechanism to enforce the resource reservation in the datacen-
ter for the virtual network abstractions has been well developed
in previous works [7, 8], and thus we assume that the resource
manager uses an existing mechanism to fulfill its task.

C. Job Profiler

As indicated previously, instead of pre-specifying the band-
width demand, we only require tenants to specify the job
deadline. Then, we determine the amount of VM bandwidth
for each job to determine its completion time in order to
maximize a reward value based objective function for jobs
completed by their deadlines. Therefore, it is necessary to
learn the relationship between the job execution time and the
VM bandwidth for each job. For this purpose, we use the job
profiler for profiling each application offline. Given the type
of VMs, the number of VMs determines the computational
capacity of the virtual cluster. Because the number of VMs
is pre-specified by the tenant, the computational capacity for
running a job is pre-determined and hence the execution
time of a specific job largely depends on the inter-VM flow
completion time, which is decided by the VM bandwidth.

Several previous works [7, 12] show that the measurements
from profiling runs are good predictors of the application
traffic pattern in production. The application profiling has been
well exploited to optimize the resource allocation [12–14].
Recent work shows that the profiles of jobs can be obtained
with high accuracy [13, 15] and some open-source tools such
as Starfish [16] have been developed to generate such profiles.



Therefore, we assume that the job profiler can have reasonably
accurate estimate of the application’s communication pattern
online. Like [13], we only schedule those jobs whose profiles
can be obtained with high accuracy.
Profiling Methodology Suppose a set of VM bandwidth
options {B1, B2, . . . , Bm} in increasing order for jobs’ vir-
tual cluster abstractions. Previous work [8] has found that,
for each application, until the VM bandwidth is reduced to
a certain threshold (referred to as no-elongation threshold
bandwidth), there is virtually no impact on the application
execution time because of the limitation of application data
generation rate. Once the VM bandwidth drops below the
threshold, the execution time is elongated monotonically. It
suggests that the VM bandwidth for a job should always be the
same or lower than the non-elongation threshold bandwidth,
since higher bandwidth wastes networking resource without
speeding up the job. Therefore, any VM bandwidths larger
than the no-elongation threshold should not be selected by the
job scheduler for a job. To this end, the job profiler needs to
identify the no-elongation threshold bandwidth for a job, with
the results obtained from the profiling runs.
Output For each job, say j, the output of job profiler for
it is a sequence of tuples {(Bj1, τ

j
1 ), (Bj2, τ

j
2 ), . . . , (Bjk, τ

j
k)}

where each tuple consists of an available VM bandwidth
and the corresponding job execution time, and the bandwidth
Bj1 < Bj2 < . . . < Bjk. The largest bandwidth Bjk is the no-
elongation threshold bandwidth and τ j1 > τ j2 > . . . > τ jk .

III. JOB SCHEDULING PROBLEM

In this section, we focus on our job scheduling problem. We
first present the system model, and then formulate the problem
as an optimization problem [17] and show its hardness.

A. System Model

The datacenter network is abstracted by a graph
G = (V,E), where V is the set of physical machines
and switches, and E is the set of physical links that

1 2 3 4 5 6 7 8 9 10 11 12 

Root Switch 

Aggregate Switch 

ToR Switch 

Physical 
Machine 

link 𝑙𝑙 

𝑇𝑇𝑙𝑙 

Fig. 3: Tree topology of the datacenter. Each
PM has 3 VM slots.

connect machines and
switches. In this pa-
per, we focus on tree-
like topologies such as
multi-rooted tree [18,
19], which are typi-
cal topologies of today’s
datacenters. We assume
that the datacenter has
M homogeneous phys-
ical machines. Each physical machine offers S VM slots.
Figure 3 shows an example of the tree topology. Time is
divided into equal-length time slots. The length of a time slot
is the minimum time granularity. For simplicity, the length of
a time slot is set to unit 1.

Consider that there are n jobs. Each job j (j = 1, . . . , n)
is associated with a tuple (Nj , dj , vj) and its performance
profile {(Bj1, τ

j
1 ), (Bj2, τ

j
2 ), . . . , (Bjkj , τ

j
kj

)}. As we indicated
previously, Nj is the number of VMs required by job j, dj

is j’s deadline, and vj is its value. The performance profile
describes the job execution time of j (τ ji ) under kj different
VM bandwidth settings Bj1, . . . , B

j
kj

in increasing order.

B. Problem Formulation

Our job scheduling problem is to determine an optimal
schedule of jobs under the cloud capacity constraints. It spec-
ifies the VM bandwidth, the time to run, and VM placement
in datacenter for each job, with the goal to maximize the total
value of jobs that are completed before their deadlines. The
problem can be formulated as a 0-1 Integer Program.
Decision Variables: For job j, to characterize the decision of
the time to execute a job and its VM bandwidth, we have the
following 0-1 variables:

ejt =

{
1, if job j starts execution in time t
0, otherwise

(1)

bji =

{
1, if job j uses VM bandwidth Bji
0, otherwise

(2)

Suppose the VMs of job j are numbered from 1 to Nj , and
the physical machines of the datacenter are numbered from 1
to M . Then, a VM placement can be represented by the 0-1
variable:

pjmi =

{
1, if job j has VM i placed on PM m
0, otherwise

(3)

Constraints: Because each job j will be scheduled to start
in only one time slot, we have constraint for decision variable
ejt in (1) T∑

t=t0

ejt = 1, ∀ j (4)

where t0 is the time to start executing jobs and T is the
upper bound on the duration of the time scheduled for all
job. Similarly, a job has only one VM bandwidth from its
job profile {(Bj1, τ

j
1 ), (Bj2, τ

j
2 ), . . . , (Bjk, τ

j
k)} in its virtual

network abstraction kj∑
i=1

bji = 1, ∀ j (5)

A VM of job j can only be placed on one PM, so
M∑
m=1

pjmi = 1, ∀ j, i (6)

A schedule is valid only if it satisfies the cloud capacity
constraints. That is, at any time, i) the number of VMs placed
on a PM cannot exceed the number of VM slots, and ii) the
bandwidth reserved for the jobs on a link cannot exceed its
capacity. To formulate the capacity constraints, we first need
to derive an indicator to represent whether job j is still running
at time t. Given the decision variables (1) and (2), job j’s start
time and execution time can be represented by

∑T
t=t0

tejt and∑kj
i=1 bjiτ

j
i , respectively. If job j is still running at time t, then

we must have t−
∑kj
i=1 bjiτ

j
i <

∑T
t=t0

tejt ≤ t, that is,
t∑

y=t−
∑kj

i=1 bjiτ
j
i

ejy = 1

Otherwise, the left side of the above equation equals 0. Thus,
we use Ijt =

∑t

y=t−
∑kj

i=1 bjiτ
j
i

ejy as the indicator to represent



whether job j is still running at time t.
Suppose the job scheduler has the up-to-date network re-

source information, received from the resource manager. The
information includes the number of available VM slots on each
PM m and the residual bandwidth of each link l, denoted by
Sm and Cl respectively. Then, for each PM m, the number
of used slots by all jobs running on PM m must be no more
than Sm. Accordingly,∑

j

Nj∑
i=1

Ijtp
j
mi ≤ Sm, ∀ 1 ≤ t ≤ T, ∀ m (7)

which indicates the constraints of available VM slots on PM
m for the schedule.

To address the constraint of link capacity, with a given
tree topology of the datacenter, we define a constant clm for
each pair of link l and PM m. If PM m is the leaf node of
the subtree Tl connected by l to the upper level, clm = 1;
otherwise, clm = 0. Take Figure 3 for instance. cl4, cl5, cl6
are ”1” since the PMs 4, 5, 6 are in the subtree Tl.

For each link l, the reserved bandwidth for a virtual cluster
< N,B > (N is the number of VMs and B is the VM
bandwidth) is min(N −Xl, Xl)×B, where Xl is the number
of VMs contained in the subtree Tl connected by the link l. For
job j, the number of VMs contained in the subtree Tl, denoted
by Xlj, can be represented with decision variable (3), that is,

Xlj =

Nj∑
i=1

M∑
m=1

clmp
j
mi (8)

Also, the VM bandwidth of job j is decided by
∑kj
i=1 bjiB

j
i .

Then, we can formulate the constraints of link capacity as∑
j

Ijt min(Xlj , Nj −Xlj)

kj∑
i=1

bjiB
j
i ≤ Cl, ∀1 ≤ t ≤ T,∀ l (9)

Objective: We aim to maximize the total reward value of
jobs that are completed before their deadlines, named system
reward. Thus, we first derive the indicator to represent whether
a job is completed by its deadline based on the decision
variables. Note that job j’s start time and execution time
equal to

∑T
t=t0

tejt and
∑kj
i=1 bjiτ

j
i , respectively. If job j

is finished by its deadline dj , the Inequality
∑T
t=t0

tejt ≤
dj −

∑kj
i=1 bjiτ

j
i + 1 must hold, that is,

dj−
∑kj

i=1 bjiτ
j
i +1∑

t=t0

ejt = 1. (10)

Then, we let Ij =
∑dj−

∑kj
i=1 bjiτ

j
i +1

t=t0 ejt be the indicator. For
a job j which misses its deadline, Ij = 0; Otherwise, Ij = 1.
Consequently, our optimization objective becomes

max
∑
j

Ijvj (11)

where vj is job j’s reward value.

IV. OUR SCHEDULING ALGORITHM

In this section, we propose an efficient heuristic algorithm to
address the job scheduling problem in Section III. This offline
algorithm assumes that the scheduler has full knowledge of

n jobs in a batch before computing. Given the jobs and the
available resource information in the datacenter, the algorithm
determines the optimal schedule.

The pre-specification may lead to bandwidth capacity over-
load or underload. To avoid bandwidth competition and fully
utilize the bandwidth resource, we first use the smallest
bandwidth option in a job’s profile what meets its deadline
in job scheduling and then increase the bandwidth in the
job’s profile until its allocation becomes invalid, i.e., either
its computation or bandwidth resource demand cannot be
satisfied. The second step consists of two sub-steps. First,
among the scheduled jobs, from the longest job, it chooses the
next higher bandwidth option (i.e., shorter execution time) in
its profile if its allocation is still valid. Second, when no job’s
execution time can be reduced, it tries to use the maximum
admissible bandwidth option for each job. The reason that we
do not directly apply the second sub-step to minimize the job
execution time one by one without the first sub-step is because
of the shared nature of the datacenter networks. Increasing
the VM bandwidth to the maximum admissible bandwidth for
one job may leave no space for the bandwidth increase of
other jobs that share the links with this job. But by repeatedly
reducing the longest job execution time with only using the
next higher bandwidth option, we have a chance to fairly
distribute the residual bandwidth of a link to all jobs.

All jobs in a batch may not be able to be scheduled at the
starting time t0 at the same time due to limited resources. Also,
jobs will release their allocated resources when they complete
during T . Therefore, the scheduling algorithm executes at each
ti ∈ T to allocate the VM cluster abstraction of unscheduled
jobs. After the process of scheduling jobs starting from t0 is
completed, the algorithm conducts scheduling the remaining
unscheduled jobs starting from t1 using the same process. Such
process repeats until all jobs are scheduled or T is reached.

To find a valid allocation in the datacenter for a job’s virtual
cluster abstraction, we take advantage of existing algorithms
for the allocation of virtual cluster abstractions [8], rather than
reinventing the wheel. In [8], a Dynamic Programming (DP)
based VM allocation algorithm is proposed, which aims to find
the lowest subtree for virtual cluster allocation in a datacenter
with tree topology. By searching the lowest possible subtree
that satisfies both slot and bandwidth requirements, the DP
algorithm finds the most localized allocation of VMs so as to
conserve the bandwidth of the links in the upper levels of the
tree and maximize the ability to accommodate the next coming
jobs. For a virtual cluster <Nj , B

j
min> of job j, the DP algo-

rithm traverses the topology tree starting at the leaves (physical
machines at level 0, as shown in Figure 3) and determines if all
Nj VMs can fit under the link capacity constraints. We consid-
er this VM allocation algorithm as a procedure call VMplace.

Algorithm 1 shows the pseudo-code of our algorithm. Let
Jready be a set of n jobs ready to be scheduled in the system
at time t0. For each job j ∈ Jready, we suppose its deadline is
regulated to the value relative to the time to start scheduling t0,
denoted by d̂j . Our scheduling algorithm first determines a set
of jobs, which can be concurrently allocated and executed at



time t0, denoted by Jrun. ResourceStatus is the description
of the empty VM slots in each physical machine and the
residual bandwidth on each physical link.

Algorithm 1 Job scheduling algorithm.

Input: Jready – a set of jobs ready to be scheduled, each with (Nj , d̂j , vj)

and profile {(Bj
1, τ

j
1 ), (B

j
2, τ

j
2 ), . . . , (B

j
kj
, τ jkj

)}.
Output: a schedule S for the jobs.
1: for each tk (0 ≤ tk < T ) do
2: /*Allocate each job using the minimum bandwidth option that meets

its deadline*/
3: Jrun ← ∅;
4: ResourceStatus← Resource status at tk from resource manager;
5: Sort jobs in Jready in non-increasing order of vj

d̂j
;

6: for job j from 1 to |Jready | do
7: Bj

min ← min{Bj
i | τ

j
i < d̂j , 1 ≤ i ≤ kj};

8: if Bj
min = ∅ then

9: Jready ← Jready \ j;
10: else
11: Bj ← Bj

min; {Bj is the VM bandwidth of job j}
12: τj ← τ jmin; {τj is the job execution time of job j with Bj}
13: Pj ← VMplace(< Nj , Bj >,ResourceStatus);
14: if Pj 6= ∅ then
15: Jrun ← Jrun ∪ {j};
16: Update ResourceStatus with j’s allocation;
17: end if
18: end if
19: end for
20: /*Reduce the execution time of jobs by increasing bandwidth*/
21: repeat
22: Find the longest job jL in Jrun;
23: τtemp ← τjL ;
24: Btemp ← next higher bandwidth in jL’s profile than BjL ;
25: if Btemp 6= ∅ and PjL is valid given Btemp then
26: BjL ← Btemp;
27: τjL ← the job execution time corresponding to Btemp;
28: end if
29: until τtemp ≤ τjL
30: /*Maximally reduce the execution time of jobs by using their maximum

bandwidth options*/
31: for each job j ∈ Jrun in non-increasing order of num of VMs do
32: Bj←max{Bj

i |B
j
i>Bj and Pj is valid given Bj

i ,1≤i ≤kj};
33: end for
34: Jready ← Jready \ Jrun;
35: S ← Jrun with Bj and Pj for ∀j ∈ Jrun;
36: end for
37: Return S;

First, for each job j ∈ Jready, the algorithm chooses the
smallest bandwidth option from its profile that can satisfy the
deadline requirement as j’s initial VM bandwidth, denoted
by Bjmin (Lines 7-12). That is, for the job execution time
corresponding to Bjmin, denoted by τ jmin, τ jmin<d̂j must be
satisfied. If any bandwidth options in job j’s profile cannot
satisfy the deadline requirement, the job is discarded from
Jready (Lines 8-9). Then, the algorithm tries to find valid
allocations for each job j in Jready with the virtual cluster
abstraction <Nj , B

j
min> one by one (Lines 11-17). The

algorithm here allocates jobs in non-increasing order of their
reward-deadline ratios, defined as vj

d̂j
. In this way, a job with

a higher reward value and a smaller deadline (i.e., greater
urgency) can have a higher priority for resource allocation.
Obviously, if each job has a reward value “1”, the algorithm
allocates jobs by EDF essentially.

The scheduling algorithm calls VMplace for each job in
Jready one by one in non-increasing order of their reward-

deadline ratios (Line 13). For every job j that has a valid VM
placement for its virtual cluster abstraction <Nj , B

j
min>, the

algorithm puts j into Jrun and records its VM placement Pj
(Line 15). Besides the real resource status of the datacenter
at t0 received from the resource manager, the scheduling
algorithm needs to maintain a virtual resource status, which
takes into account the VM allocations for jobs in current Jrun.
Each time when a job j is added into Jrun, the virtual resource
status is updated according to its VM placement and virtual
cluster abstraction (Line 16). Also, the algorithm needs to pass
the up-to-date virtual resource status to VMplace to find a
valid allocation for next job.

So far, Jrun includes all jobs scheduled with their smallest
bandwidth options that can meet their deadlines. Next, the
algorithm optimizes the VM bandwidth selections for jobs
in Jrun with the goal to minimize their execution times. It
consists of two sub-steps: i) reducing the longest job execution
time among all jobs (Lines 20-29); and ii) minimizing the
execution time for each individual job (Lines 30-33). In the
first sub-step, the algorithm determines the longest job that has
the largest execution time in Jrun, say jL, under current VM
bandwidth assignment, and tries to increase its VM bandwidth
to the next higher bandwidth option in its profile. If the next
bandwidth option for jL is admissible under its VM placement
PjL , i.e, the bandwidth will not exceed the link capacity, then
it is used as jL’s new VM bandwidth and jL’s execution time
is updated. The algorithm repeats the above procedure after
each update, until it cannot further reduce the execution time
of the longest job either because the next bandwidth option
will exceed the link capacity or because all options run out. In
the second sub-step, the algorithm fetches all jobs one by one
in non-increasing order of the number of VMs Nj , and uses
the maximum admissible bandwidth option for each job’s VM
bandwidth to minimize the job execution time. In this way, a
job with a larger number of VMs can be finished earlier and
release its resources sooner. As a result, the remaining jobs
in Jready can be scheduled at an earlier time and thus have a
better chance to meet their deadlines as well as increase the
system reward.

Finally, the algorithm has determined the set of jobs Jrun
that can be concurrently allocated and run at time t0. The
scheduler updates the schedule S with the set Jrun along with
VM bandwidth Bj and VM placement Pj for each job in it
(Lines 34-35). Then, the algorithm schedules the remaining
jobs in Jready for time t1 (Lines 1-36). After the scheduling
for each ti ∈ T has completed or all jobs have been scheduled,
the scheduler informs the resource manager about the schedule
S (Line 37). Accordingly, the resource manager performs the
VM allocation and the bandwidth reservation, and starts the
jobs accordingly.

V. PERFORMANCE EVALUATION

In this section, we present our trace-driven simulation and
real cluster implementation results of our Job Scheduling Al-
gorithm, referred to as JSA for short. We compared JSA with
a number of typical methods. One is a typical scheduling strat-



egy, Earliest Deadline First (EDF), which allocates the jobs in
non-decreasing order of their deadlines. The second compared
method is a virtual cluster allocation algorithm, Oktopus [7],
which tries to place all the VMs from a job in a smallest
sub-tree. The sub-tree has sufficient empty VM slots and the
available bandwidth of the link that connects the sub-tree to
the rest of the network satisfies the bandwidth demand of
the VMs. The third compared method is Proportional Sharing
on Proximate Links (PS-P) in FairCloud [20]. PS-P allocate
the link bandwidth to each VM when a link is congested in
order to achieve proportional sharing on proximate links while
providing minimum guarantee. It assigns the communication
between VMs X and Y on a link L based on assigned weight:
WX−Y = WY−X = αWX

NX
+ βWY

NY
, where NX (NY ) is the

number of other VMs that X (Y) communicates through link
L, and WX (WY ) is the weight of VM X (Y). PS-P prioritizes
VMs that are close to a given link. More precisely, PS-P uses
α = 1 and β = 0 for all links in the tree that are closer to X
than Y, and α = 0 and β = 1 for all links closer to Y than
X. To extend PS-P for job scheduling, we let it use Oktopus
to allocate jobs. Even when a link’s bandwidth is used up, as
long as there are available slots, PS-P still allocates job VMs
and will handle the link congestion as introduced above. We
evaluate the performance of these methods in the scenario of
scheduling five batches of jobs in a datacenter system.

A. Experiment Setup

Workload. We used the Facebook synthesized workload [21]
to generate a sequence of jobs running on a 24-machine
cluster. We ran 2500 jobs from the 6000 jobs in the Facebook
workload consecutively on the cluster and measured the job
information. We then used the measured job information to
set the parameters in order to conduct a rigorous trace-driven
simulation and real implementation experiment. The number
of VMs needed by each job j, i.e., Nj , was set to the number
of tasks of the job measured from the trace. The reward
value of each job vj was randomly chosen from a uniform
distribution within an interval of [100,1000].

For the job performance profiles, we measured the average
bandwidth usage B̄ over the execution time period (denoted by
τ j1 ) of the tasks of the job. We generated the set of bandwidth
options for each job from B̄ by multiplying a ratio, i.e., {0.2,
0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}. For each job j, the
execution time τ j1 under the VM bandwidth B̄ was measured
from the experiments. For simplicity, the execution time under
other bandwidth options was determined by a linear speedup
model, τ ji = (1− αj ∗

Bj
i−B̄

0.2B̄
) ∗ τ j1 (i 6= 1), where αj (called

speedup ratio) is randomly chosen from (0,0.14) for every job
j at default. Larger αj (i,e., a higher speedup ratio) means
a given bandwidth increase leads to more job execution time
decrease; a given bandwidth decrease results in more execution
time increase.. The deadline dj = βτ j1 , where β is randomly
chosen from [2,7] at default. EDF, Oktopus and PS-P use B̄
as predicted bandwidth demand for job scheduling.
Simulation. We simulate a datacenter of three-level tree topol-
ogy, as shown in Figure 3. A rack consists of 40 machines;

each with 4 VM slots and a 1Gbps link to connect to a Top-
of-Rack (ToR) switch. Every 20 ToR switches are connected
to a level-2 aggregation switch and 2 aggregation switches are
connected to the datacenter core switch. As the setup in [7],
there are total 1600 machines at level 0. The link bandwidth
between a ToR switch and an aggregation switch is 8Gbps
and the link bandwidth between an aggregation switch and
the core switch is 32Gbps. It means that the oversubscription
of the physical network is 5.
Real cluster implementation. We implemented our JSA job
scheduling and evaluate it on a 24-node cluster on CloudLab
cluster [22]. We emulated the 24-node cluster in a three-level
tree topology with the realistic bandwidth. We divided the
24-node cluster into 4 sub-clusters of 6 nodes each. Each
sub-cluster is emulated as a rack and each node has 1 VM
slots and connects to a Top-of-Rack (ToR) switch with a
1Gbps link. Every 2 ToR switches are connected to a level-2
aggregation switch and 2 aggregation switches are connected
to the datacenter core switch. The link bandwidth between a
ToR switch and an aggregation switch is 1.2Gbps and the link
bandwidth between an aggregation switch and the core switch
is 0.48Gbps. It means that the oversubscription of the physical
network is 5. We identified each node by a number. We use
the network utility tools tc and iptables to implement these
bandwidth limits. In this experiment, we simply the jobs as
data transfer jobs. We generated the jobs based on the job
information we collected from the Facebook workload. The
transferred data size and the time to transfer of each job are
based on the shuffle data size and the execution time of the
job. In addition to the 24-node cluster, we used another node
to calculate the offline schedule. At the beginning, the batches
of jobs were submitted to this node first, which then calculates
the schedule and the bandwidth for each job.

B. Experimental Results

We call the ratio of the total reward value of the jobs that
complete before their deadlines to the total reward value of all
jobs system reward ratio. The results presented below are the
average over 20 runs.

1) Effect of the number of jobs: To study the effect of the
number of jobs on the system reward, in the simulation we
randomly selected five sets of jobs from the trace, with total
number of jobs in the set being 500, 1000, 1500, 2000 and
2500, respectively. In the real cluster, we ran five sets of jobs
in the cluster, with total number of jobs in the set being 50,
100, 150, 200 and 250, respectively. Each set of jobs forms
of 5 batches of jobs. Figures 4(a) and 5(a) show the system
reward ratio for different scheduling methods, with respect to
the number of jobs to schedule in the trace-driven simulation
and real cluster implementation. We see that in both simulation
and implementation, the result follows EDF<Oktopus≈PS-
P<JSA. In both simulation and implementation, JSA performs
much better than PS-P, Oktopus and EDF. This is because
some jobs cannot receive enough bandwidth in PS-P, Oktopus
and EDF, and hence they cannot be completed by their dead-
lines. JSA takes advantage the elastic feature of bandwidth



0.80

0.85

0.90

0.95

1.00

500 1000 1500 2000 2500

S
y
st
e
m
 r
e
w
a
rd
 r
a
ti
o

The number of jobs

JSA EDF

Oktopus PS‐P

(a) System reward ratio vs. the num-
ber of jobs.

0.80

0.85

0.90

0.95

15 20 25 30 35

Sy
st
e
m
 r
e
w
a
rd
 r
a
ti
o

The average number of VMs 

JSA EDF

Oktopus PS‐P

(b) System reward ratio vs. the aver-
age number of VMs of each job.

0.75

0.80

0.85

0.90

0.95

3 4 5 6 7

S
y
st
e
m
 r
e
w
a
rd
 r
a
ti
o

Upper bound of deadline factor

JSA EDF

Oktopus PS‐P

(c) System reward ratio vs. the upper
bound of deadline factor.

0.85

0.90

0.95

1.00

0.01 0.04 0.07 0.1 0.13

Sy
st
e
m
 r
e
w
a
rd
 r
a
ti
o

Speedup ratio

JSA SimpleJSA

(d) System reward ratio vs. the
speedup ratio.

Fig. 4: Trace-driven simulation results.

0.40

0.50

0.60

0.70

50 100 150 200 250

S
y
st
e
m
 r
e
w
a
rd
 r
a
ti
o

The number of jobs

JSA EDF

Oktopus PS‐P

(a) System reward ratio vs. the num-
ber of jobs.

0.40

0.50

0.60

0.70

15 20 25 30 35

S
y
st
e
m
 r
e
w
a
rd
 r
a
ti
o

The average number of VMs 

JSA EDF

Oktopus PS‐P

(b) System reward ratio vs. the aver-
age number of VMs of each job.

0.45

0.55

0.65

0.75

3 4 5 6 7

S
y
st
e
m
 r
e
w
a
rd
 r
a
ti
o

Upper bound of deadline factor

JSA EDF

Oktopus PS‐P

(c) System reward ratio vs. the upper
bound of deadline factor.

0.60

0.65

0.70

0.75

0.01 0.04 0.07 0.1 0.13

S
y
st
e
m
 r
e
w
a
rd
 r
a
ti
o

Speedup ratio

JSA SimpleJSA

(d) System reward ratio vs. the
speedup ratio.-

Fig. 5: Real cluster implementation results.

resources by using the minimum bandwidth option that meets
its deadline in scheduling first and then tries to increase the
reserved bandwidth. Also, by reducing the execution times of
jobs in a batch, it leaves more bandwidth for scheduling for
the subsequent batch, enabling more jobs to complete by their
deadlines. As a result, JSA produces higher system reward
ratio than PS-P, Oktopus and EDF. PS-P, Oktopus and EDF
perform similarly.

2) Effect of the number of VMs per job: To investigate
the effect of the number of VMs required by each job, we
manually divided the jobs into five groups in the trace-driven
simulation and real cluster implementation. In each group, the
average number of VMs (Nj or tasks) of the jobs is 15, 20,
25, 30 and 35, respectively. Each group of jobs are divided
into 5 batches of jobs as mentioned above. Figures 4(b) and
5(b) show the system reward ratio for each group in each
job scheduling method in the trace-driven simulation and real
cluster implementation, respectively. We see that the result
follows EDF<Oktopus≈PS-P<JSA due to the same reasons
as in Figure 4(a). We also see that the system reward ratio
decreases as the average number of VMs of each job increases.
The reason is also the limited capacity of the cloud. Due to
a larger average size of virtual networks for jobs, jobs in the
queue must wait for a longer time, thus generating more jobs
that miss their deadlines.

3) Effect of the job deadlines: The workload model defines
the job deadline as a multiple of the job execution time under
its measured VM bandwidth B̄. The factor β was randomly
chosen from a range [2 ,7]. In this study, we still used 2 as
its low bound and changed its upper bound to 3, 4, 5, 6 and
7, respectively. Figures 4(c) and 5(c) show the system reward
ratio for each upper bound of each scheduling method in the
trace-driven simulation and real cluster implementation, re-
spectively. The curves in the figure have the same relationship
as in previous figures and JSA achieves the most reward due

to the same reasons. We also see that as the upper bound of
the deadline factor increases, the system reward radio increases
gradually. A larger upper bound of the factor increases the job
deadlines such that the system has a better chance to receive
reward from the jobs with larger deadlines.

4) Effect of the speedup ratio αj: We use SimpleJSA to
denote JSA without the job execution time optimization step
of JSA (line 21-33 in Algorithm 1). This experiment is to
see the effect of this optimization step and the effect of
the speedup ratio αj . Different cloud applications may have
different speedup ratios with the bandwidth, and data-intensive
applications with large network demands are expected to have
higher speedup ratios. Figures 4(d) and 5(d) show the system
reward ratio of SimpleJSA and JSA versus different αj values
in the trace-driven simulation and real cluster implementation,
respectively. We see that JSA produces higher system reward
ratio than SimpleJSA. The optimization step reduces the
execution time of the jobs and allows the resources to release
earlier. As a result, the jobs in the subsequent batch can be
scheduled earlier, and hence have higher probability to meet
their deadline, which leads to a higher system reward ratio.
job execution time under a given bandwidth.

VI. RELATED WORK

Currently, there exists very little work on the job scheduling
within the context of bandwidth reservations for VM com-
munication in clouds. In this section, we describe the related
works on two topics: bandwidth allocation and job scheduling.
Bandwidth allocation. Oktopus [7] is a “hose model” based
virtual cluster abstraction for network reservation, in which
a virtual cluster request <N,B> requires a virtual topology
comprising of N machines connected by links of bandwidth
B to a virtual switch. In these works, the bandwidth demand
is specified in the request from the tenant. TIVC [8] further
extends the virtual cluster model with time-varying bandwidth



reservation in order to capture the time-varying network
demand of cloud applications. CloudMirror [23] proposes a
network abstraction and an efficient VM placement strate-
gy to provide predictable performance for cloud datacenter
networks. FairCloud [20] presents three allocation policies to
navigate the tradeoffs between minimum guarantee, network
proportionality, and high utilization. Shen et al. [24, 25]
proposed a new pricing model in order to achieve a win-
win situation for cloud provider and tenants. Unlike the above
works that allocate static bandwidth demands, our work uti-
lizes the elastic feature of bandwidth resource and elastically
reserves bandwidth for the jobs based on their deadline.
Job scheduling. Our work is related to the work in [9], which
also addresses the optimal scheduling problem with the goal
of maximizing value-based objective function. However, this
work only considers the constraint of the number of CPU
units. Several works [26, 27] propose job scheduling algorithm
to improve the cluster performance. Corral [13] improves job
performance and reduces network contention from rack to
core switches by considering the workload of recurring jobs
and jointly optimizing the input data placement and tasks.
Unlike these job scheduling works, we focus on scheduling
the type of job requests arising from the recently proposed
virtual network abstraction. It is suitable for scheduling jobs
comprised of communication VMs and can ensure sufficient
bandwidth provision for jobs. Previous works use fixed
bandwidth amounts for jobs in bandwidth reservation or job
scheduling. The novelty of this work is that it takes advantage
of the elastic feature of bandwidth to dynamically determine
the bandwidth demands of jobs to achieve a certain objective
such as maximizing value-based objective function.

VII. CONCLUSION

In this paper, we design a new cloud service model, in
which a tenant only needs to specify the job deadline. We aim
to find a job schedule (the reserved bandwidth in the virtual
cluster abstraction, the running start time of each job, and
the VM placement in the datacenter) to satisfy the deadline
requirements while maximizing the total rewards of jobs that
are finished by their deadlines. Due to the NP hardness of
this problem, we propose a heuristic scheduling algorithm.
We produce job profiles for jobs indicating the job execution
time corresponding to each provisioned bandwidth amount.
The algorithm first uses the minimum bandwidth amount
of each job that meets its deadline in scheduling, and then
increases the reserved bandwidth as much as possible to
reduce the execution times of jobs. Our trace-driven simulation
and real cluster implementation results show the efficiency
and effectiveness of our algorithm in comparison with other
scheduling algorithms. In the future, we will explore on-line
scheduling algorithms with automatic bandwidth reservation.

VIII. ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
NSF-1404981, IIS-1354123, CNS-1254006, IBM Faculty

Award 5501145 and Microsoft Research Faculty Fellowship
8300751.

REFERENCES
[1] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measurements in

the cloud: observing, analyzing, and reducing variance,” Proc. of VLDB
Endow., vol. 3, no. 1-2, Sep. 2010.

[2] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris, “Reining in the outliers in map-reduce clusters
using mantri,” in Proc. of ODSI, 2010.

[3] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing the
data center network,” in Proc. of NSDI, 2011.

[4] Y. Lin and H. Shen, “Eafr: An energy-efficient adaptive file replication
system in data-intensive clusters,” in Proc. of ICCCN, 2015.

[5] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and J. R.
Santos, “Elasticswitch: practical work-conserving bandwidth guarantees
for cloud computing,” in Proc. of SIGCOMM, 2013.

[6] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “Secondnet: a data center network virtualization architecture
with bandwidth guarantees,” in Proc. of Co-NEXT, 2010.

[7] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in Proc. of SIGCOMM, 2011.

[8] D. Xie, N. Ding, Y. C. Hu, and R. R. Kompella, “The only constant
is change: incorporating time-varying network reservations in data
centers,” in Proc. of SIGCOMM, 2012.

[9] N. Jain, I. Menache, J. Naor, and J. Yaniv, “Near-optimal scheduling
mechanisms for deadline-sensitive jobs in large computing clusters,” in
Proc. of SPAA, 2012.

[10] G. Liu, H. Shen, and H. Wang, “Computing load aware and long-view
load balancing for cluster storage systems,” in Proc. of Big Data, 2015.

[11] M. Drozdowski, Scheduling for Parallel Processing, 1st ed. Springer
Publishing Company, Incorporated, 2009.

[12] K. LaCurts, S. Deng, A. Goyal, and H. Balakrishnan, “Choreo: Network-
aware task placement for cloud applications,” in Proc. of IMC, 2013.

[13] V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and M. Cae-
sar, “Network-aware scheduling for data-parallel jobs: Plan when you
can,” in Proc. of SIGCOMM, 2015.

[14] B. Palanisamy, A. Singh, L. Liu, and B. Langston, “Cura: A cost-
optimized model for mapreduce in a cloud,” in Proc. of IPDPS, 2013.

[15] L. Chen and H. Shen, “Consolidating complementary vms with
spatial/temporal-awareness in cloud datacenters,” in Proc. of INFOCOM.
IEEE, 2014, pp. 1033–1041.

[16] H. Herodotou, F. Dong, and S. Babu, “Mapreduce programming and
cost-based optimization? crossing this chasm with starfish,” PVLDB,
vol. 4, no. 12, pp. 1446–1449, 2011.

[17] L. Yan and H. Shen, “TOP: vehicle trajectory based driving speed
optimization strategy for travel time minimization and road congestion
avoidance,” in Proc. of MASS, 2016.

[18] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible
data center network,” in Proc. of SIGCOMM, 2009.

[19] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proc. of SIGCOMM, 2008.

[20] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica, “Faircloud: sharing the network in cloud computing,” in
Proc. of SIGCOMM, 2012.

[21] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The Case for
Evaluating MapReduce Performance Using Workload Suites.” in Proc.
of MASCOTS, 2011.

[22] “CloudLab cluster,” http://https://www.cloudlab.us/.
[23] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M. Kang, and

P. Sharma, “Application-driven bandwidth guarantees in datacenters,”
in Proc. of SIGCOMM, 2014.

[24] H. Shen and Z. Li, “New bandwidth sharing and pricing policies to
achieve a win-win situation for cloud provider and tenants,” in Proc. of
INFOCOM, 2014.

[25] ——, “New bandwidth sharing and pricing policies to achieve a win-win
situation for cloud provider and tenants,” IEEE Transactions on Parallel
and Distributed Systems, vol. PP, no. 99, pp. 1–1, 2015.

[26] H. Shen, A. Sarker, L. Yu, and F. Deng, “Probabilistic network-aware
task placement for mapreduce scheduling,” in Proc. of Cluster, 2016.

[27] J. Liu and H. Shen, “Dependency-aware and resource-efficient schedul-
ing for heterogeneous jobs in clouds,” in Proc. of CloudCom, 2016.


