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Abstract—To minimize the fuel consumption for driving,
several methods have been proposed to calculate vehicles’
optimal velocity profiles on a remote cloud. Considering the
traffic dynamism, each vehicle needs to keep updating the
velocity profile, which requires low latency for information
uploading and profile calculation. However, these proposed
methods cannot satisfy this requirement due to (1) high queuing
delay for information uploading caused by a large number
of vehicles, and (2) the neglect of the traffic light and high
computation delay for velocity profile. For (1), considering
the driving features of close vehicles on a road, e.g., similar
velocity and inter-distances, we propose to group vehicles
within a certain range and let the leader vehicle in each
group to upload the group information to the cloud, which
then derives the velocity of each vehicle in the group. For
(2), we propose spatial-temporal DP (ST-DP) that additionally
considers the traffic lights. We innovatively find that the DP
process makes it well suited to run on Spark (a fast parallel
cluster computing framework) and then present how to run ST-
DP on Spark. Finally, we demonstrate the superiority of our
method using both trace-driven simulation (NS-2.33 simulator
and MATLAB) and real-world experiments.

I. INTRODUCTION

Road transportation is considered as one of the major
sources of gas emissions, which lead to climate change
and ambient air pollution. For instance, with more than
13 million vehicles sold in China in 2014, motor vehicles
have emerged as the chief culprit for the throat-choking
air pollution in big cities such as Beijing and Shanghai.
As a result, there is an increasing need to decrease fuel
consumption of vehicles, which is proportional to vehicles’
gas emission [1].

Among various strategies to reduce the fuel consumption
of vehicles, optimizing vehicle velocity is one of the most
efficient methods [2]–[7]. This method outputs the vehicle
velocity profile that indicates the velocity at each time point
over time from the source to the destination to minimize the
number of accelerations and hence fuel consumption.

However, most of these works [2]–[4] require relatively
expensive computation devices, such as road side units
(RSUs), to help vehicles calculate their velocity profiles,
which limits their practical value, especially in rural areas.
Some other works [2], [5] make each vehicle communicate
with traffic lights to help it approach traffic lights at green
whenever possible. However, due to the limited transmission
range of vehicles, a vehicle cannot optimize its velocity
when it is far away from the traffic lights. Further, these
works only consider the next traffic light on the road, which
cannot find the optimal velocity profile that leads to the
minimum fuel consumption for the entire travelling route.

Actually, calculating the optimal velocity of a vehicle
is non-trivial. For each vehicle, its optimal velocity profile
depends on the global traffic regulator information (i.e., all
the stop signs and traffic lights along the entire source-
destination route) and the calculation requires intensive
computations, which is beyond the capability of either traffic
lights or vehicles’ own devices. Recently, a remote comput-
ing framework for transportation systems, called vehicular
cloud, has been proposed to augment these mobile systems’
capabilities by migrating computation to more resourceful
computers in the cloud [6]–[10]. In the vehicular cloud, each
vehicle uploads its information, e.g., velocity and coordinate,
to the cloud through base stations (BSs), and the cloud then
derives the optimal velocity profile for the vehicle using the
dynamic programming (DP) [11]. However, these remote
computing methods do not take into account the traffic lights
and the DP has high time complexity and delay, so they have
very limited practical use in the real-world transportation
systems.

Considering that the traffic on a road is highly dynamic
and unpredictable, each vehicle needs to periodically update
its optimal velocity profile based on the current traffic
condition. It requires low latency for information upload-
ing and profile calculation. However, the current remote
computing methods cannot satisfy this requirement due to
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(1) high queuing delay for information uploading at BSs
caused by a large number of vehicles, and (2) the neglect
of the traffic light and high computation delay for velocity
profile calculation at the cloud. To overcome the above two
drawbacks, we design a new remote computing framework,
called the fast Velocity Optimization system (FastVO), which
is composed of two methods: congestion-avoidance infor-
mation uploading and trafficlight-considered Spark-based
optimal velocity profile calculation.

Congestion-avoidance information uploading. The ob-
jective of this method is to decrease the information up-
loading delay through decreasing the amount of information
to be uploaded to the BSs. Close vehicles on a road have
almost the same velocity and inter-distances [12]. By taking
advantage of this driving feature of vehicles, FastVO groups
vehicles within a certain range and lets the leader vehicle in
a vehicle group to upload only its own velocity, coordinate,
group vehicles’ IDs and the group length (i.e., the distance
between the first vehicle and the last vehicle in the group)
to the cloud, and let the cloud estimate the velocities and
coordinates of all the vehicles in the group based on the
driving features. As a result, compared to the previous
methods that require each vehicle to upload its information,
FastVO reduces the amount of the uploaded information
approximately by n times, where n is the number of vehicles
in the group. Then, FastVO avoids the congestion in the BSs
and reduces the packet transmission delay to the cloud.

TrafficLight-considered Spark-based optimal velocity
profile calculation. The objective of this method is
to quickly calculate the optimal velocity profile for each
vehicle and also consider the traffic lights in DP. Specifically,
we propose spatial-temporal DP algorithm (ST-DP) that
considers both time and location in DP, which enables to
additionally consider the traffic lights. That is, the velocity
at the time and location of a red traffic light must be 0. To
reduce computation delay, we innovatively find that the DP
process makes it well suited to Spark (a fast parallel cluster
computing framework) [13]. Spark is a variant of MapRe-
duce [14], a programming model for parallel computing,
but is more efficient for iterative computing. Accordingly,
we decompose the ST-DP process to a set of independent
parts, and carefully design the map and reduce functions
and the key for the output of the mapper, so that ST-DP can
be conducted as processing different task components in
parallel (map function) and then combining the calculated
results (reduce function), which are taken as the input in
the next iteration if the program has not been finished.

We have conducted both trace-driven simulation (NS-2.33
simulator and MATLAB) and real-world experiments to test
the performance of FastVO. Experimental results demon-
strate the superior performance of our methods compared
with the previous methods.

The remainder of this paper is organized as follows.
Section II and Section III present the information uploading

and velocity profile calculation in our system, respectively.
Section IV evaluates the performance of our proposed meth-
ods in comparison with other methods. Section V presents
related work. Section VI concludes this paper with remarks
on our future work.

II. CONGESTION-AVOIDANCE INFORMATION
UPLOADING

The objective of this method is to reduce the amount of
information that needs to upload to the cloud in order to
reduce the information uploading delay. We notice some
driving features for close vehicles on a road including similar
velocity and inter-vehicle distance. Based on these features,
we form close vehicles to a group and only let the leader
vehicle upload its own information, group vehicles’ IDs and
group length. Then, from this uploaded information, the
cloud can recover the information of all other group vehicles
based on the driving features.

Each vehicle in a group needs to report to the leader
vehicle its vehicle ID and location through either single-
hop or multi-hop routing [15]. The leader vehicle maintains
an group ID list (which includes the sorted IDs of vehicles
based on their position sequence in the lane) and the group
length, which needs to upload to the cloud for optimal
velocity calculation. Thus, a set of vehicles can form a
vehicle group iff they satisfy the following two criterions: all
the vehicles are 1) connected with the leader vehicle through
single-hop or multi-hop routing, and 2) running in the same
lane.

Like [2]–[7], we concentrate on a longitudinal vehicle
group, which is composed of n vehicles with position
sequence number {1,2, ...,n} driving in the same lane. Also,
we consider a discrete time system, where time t = 0,1,2, ...
with time slot ∆t = 1 unit We use li

t to represent the
line coordinate of vehicle i at time t, and use vi

t and ai
t

to represent vehicle i’s speed and acceleration at time t,
respectively. We use di, j

t = |li
t − l j

t | to represent the distance
between vehicles i and j at time t.

We have two observations for vehicles’ movement a-
mong close vehicles on a lane [12]: 1) the inter-distances
between vehicles are almost the same: d1,2

t ≈ ... ≈ dn−1,n
t ,

and 2) all the vehicles have almost the same velocity with
the leader vehicle: v1

t ≈ ... ≈ vn
t . According to these two

observations, we group close vehicles. and let the leader
vehicle periodically upload the following information to the
cloud: the leader vehicle’s coordinate (l1

t ) and velocity (v1
t ),

the group length (ln
t − l1

t ), and the group ID list. Then,
taking this information as inputs, the cloud can estimate the
velocity and coordinates of all other vehicles in the group:
v̂i

t = v1
t , i = 1, ...,n and

l̂i
t =

ln
t − l1

t

n−1
(i−1) , i = 1, ...,n, (1)

2



where v̂i
t and l̂i

t represent the estimated velocity and coor-
dinate of vehicle i, respectively. Some of the information
needed for optimal velocity calculation only needs to be
uploaded once, such as vehicle’s mass and wheel radius.
Each vehicle reports its own such information to the cloud
by itself at the beginning.

III. TRAFFICLIGHT-CONSIDERED SPARK-BASED
OPTIMAL VELOCITY PROFILE CALCULATION

In this section, we introduce how to quickly calculate
the optimal velocity profile to minimize the total fuel con-
sumption of a vehicle using DP, given the vehicle’s current
velocity (denoted by vc), its route with source (i.e., current
location) and destination, and its driving time constraint (i.e.,
the maximum time that the driver can accept denoted by T ).
Different from the previous DP algorithms [6], [7], [11], our
ST-DP algorithm additionally considers the effect of traffic
lights on a vehicle’s movement, which further increases the
computation delay. Fortunately, we observe that directed
graph building process of DP can be decomposed into a
set of independent parts, which can be processed in parallel.
Based on this observation, we implement ST-DP using Spark
[13], which is a variant of MapReduce but more efficient for
iterative computing. In the following, we first introduce the
problem statement in Section III-A, then describe the ST-DP
algorithm to solve the problem in Section III-B, and finally
introduce how we use Spark to implement ST-DP in Section
III-C.

A. Problem Statement

We use D to denote the distance between the source and
the destination, and use vt to represent the velocity of the
vehicle from time t− 1 to time t. We use dt to denote the
distance from the source at time t or the location with this
dt = ∑

t
i=1 vi. Suppose vmin(dt) and vmax(dt) are the specified

maximum speed and minimum speed in the road segment
from dt−1 to dt due to speed limit [12]. Then,

vmin(dt)≤ vt ≤ vmax(dt). (2)

For drivers’ comfort and safety issues [11], the acceleration
of a vehicle cannot be too large. Hence, the following
limitations are imposed on the vehicle acceleration:

amin ≤ vt+1− vt ≤ amax, ∀t = 0,1,2, ... (3)

where amin and amax are -1.5 m/s2 and 2.5 m/s2 [11]. Notice
that when acceleration is negative, it means the velocity is
decreased. In addition, since v0 equals a vehicle’s current
velocity (denoted by vc) and its velocity is 0 when it arrives
at the destination, we consider the following boundary
conditions:

v0 = vc and vT = 0. (4)

Next, we consider the stop signs and red traffic lights. A
vehicle must stop in front of each stop sign at location d(t)

if its velocity is not 0 at t−1. That is,

vt = 0, if vt−1 6= 0 and dt ∈Dstop (5)

where Dstop denotes locations of the stop signs in the route.
Suppose there are L traffic lights in the entire source-
destination route and let Dsig = {d1

sig,d
2
sig, ...,d

L
sig} denote the

set of traffic lights’ locations in the route and T l
red denote

the set of time slots when the lth traffic light is red. Then,

vt = 0, when dt = dl
sig and t ∈T l

red. (6)

The minimum fuel consumption problem: The objective of
this problem is to find the optimal velocity profile that
minimizes the fuel consumption over a specific source-
destination vehicle’s route. Let cvt ,vt+1 denote the fuel con-
sumption (i.e., edge cost) when the vehicle’s velocity is
changed from vt to vt+1 and use this velocity in time slot
[t, t +1]. cvt ,vt+1 can be directly calculated by the fuel con-
sumption model introduced in [11] given the vehicle’s mass
and wheel radius. Then, the minimum fuel consumption
problem can be formulated as

min
T−1

∑
t=0

cvt ,vt+1 s.t.
T

∑
t=1

vt =D, and Equ. (2) - (6) are satisfied

(7)
It means that the total fuel consumption is minimized with
the constraint that the vehicle drives D distance within time
T .

B. The Spatial-Temporal DP Algorithm

In the spatial-temporal DP algorithm (ST-DP), we rep-
resent the status of a vehicle by a triple point (t, dt , vt ),
which represents that if the vehicle’s velocity from time
t − 1 to t is vt , its travel distance from the source place
is dt . We give this algorithm name because all the points in
ST-DP are in the 3-dimensional space containing the spatial,
temporal and velocity coordinates. Based on Equ. 4, (0,0,v0)
represents the vehicle status at the source (current location)
and (T,D,0) represents the vehicle status when it arrives at
the destination. ST-DP builds a graph, which enumerates all
possible points from (0,0,v0) to (T,D,0). Each point (t, dt ,
vt ) has an edge directing to (t+1, dt +vt+1, vt+1) with edge
cost cvt ,vt+1 . Also, each point (t, d, v) is associated with an
value (called point cost), Ct,dt ,vt , which means the minimum
fuel consumption from status (0,0,vt) to status (t, d, v).

Below, we explain how to build the graph in a centralized
manner. The cloud stores the global traffic regulator infor-
mation. It also pre-calculates and stores cvt ,vt+1 for each pair
of (vt ,vt+1) (vt ,vt+1 = vmin, ...,vmax and satisfy constraint 3),
where vmin and vmax are the global maximum speed and
minimum speed in all roads in the transportation system.
We call it edge cost list.

To build the graph, ST-DP derives all the status points
in time sequence, i.e., the points in time t + 1 are derived
only from the points in time t. When t = 0, the traveling
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Figure 1. Graph creation in ST-DP.

distance of a vehicle must be 0. Hence, we initiate point
cost C(0,0,vt) by 0. From each point in t, (t, dt , vt ), we
then derive points (t +1,dt+1,vt+1) considering three cases:
(1) the vehicle meets a stop sign (Constraint (5)), (2) the
vehicle meets a red traffic light (Constraint (6)), and (3)
the vehicle does not meets a stop sign or a red traffic
light (Constrains (2) and (3)). In case 1), dt ∈ Dstop, based
on Equ. (5), if vt 6= 0, then point (t, dt , vt ) only has an
edge directing to (t + 1, dt , 0) with edge cost cvt ,vt+1 = 0.
Otherwise, the derivation of points at t + 1 is the same as
case (3). In case (2), dt = dl

sig and t ∈T l
red, according to Equ.

(6), then point (t, dt , vt ) only has an edge directing to (t+1,
dt , 0) with edge cost cvt ,vt+1 = 0. For case (3), as shown
in Fig. 1, we first derive each point (t + 1,dt + vt+1,vt+1)
when vt+1 = vmin(dt+1), ...,vmax(dt+1) (Constrain 2) and also
satisfies Constrain (3). Then, point (t, dt , vt ) has edges
directing to each (t + 1, dt+1, vt+1) and cvt ,vt+1 equals the
pre-calculated value in the edge cost list. For example, in
the figure, (t,1,1) points to (t +1,5,4) with edge cost c1,4
and other points.

After all points in t +1 are derived, we need to calculate
the point cost for each (t + 1,dt+1,vt+1). We first identify
all the points in t that have directed edges connecting to
(t + 1,dt+1,vt+1). We use St+1,dt+1,vt+1 to denote the set
of (point cost, edge cost)=(Ct,dt ,vt ,cvt ,vt+1) of these points.
Then, Ct+1,dt+1,vt+1 equals the minimum value in all Ct,dt ,vt +
cvt ,vt+1 :

Ct+1,dt+1,vt+1 = min
(Ct,dt ,vt ,cvt ,vt+1 )∈St+1,dt+1 ,vt+1

{Ct,dt ,vt + cvt ,vt+1}

(8)
For example, in Fig. 1, point (t + 1,5,4) is directed by
points (t,1,1), (t,1,2), (t,1,3) and other points. We use
p(t+1,dt+1,vt+1) to denote the previous point (t,dt ,vt) that
generates the minimum value of all (Ct,dt ,vt + cvt ,vt+1 ):

p(t +1,dt+1,vt+1) (9)
= arg min

(Ct,dt ,vt ,cvt ,vt+1 )∈St+1,dt+1 ,vt+1

(
(t,vt ,dt) |Ct,dt ,vt + cvt ,vt+1

)
After all points in t +1 and their point costs are derived,

we then derive all points in t + 2 and their point costs.
This process is repeated until (T,D,0) and its point cost
are derived.
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Figure 2. Implementation of ST-DP on Spark.

In the backtracking algorithm [11], starting from (T,D,0),
we iteratively find p(t + 1,dt+1,vt+1) using Equ. (9) until
(0,0,v0) is reached. Consequently, the velocity entries of
the points in the discovered path from (0,0,v0) to (T,D,0)
compose the optimal velocity profile.

C. Fast ST-DP Using Spark

The above procedure has high time complexity, which
limits its practical use for vehicle velocity optimization.
Fortunately, we notice that the features of the ST-DP process
make it suitable to run on the Spark, which is a programming
model for processing large datasets with a parallel algorithm
on a cluster. Spark can outperform Hadoop by 10x [13]. In
the following, we first introduce the task execution process
on Spark, then introduce how the features of the ST-DP
process make it suitable to run on the Spark, and finally
present how to execute ST-DP in Spark.

As Fig. 2 shows, the Spark framework has two procedures:
map() and reduce() [13] with two main steps: con-
structing resilient distributed datasets (RDDs) and parallel
operations. In the first step, Spark divides the input into
chunks and then passes each chunk to a mapper. The key-
value output pairs from each mapper are collected by a
master controller and sorted by key. The keys are divided
among all reducers, so all key-value pairs with the same key
wind up at the same reducer. The reducer combines the data
to produce a result, which will be taken as the input in the
next iteration if the program has not been finished.

As shown in Fig. 1, in ST-DP, the graph is built at a time
sequence, that is, points at t +1 are derived from points at
t. For each point at t, (t,vt ,dt ), it generates several points
(t+1,dt+1,vt+1). The point cost of a given (t+1,dt+1,vt+1)
depends on the (Ct,dt ,vt ,cvt ,vt+1) of the points at t that point to
(t+1,dt+1,vt+1), i.e., St+1,dt+1,vt+1 and it is calculated based
on Equ. (8). Next, taking the output, i.e., points at t +1 as
the input, the points at t + 2 and their associated costs are
generated. This process repeats until (T,D,0) is reached.

We notice that the first procedure to generate points (t +
1,dt+1,vt+1) from each point (t,vt ,dt ) is the same and this
procedure is independent from all points in t +1. Also, for
different t + 1, given St+1,dt+1,vt+1 , the second procedure to
calculate Ct+1,vt+1,dt+1 is the same. Then, we can use map()
for the first procedure and use reduce() for the second

4



procedure, and the output of the second procedure is taken
as the input of the first procedure. However, a challenge
here is how to find St+1,dt+1,vt+1 from the mapper outputs
as the input of the second procedure. We notice that all the
points at t that point to the same point (t + 1,dt+1,vt+1)
have the same (dt+1,vt+1). Then, we use (dt+1,vt+1) as the
key, so that the mapper outputs (Ct,dt ,vt ,cvt ,vt+1) belonging
to St+1,dt+1,vt+1 from different mappers are sent to the same
reducer.

In the following, we introduce how we implement ST-
DP by providing map and reduce functions in Spark.
The edge cost list and global traffic regulator information
are pre-determined and stored in mappers. In each itera-
tion t, the computation executes as follows. The input of
mappers includes all points at t and their associated point
costs, i.e., (t,dt ,vt ) and Ct,dt ,vt . Each mapper is assigned
a chunk including a few points to handle. The output
of each mapper includes (Ct,dt ,vt ,cvt ,vt+1) for each derived
point (t + 1,dt+1,vt+1) and its associated key (dt+1,vt+1).
We introduced the process of this derivation previously in
Section III-B. Thus, the set of all the (Ct,dt ,vt ,cvt ,vt+1) with
the same key, i.e., St+1,dt+1,vt+1 , are gathered in the same
reducer. Each reducer conducts the computation in Equ. (8)
and all reducers output Ct+1,dt+1,vt+1 for all points at t + 1,
(t +1,vt+1,dt+1). Finally, we check whether t = T . If yes,
the ST-DP process is finished and we have derived the cost
of all the points for ST-DP; otherwise, the output of the
reducers becomes the input of the mappers and the iteration
continues.

IV. PERFORMANCE EVALUATION

In this section, we compare the performance of FastVO
system with two state-of-the-art methods, called Dynamic
programming (DP) [11] and Predictive Cruise Control (PC-
C) [2]. DP is similar with our approach, except it builds the
directed graph in 2-dimensional space (including the spatial
and velocity coordinates), which neglects the effect of red
traffic lights on vehicles’ movement. Also, though DP also
uses the cloud to calculate the optimal velocity profile, it
does no use parallel computing. In PCC, a vehicle contacts
each traffic light to get the traffic light information, and
calculates its optimal velocity profile to avoid stopping at
the upcoming red traffic light using the subgradient method
[12]. We used both trace-driven simulation and real-world
experiments to test the performance. We used TCP for all
vehicles due to its advantages over UDP in vehicle networks
[16], and we set the maximum retransmission time-out by
500ms. We set the mass, the wheel radius, and the drag
coefficient of each vehicle (needed in the model) by 1954
kg, 0.363m, and 0.29 [11].

Setting of simulation. In simulation, we used both
NS-2.33 and MATLAB based on the real vehicle mobility
trace from San Francisco [17], which is a 30-day trace
recorded by 536 taxis in San Francisco in May, 2008. In

this trace, the destination of taxi is provided and each taxi
driver has a tablet that reports timestamp, vehicle ID, GPS
coordinate to a central server every 7 seconds. We randomly
picked up a route with 5 miles length, and then randomly
picked up a vehicle and its 29 following vehicles in this
route, where each vehicle can connect to the leader vehicle
with the single-hop or multi-hop routing. Hence, the 30
vehicles can form a vehicle group. The simulation takes 10
minutes (from 6:00 pm to 6:10 pm on May 1st, 2008 in the
trace) and during the whole process, there are 3 vehicles
entering the group and no vehicle leaving the group. The
time constraint was set to be 10 minutes. Because drivers
cannot strictly follow the suggested velocity when they
drive vehicles due to dynamic road traffic and road status,
we assume there exists a difference between the suggested
velocity and actual velocity for each vehicle at each time
point, where the difference follows normal distribution with
mean 0 and standard deviation 0.85 mile/hour [18].

The transmission range of the traffic lights is 80 meters
using IEEE 802.11p [2]. In addition, we used the real trace
of green-red signal schedule from [2] to simulate the three
traffic lights. Unless otherwise indicated, we set the initial
velocities of vehicles to 30 miles/hour. The leader vehicle
in FastVO and the vehicles in PD report the information to
Palmetto every 7 seconds. To simulate the Spark in cloud,
we ran 10 mappers and 4 reducers in 7 machines using
MATLAB for the computation, where each machine has
8GB memory and two Intel core i5 processor series. We set
a queue in BSs and traffic lights with length of 100 packets
[19] and 20 packets [20], respectively, and if the queue is
full, then the newly entering packets will be dropped.

Setting of real-world experiments. We built an Android
application for mobile phones, equipped the phones in three
cars, and drove these cars around the campus of Clemson
University to test the performance of different algorithms.
The route has a length of 2 miles, three traffic lights (located
at 0.18 mile, 0.42 mile, and 0.63 mile from the source) and
two stop signs (located at 0.56 mile and 0.74 mile from
the source). We drove three vehicles with initial velocity
20 miles/hour and we tried to maintain a minimum safety
distance of 10 meters. The time constraint was set to be 5
minutes. We used the Palmetto high-performance computing
cluster [21] as the cloud. The leader vehicle in FastVO and
the vehicles in PD report the information to Palmetto every
10 seconds. We implemented Spark on the Palmetto using
10 servers, each of which has 8GB memory, Intel core i3
processor series, and we ran 10 mappers and 4 reducers on
these servers. Currently, Android does not support WiFi ad-
hoc network [22]. As an alternative option, we used WiFi
Direct API to implement our decentralized network [23], and
the communication range of each mobile device is approxi-
mately 70m∼80m. By using WiFi Direct API, each mobile
device equipped in vehicle can directly communicate with
other mobile device without aid of any access point (AP).
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Figure 3. Optimal velocity profile computation delay in simulation.
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Figure 4. Fuel consumption in simulation.

A. Simulation

Fig. 3(a)(b) compare the computation delay of DP and
FastVO with different driving distances and different initial
velocities, respectively. To show the sole advantage of
using Spark and considering the red traffic lights, we also
tested FastVO without considering the traffic lights, i.e., the
directed graph is built in the same way as in DP, denoted by
FastVO(2D). In both figures, we find that the computation
delay of DP is much higher than that of FastVO and
FastVO(2D) in spite of the powerful computation capability
of the cloud. FastVO and FastVO(2D) have much lower
computation delay than DP because they calculate the
optimal velocity profile in parallel using Spark, while DP
calculates the profile in a centralized manner. FastVO has
slightly higher computation delay than FastVO(2D) because
FastVO additionally considers the time coordinate in order to
avoid red traffic lights, which increases the time complexity.
However, with the consideration of the red traffic lights,
FastVO generates much less fuel consumption than DP and
FastVO(2D) (DP and FastVO(2D) generate the same optimal
velocity profiles) as shown in the experimental results later
on. In addition, from Fig. 3(a), we find that as the driving
distance increases, the computation delay of DP decreases
quickly, while that of FastVO and FastVO(2D) decrease
marginally. Driving distance increase leads to the decrease
of the remaining distance to the destination for optimal
velocity calculation, i.e., fewer points in graph construction,
which needs less time in calculation. However, the parallel
computing in FastVO and FastVO(2D) greatly improves the
time efficiency in calculation, so their computation delay is
not high when the driving distance is short.

Finally, we compared the total fuel consumption of DP,

FastVO and PCC. Recall that DP does not consider the traffic
lights and PCC cannot provide optimal velocity profile when
a vehicle is outside of the transmission range of a traffic
light. In order to solely test the effectiveness of the calculated
velocity profiles on reducing the fuel consumption, we first
assume an ideal environment without information uploading
delay, information loss, and computation delay, that is, each
vehicle can receive its profile in time. We then conduct the
testing without the assumption of this ideal environment,
that is, with the consideration of these factors. Fig. 4(a) and
(b) show the total fuel consumption with and without this
assumption. In Fig. 4(a), the fuel consumption follows: DP
> PCC� FastVO, and the total fuel consumption of FastVO
over 5 miles (the length of the whole route) is already about
58% and 50% of that of PCC and DP, respectively. DP has
the highest fuel consumption since it does not take into ac-
count the effect of traffic light on vehicles’ velocities. Then,
if a driver has to stop in front of a red traffic light signal,
which is not in the profile, it leads to more accelerations
and hence more consumed fuel. In PCC, a vehicle lacks
the global regulator information, and it can only determine
its own velocity profile according to traffic light ahead and
hence cannot achieve a global optimal solution. Also, each
vehicle in PCC can obtain its optimal velocity only when
it is inside of the transmission range of the traffic lights,
which just cover three small segments in the route. FastVO
considers traffic lights and also achieves global optimal
velocity profiles, thus produces the least fuel consumption.
In addition, we find that the total fuel consumption increases
as the driving distance increases in both figures, because the
longer a vehicle drives, the more fuel it consumes.

In Fig. 4(b), the total fuel consumption follows: PCC >
DP � FastVO, and we can find the that the advantage of
FastVO is more significant, i.e., the total fuel consumption
of FastVO for 5 miles is about 58% and 47% of that of
PCC and DP, respectively. If a vehicle cannot receive its
optimal velocity profile in time, it cannot always follow the
optimal velocity, leading to more fuel consumption. The fuel
consumption of DP is increased compared to Fig. 4(a) due its
information uploading delay, information loss rate and com-
putation delay. FastVO has similar performance as Fig. 4(a)
because of its low information uploading delay, information
loss rate and computation delay caused by its two methods.
Though PCC has low communication delay and information
drop rate, it still has much higher fuel consumption than
FastVO since vehicles do not have optimal velocity profiles
to follow when they are out of the transmission ranges of
the traffic lights and its solution is sub-optimal.

B. Real-World Experiments

We further compare the computation delay of DP and
FastVO over different driving distances in Fig. 5(a). From
the figure, we find that the computation delay of DP is higher
than that of FastVO. FastVO has lower computation delay
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Figure 5. Real-world experiments.
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than DP because it calculates the optimal velocity profile
in parallel, which saves much time for velocity calculation
compared with DP. Similar to the simulation results (Fig.
3(a)), we also see that as the driving distance increases,
the computation delay of DP decreases quickly, while that
of MapReduce and FastVO decrease marginally due to the
same reasons.

Finally, we compared the total fuel consumption of DP,
FastVO, and PCC. We calculated the fuel consumption of
the vehicle using the fuel consumption model [11] based on
the vehicle’s velocity over time. Fig. 5(b) shows that the
fuel consumption follows: PCC > DP > FastVO due to
the reasons explained in Fig. 4(a) and (b). The total fuel
consumption of FastVO over 2 miles (the length of the
whole route) is about 85% and 65% of that of PCC and DP,
respectively. The results confirm that FastVO is the most fuel
efficient. As mentioned previously, a vehicle cannot strictly
follow the suggested velocity and thus needs to periodically
update its optimal velocity profile. To verify this, we tested
the actual velocities of our vehicles. In the test, our vehicles
try to follow the suggested optimal velocity. Fig. 6 compares
the suggested velocity and the actual velocity of the leader
vehicle in the three systems. The results confirm that vehi-
cles cannot always follow the suggested velocity profiles in
practice. Also, as we expected, we find that the FastVO has
fewer accelerations compared with DP and PCC and hence
generates less fuel consumption.

V. RELATED WORK

Vehicle networks. During recent few years, many works
have been proposed to improve the performance of vehicle

networks. Son et al. [24] investigated the benefits of bit
rate selection in a vehicular network. They also proposed
a simple bit rate selection algorithm to ensure the packet
delivery rate in vehicular networks. Shevade et al. [25]
presented a high-bandwidth vehicular content system that
provides high-bandwidth content access to vehicular passen-
gers by utilizing opportunistic connections to Wi-Fi access
points along the road. Considering that a multi-hop vehicular
ad-hoc network (VANET) requires high packet delivery
ratio for safety application, Xiang et al. [26] proposed a
packet-value-based distributed data dissemination protocol
to guarantee the packet delivery. Chen et al. [27] presented a
lane level cooperative collision avoidance (LCCA) system to
avoid chain vehicle collisions using onboard sensors. LLCA
disseminates emergency message if there is a sudden change
of velocity to avoid further collision. Different from these
works, our work focuses on how to leverage the features of
vehicles driving in a lane to reduce the packets needed to
upload to report each vehicle’s status.

Speed optimization. Recently, many methods have been
proposed for speed profile optimization. Asadi and Vahidi
[2] proposed a control algorithm that adapts the velocity
profile to guarantee that a vehicle approaches a traffic light
at green whenever possible. The authors used a short-range
radar and traffic light information to predictively schedule a
suboptimal velocity profile and implemented the algorithm
in an existing cruise control system. Ozatay et al. [4] pre-
sented a non-linear velocity calculation problem with several
user defined constrains (e.g., driver comfort constraint) and
they derived the velocity using DP with the objective of
fuel consumption minimization. In [2], [6], [7], algorithms
based on traffic and topographic information of the road for
fuel consumption reduction have been proposed. However,
these methods cannot either achieve the optimal solution or
neglect the effect of traffic lights on vehicles’ movement.
Different from these works, our method can achieve the
optimal solution and considers the red traffic lights. Hence,
our method is more practical compared to the previous
works.

VI. CONCLUSION

For high fuel efficiency, it is important for vehicles to
receive their optimal velocity profiles in time to reduce
fuel consumption. Previous remote computing frameworks
require each vehicle to periodically upload its information
to the cloud, which calculates its optimal velocity profile.
However, the large amount of data uploaded from vehicles
may generate high congestion at BSs, which leads to high
queueing delay. Also, using the dynamic programming (DP)
may lead to a high computation delay. Further, these previ-
ous methods neglect the effect of red traffic lights on vehicle
velocity profiles. To handle these problems, in this paper,
we propose a new remote computing framework, called the
fast Velocity Optimization system (FastVO), which is com-
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posed of two methods: congestion-avoidance information
uploading and trafficlight-considered Spark-based optimal
velocity profile calculation. We conducted extensive trace-
driven simulation and real-world experiments to compare
FastVO with previous methods using various metrics in-
cluding information uploading delay, information loss rate,
computation delay, and fuel consumption. Experimental re-
sults show that FastVO outperforms the previous remote
computing framework method. In our future work, we will
further take into account human and economic factors for
velocity calculation.
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