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Abstract—Traffic congestion control is pivotal for in-
telligent transportation systems. Previous works optimize
vehicle speed for different objectives such as minimizing
fuel consumption and minimizing travel time. However,
they overlook the possible congestion generation in the
future (e.g., in 5mins), which may degrade the performance
of achieving the objectives. In this paper, we propose a
vehicle Trajectory based driving speed OPtimization strat-
egy (TOP) to minimize vehicle travel time and meanwhile
avoid generating congestion. Its basic idea is to adjust
vehicles’ mobility to alleviate road congestion globally. TOP
has a framework for collecting vehicles’ information to a
central server, which calculates the parameters depicting
the future road condition (e.g., driving time, vehicle density,
and probability of accident). The server then formulates
a non-cooperative Stackelberg game considering these pa-
rameters, in which when each vehicle aims to minimize
its travel time, the road congestion is also proactively
avoided. After the Stackelberg equilibrium is reached, the
optimal driving speed for each vehicle and the expected
vehicle density that maximizes the utilization of the road
network are determined. Our real trace analysis confirms
some characteristics of vehicle mobility to support the
design of TOP. Extensive trace-driven experiments show
the effectiveness and superior performance of TOP in
comparison with other driving speed optimization methods.

I. INTRODUCTION

In recent decades, Intelligent Transportation Systems
(ITSs) have received much attention. The ITSs summa-
rize advanced applications aiming at providing innova-
tive services related to different modes of transportation
and traffic management. To support the operation of
various ITS applications, traffic congestion control is
very important for urban road networks [1]–[3] when
trying to maximize their utilization. For example, the
road management authorities hope that the density of
vehicles simultaneously passing through each road is
lower than a threshold so that the overall road network
keeps operable. Also, the public transit service vehicles
require their covered routes to be non-congested so
that they can follow their schedule on time. However,
due to the high mobility of vehicles and difficulty in
controlling vehicle speeds, congestion control in urban
road networks is a non-trivial task.

In recent years, many methods have been proposed
to reduce vehicles’ travel time by adaptively controlling
traffic signal [4], [5] or suggesting optimal speeds to
vehicles for different objectives such as minimizing fuel

consumption and travel time [6]–[10]. In the former
group of methods [4], [5], the controller at a road
intersection properly schedules the passing of vehicles
to minimize the vehicles’ total travel time caused by red
lights or long queues. In the latter group of methods [6]–
[10], the optimal driving speed of a vehicle is determined
based on the vehicle’s real-time driving information (e.g.,
fuel consumption, traffic state). However, these methods
overlook the possible road congestion generation in the
future (e.g., in 5mins), which may degrade the perfor-
mance of achieving the objectives. In other words, these
methods cannot avoid the generation of road congestion
globally in the road network in the future. By “in the
future”, we mean in a future time during a vehicle’s
driving time period. For example, before “rush hours”,
arterial roads may be non-congested. However, if legions
of vehicles drive by the currently “optimal speeds” in
their individual routes, they may crowd into the arterial
roads simultaneously, which results in congestion.

However, solving this neglected problem is non-trivial.
The road congestion is measured by vehicle density; a
higher vehicle density increases the utilization of the
road network but generates congestion and decreases
vehicle speed, and vice versa. Therefore, it is a challenge
to maximize the utilization of the road network while
proactively avoiding congestion and maximizing the ve-
hicle speed. In this paper, we aim to tackle this challenge
by proposing a vehicle Trajectory based driving speed
OPtimization strategy (TOP) that uses game theory to let
vehicle drive as fast and safely as possible, and mean-
while proactively avoid generating road congestion in the
future. Its basic idea is to periodically adjust vehicles’
mobility to alleviate road congestion globally. The vehi-
cles report their information to a central server through
road-side-units (RSUs) located alongside the roads. The
central server calculates each vehicle’s trajectory in the
next time slot (denoted by Tc+1) and determines the
parameters depicting the future utilization of the road
network (e.g., vehicle density, driving time and probabil-
ity of accident). This is based on the previous observation
that vehicles’ trajectories can soundly illustrate the future
mobility of the vehicles [11]–[15]. To maximize the uti-
lization of the road network while minimizing the proba-
bility of road congestion, the central server formulates a
non-cooperative Stackelberg game, in which each vehicle
aims at minimizing its travel time and maximizing safety



while avoiding generating congestion in the future. After
the Stackelberg equilibrium is reached, when vehicles
follow their optimal speeds, it also proactively avoids
generating congestion in the future. Moreover, the road
network can be fully utilized without imbalanced or high
vehicle density (i.e., congestion) in road segments. In
summary, our contributions include:
(1) Our analysis on two real vehicle traces [16], [17]

confirms the characteristics of vehicle mobility and
lays the foundation for the design of TOP.

(2) We propose a non-cooperative Stackelberg game
based vehicle speed optimization strategy to find
the optimal speed for each vehicle that enables it to
drive as fast and safely as possible, while avoiding
the generation of congestion in the future.

(3) We have conducted extensive trace-driven experi-
ments to show the effectiveness of TOP in max-
imizing the utilization of road network, avoiding
congestions, and satisfying drivers’ need of driving
as fast and safely as possible.

Within our knowledge, this work is the first to provide
vehicle speed optimization that aims at letting vehicles
drive as fast and safely as possible, while proactively
avoiding the generation of road congestion in the future.
The remainder of the paper is organized as follows.
Section II presents related works. Section III presents the
trace analysis and findings that support TOP. Section IV
presents the detailed design of TOP. Section V presents
trace-driven experimental results. Section VI concludes
the paper and marks future research direction.

II. RELATED WORK

Real-time traffic based vehicle speed optimization.
Several methods for vehicle speed optimization with
different objectives have been proposed. Kouvelas et
al. [4] proposed a hybrid approach for traffic signal
control considering the saturation status of the road.
Pandit et al. [5] proposed a vehicular network based
method that collects and aggregates real-time traffic
information to optimize signal control. Tseng et al. [10]
proposed a vehicle density estimation scheme using
neighbor tables communicated between vehicles. Chen et
al. [9] proposed to use VANETs to send queries between
source and destination back and forth, and selects the
path with the shortest time. Ozatay et al. [7] used cloud
computing [18], [19] in optimizing vehicle speed profile
by solving a dynamic programming problem. Asadi and
Vahidi [8] proposed a control algorithm to enable vehi-
cles to approach traffic light at green as much as possible,
thereby saving fuel and reducing travel time. Groot et
al. [6] proposed to model vehicle-congestion relationship
as reverse Stackelberg games to optimally distribute
traffic over road network, and meanwhile ensure that
each vehicle can finish travel within its expected travel
time. For the vehicles with the same origin-destination,
the central server uses different pricing of freeways (e.g.,
longer route has lower price) to induce these vehicles to

choose different routes to distribute the traffic. However,
this method overlook that the vehicles with different
origin-destination pairs may compete for the same road
segment. Also, it does not aim to minimize the travel
time of the vehicles. As indicated previously, the above
methods do not consider whether the currently suggested
speed will cause congestion to certain road segments in
the future. To solve this problem, TOP firstly utilizes
vehicles’ trajectories to extract the parameters of future
road traffic, and then uses the parameters in formulating
a non-cooperative Stackelberg game that aims to let ve-
hicles drive as fast and safely as possible, and meanwhile
avoid the generation of congestion in future.

Vehicle future mobility based routing. Many
works [20], [21] focus on using vehicles’ current or
historical mobility statistics to predict the vehicles’ fu-
ture mobility. Some other works [11]–[15] found that
utilizing vehicles’ GPS trajectory to deduce the vehi-
cles’ future mobility is reliable for data delivery in
vehicular networks. Wu et al. [11] found the spatio-
temporal correlation in vehicle mobility and noted that
the future trajectory of a vehicle is correlated with
its past trajectory. In Trajectory-based Data Forwarding
Scheme (TBD) [12], Trajectory-based Statistical For-
warding Scheme (TSF) [13], [14] and Shared-Trajectory-
based Data Forwarding Scheme (STDFS) [15], trajectory
information of vehicles is collected through access points
and used to predict the vehicle mobility for data for-
warding. Our work is based on the observations in these
works that vehicles’ trajectories can soundly illustrate
the future mobility of vehicles, which is used to estimate
road vehicle density in the future.

III. TRACE ANALYSIS

In this section, we present our trace analysis on the
Rome trace [16] and the San Francisco trace [17], which
demonstrates the characteristic of vehicle mobility in
urban area and provides the rationale of the design
of TOP. Both of the traces are 30-day taxi traces.
Since taxis move persistently and cover almost the
entire road networks, their movement can illustrate the
traffic state [2], [22]–[24]. In these traces, each taxi
reports location record (timestamp, ID, GPS position)
to a central server every 7 seconds. We filtered out the
positions with precision larger than 20 meters and taxis
with few appearances (<500), and extracted road layout
from vehicle movement. The position records of vehicles
are highly overlapped, so we extracted intersections
where vehicles make turns as landmarks and simplified
vehicles’ movement records to sequences of landmarks.
Finally, Rome has 315 taxis and 4638 landmarks, and
San Francisco has 536 taxis and 2508 landmarks. When
a vehicle stays at one position for more than 5mins, we
call this position anchor position and consider it as the
ending position of the previous trajectory and the starting
position of the next trajectory. Thus, the anchor positions
separate each vehicle’s trace into several trajectories.
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(a) Vehicle densities.
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(b) Vehicle flow rates.
Fig. 1: Concurrent competition for road usage.
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(a) Vehicle densities over time.
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(b) Vehicle speeds over time.
Fig. 2: Vehicles’ temporal preference on roads.

A. Concepts and Problem Introduction
We define a road segment (denoted by si) as the

road link between two neighboring intersections (i.e.,
landmarks). Vehicle density of road segment si (denoted
by di) is defined as the average number of vehicles per
mile in the road segment (veh/mile), and the flow rate of
road segment si (denoted by fi) is defined as the average
number of vehicles driving through the segment per unit
time [6], [25] (veh/h). The vehicle flow rate of segment
si equals to the product of vehicle density and average
vehicle speed on si (denoted by vi) [26];

fi = di · vi. (1)
The road congestion is measured by vehicle density, and
the utilization of the road network is measure by flow
rate. Therefore, in order to increase the utilization of the
road segment si (i.e., fi), we need to increase vehicle
density (di) and/or vehicle speed (vi). However, higher
vehicle density may lead to congestion and hence lower
vehicle speed. Therefore, it is a challenge to maximize
the utilization of road network and meanwhile maximize
vehicle speed, which is the objective of this paper.

B. Concurrent Competition for Road Usage
Previous methods locally control traffic or compute

suggested speed based on current traffic state on each
vehicle’s scheduled route. If a vehicle follows the speed
individually optimized for it, due to the ignorance of
other vehicles’ mobility, some arterial roads may be-
come crowded with many vehicles, that is, the vehi-
cles concurrently compete for these roads. To confirm
this conjecture, we measured the cumulative distribution
function (CDF) of the vehicle density and the CDF of the
flow rate on all road segments as shown in Figure 1(a)
and Figure 1(b). We calculated the vehicle density and
vehicle flow rate for 30 days and draw their average
values. The vehicle density and vehicle flow rate are
sampled every 30mins on every road segment per day.
We see that for the Rome trace, the vehicle density
of 90% of road segments is less than 0.5veh/mile, and
the vehicle flow rate of 90% of road segments is less
than 10veh/h. But the other 10% of road segments have
vehicle density and vehicle flow rate as high as 3veh/mile
and 60veh/h, respectively. For the San Francisco trace,
the vehicle density of 95% of road segments is less
than 3veh/mile, and the vehicle flow rate of 95% of
road segments is less than 25veh/h. But the other 5%

of road segments have vehicle density and vehicle flow
rate as high as 24veh/mile and 50veh/h, respectively.
These results demonstrate that in the urban road network,
vehicles usually concurrently compete for usage on few
popular roads, resulting in their excessive utilization.
Therefore, we can try to distribute traffic evenly in the
road network, i.e., achieve similar vehicle density in
all road segment, in order to avoid the congestion and
increase the utilization of road network. The cause to
repeated congestion on arterial roads is excessive con-
current utilization of vehicles [6]. Therefore, we further
analyze vehicles’ temporal preference on driving roads.

C. Vehicles’ Temporal Preference on Roads

If the vehicle density on a road exceeds a threshold,
the driving speed of vehicles on the road is likely to
be affected due to congestion. This is especially true
for arterial roads since they are quite likely to be over-
utilized during rush hours. To verify such intuition,
we measured the average vehicle density and average
vehicle speed on the most highly utilized road segment
of the two traces (road segment 4433 in the Rome
trace, road segment 0 in the San Francisco trace) hourly
during each day in the 30 days, which are shown in
Figure 2(a) and Figure 2(b), respectively. We see that for
the Rome trace, the vehicle densities during 6:00∼13:00
and 17:00∼20:00 are higher than the other hours. In
contrast, the average vehicle speeds during these two
periods are lower than the other hours. For the San
Francisco trace, the vehicle densities during 1:00∼4:00
and 12:00∼15:00 are higher than the other hours. In
contrast, the average vehicle speeds during these two
periods are generally lower than the other hours. These
results demonstrate that excessively high vehicle den-
sity deteriorates road driving condition, which causes
reduced driving speed. The results confirm that avoiding
congestion is important to increasing driving speed and
reducing travel time, especially in rush hours.

IV. SYSTEM DESIGN

A. Overview

ITSs support the installation of RSUs alongside road
segments to provide communication between vehicles
and the central server [14], [27], [28]. As shown in
Figure 3, we establish a three-layer information col-
lection and dissemination framework, which consists of



vehicles as the service layer, RSUs as the communication
backbone and a central server as the computation layer.
Each vehicle contacts the central server through RSUs.
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Fig. 3: System structure.

As in the traffic management
papers in [29], we consider
road segments have equal ve-
hicle density limits. In this pa-
per, we focus on optimizing the
vehicles’ speed on their origi-
nal route. We leave the optimal
route selection as future incre-
mental work. To let vehicles
drive as fast and safely as pos-
sible while avoiding generat-
ing congestion on the road net-
work, we use the Stackelberg
game [30] between the vehicles and the central server to
determine the expected vehicle density that maximizes
the utilization of the road network and optimal driving
speed for each vehicle. The gaming process is executed
periodically with period T (e.g., 5mins) as follows:
1) Through a nearby RSU, the vehicle reports its current
position and intended destination to the central server.
2) Based on the information collected from vehicles, the
central server calculates the trajectory of each vehicle
in Tc+1 and predicts the vehicle density in each road
segment at the next time slot. Then, a gaming process is
conducted between the central server and each vehicle.
3) Based on the predicted average vehicle density per
road segment in the road network in Tc+1, the central
server determines a set of expected average densities that
are achievable by vehicle speed adjustment.
4) Based on each expected average density, each vehicle
determines its speed that maximizes its utility (speed and
safety) and reports the speed to the central server.
5) The central server determines the final expected
average density that maximizes its utility (maximizing
flow rate of the road network) and notifies all vehicles.
6) Each vehicle chooses its speed corresponding to the
final expected average density.

With the optimal speeds, the vehicle density of each
road segment will be approximately the determined
vehicle density. Thus, the total traffic in the road network
is well balanced with no congestion and its utilization
is maximized. We will first explain how the central
server predicts the vehicle density of road segments
(Section IV-B) and then present the non-cooperative
Stackelberg gaming (Section IV-C).

B. Future Road Vehicle Density Prediction

The gaming process runs after each time slot T (e.g.,
5mins). For example, when the central server starts the
game at 00:00, it needs to estimate the vehicle density of
each road segment in [00:00,00:05] in order to determine
an achievable vehicle density in the entire road network
for vehicles to choose their optimal speeds.

In this section, we present how to estimate the vehicle
density of each road segment in Tc+1 with current ve-
hicle speeds. First, the central server needs to determine
each vehicle’s trajectory in Tc+1. It consists of the road
segments it will pass in Tc+1 and their corresponding
travel times {(si, T̃i)|i = 1, 2, . . . ,M}, where si denotes
the ith road segment, T̃i denotes the estimated travel time
from current position to si and M denotes the number
of road segments that the vehicle will pass in Tc+1.

Then, by modeling the arrival times as normal random
variables, TOP sums up the vehicles’ probabilities of
appearance on each road segment as its vehicle density
at the next time slot. The average vehicle density per road
segment will be used in the driving speed optimization
gaming presented in Section IV-C. After each vehicle
determines its speed in gaming, the vehicle density will
be updated and used for the next gaming process.

1) Trajectory Calculation: A vehicle periodically re-
ports its current position and its destination to the central
server. To generate the vehicle’s trajectory in Tc+1, the
central server first determines the sequence of road seg-
ments connecting the current position and the destination
based on road topology [31]. It then calculates the travel
time of each road segment that will be passed in Tc+1 by
the vehicle. After a gaming process, a vehicle’s optimal
speed on si is determined, denoted by vi. Then, for each
road segment si, the estimated travel time on si (denoted
by t̃i) can be calculated by

t̃i = li/vi, (2)

where li is the length of si. A problem is how to
estimate the travel time of si initially when no game has
been played. To handle this problem, we use the current
vehicle density of the road segment to estimate the speed
for the vehicle as in traditional vehicle density based
speed estimation methods [26]. It has been indicated that
for a road segment si, its reachable speed is related to
a vehicle density limit dmi . When the vehicle density is
below dmi , vehicles on the road segment can drive with
the free flow speed (i.e., speed limit, denoted by vmax

i ).
If the vehicle density exceeds dmi , the road segment will
be congested and the vehicles have to drive with the
congested speed (denoted by vmin

i ). djami is the vehicle
density that will cause si to be completely jammed. dmi
can be obtained from field observation, and djami can be
obtained from the road network’s designed capacity [26].
Currently, the vehicle density of each road segment can
be well monitored [2], [22]–[24], [32]. Then, we can
roughly estimate the allowed vehicle speed under current
vehicle density for each road segment as below:

t̃i =


li/v

max
i , 0 6 di < dmi

li/v
min
i , dmi 6 di < djami

∞, di > djami

(3)

The trajectories generated by GPS do not consider the
road congestion condition and hence may not be suffi-
ciently accurate. In contrast, TOP calculates the trajec-
tories of vehicles considering future road congestion.



The travel times of a road segment can be described
by normally distributed and statistically independent
random variables with acceptable precision [33], [34].
Therefore, the estimated travel time from the current
position to road segment si is the sum of the travel times
of the composing road segments from current position
to si, T̃i =

∑Mi

m=1 t̃m, where Mi is the number of road
segments from current position to si. When T̃i ≥ T ,
the trajectory for Tc+1 has been generated. Based on the
historical data of the estimated travel time of sm and real
travel time on sm of all vehicles, the central server can
calculate variance σ2

m. Then, the standard deviation of T̃i
is calculated by summing the variances of the composing
road segments, ∆2

i =
∑Mi

m=1 σ
2
m.

2) Road Vehicle Density Calculation: The estimated
travel time in {(si, T̃i)|i = 1, 2, . . . ,M} only has a cer-
tain probability to be accurate. Then, we have two steps
to calculate the vehicle density of each road segment
in Tc+1. First, we use a vehicle’s trajectory in Tc+1

to estimate the probability that the vehicle will appear
at each road segment in its trajectory in Tc+1. Then,
we calculate the sum of all the vehicles’ appearance
probabilities at a road segment in Tc+1 as the vehicle
density of the road segment in Tc+1.

Suppose the next time slot is the jth time slot in a
day, represented by Tc+1 = [tsj , t

e
j ] (e.g., [00:00,00:05]),

where tsj and tej are the starting time and ending time of
the time slot, respectively. For each vehicle, TOP uses
its estimated travel time to si to measure its appearance
probability at si during [tsj , t

e
j ]. Therefore, the vehicle’s

appearance probability at si during [tsj , t
e
j ] is

P (Ti6 t
e
j − tsj)=Φ(

tej − tsj − T̃i

∆i
)−Φ(

−T̃i

∆i
) (4)

where Ti denotes the vehicle’s actual travel time from
current position to si, and Φ(·) is the CDF of the
standard normal distribution with mean T̃i and standard
deviation ∆i. The CDF for each vehicle on each road
segment si is calculated based on the historical records
of all vehicles’ travel times on the road segment. Then,
for each road segment si, the central server estimates its
vehicle density in Tc+1 by summing up the appearance
probabilities of vehicles (Pk) on si during Tc+1:

dsii+1 =

N∑
k=1

Pk(Ti 6 tej − tsj) (5)

where N is the number of vehicles that will pass si
during [tsj , t

e
j ]. For example, given current time 00:00,

the estimated vehicle density of College Ave for Tc+1,
namely 00:00∼00:05, is 26.16 vehicles/mile.

3) Safety Estimation: Each road segment has a prob-
ability of accident occurrence. The probability depends
on the structure feature of the road segment (e.g., the
degree of straightness, sharp turn, road surface bump)
and the traffic condition. It has been verified that traffic
conditions (e.g., heavy traffic volume, speeding) affect
the likelihood of accident occurrence [35]. The traffic
condition of a road segment has a long-term pattern,

that is, the vehicle flow rate at each time slot remains
similar irrespective of days. For example, people are
likely to encounter congestion on their way to work
during morning rush hours every workday.

TOP relies on historical records of accidents to depict
the likelihood of accident for each road segment in each
time interval in a day [36], [37]. Considering that the
probability of accident is time-varying (e.g., some road
segments are more likely to have accidents in Winter
than in Spring), TOP uses a time window to control the
number of days for consideration. The larger the window
size is, the more accident events that can be captured.
Specifically, the accident probability of road segment si
during jth time interval [tsj , t

e
j ] is calculated by:

pji =

∑W
w=1 T

w
j

W · (tej − tsj)
(6)

where pji is the accident probability of si during the jth
time interval, W is the window size, and Tw

j is the length
of time that si is affected by accident during the jth time
interval in the wth day. Finally, for each road segment,
the central server generates a table summarizing acci-
dent probability during each time interval, as shown in
Table I. Since higher vehicle density leads to shorter
distance between vehicles, which renders higher risks of
accident, we relate pji with vehicle density in determining
the utility of drivers in gaming in Section IV-C.
TABLE I: Table of accident probability of road segment College Ave.

Time Accident probability
00:00∼00:05 0.05
00:05∼00:10 0.02

... ...

C. Driving Speed Optimization Gaming
1) Overview: On one hand, traveling quickly (i.e.,

short driving time and no congestion) and safely (i.e.,
no accident) is desired by drivers. On the other hand,
the transportation authority hopes to maximize the uti-
lization of the road network (i.e., maximum vehicle flow
rate). Based on Equation (1), to increase road network
utilization, we need to increase the vehicle density, which
however may lead to road congestion. Then, the vehicle
speed drops down and results in low flow rate and hence
low utilization of the road network.

It is found that drivers may drive slower given a higher
specified vehicle density in order to keep a safe inter-
vehicle distance to keep safety, especially for the drivers
with high probability of accidents [35]. Therefore, the
drivers will adjust speeds in response to a given vehicle
density. Thus, we can formulate the speed optimization
as a non-cooperative Stackelberg game [6], [38] between
the central server and the drivers, where the central
server is the leader and the drivers are followers.

In the Stackelberg game, the leader considers the
predicted average vehicle density of a road segment (in-
troduced in Section IV-B2), and then chooses a set of ex-
pected vehicle densities (denoted by D={d1, d2, ..., dn})
that are achievable by vehicle speed adjustment. The



central server hopes to evenly distribute the vehicles
over all road segments by properly assigning a d value.
The followers receive D from the leader and picks a
speed in response to each di to maximize its own utility
(driving as fast and safely as possible while minimizing
the risk of congestion). Next, the central server selects
the vehicle density that maximizes its utility (i.e., vehicle
flow rate of the road network), denoted by dl and then
the vehicles choose their speeds corresponding to the
selected dl. Finally, we solve the Stackelberg equilibrium
of the game, i.e., the game reaches a state that the
road network utilization is maximized while the drivers
are satisfied with the driving status (judged by driving
speed and associated risk of congestion). The gaming is
executed periodically. In the following, we first introduce
the utility of a driver and the utility of the central server,
and then introduce the gaming between them.

2) Utility Function of Drivers: For drivers, we define
a utility function to quantify the level of benefit that a
driver obtains from driving by a speed on road segment
si. It is calculated by subtracting the potential risk of
congestion (Ur(·)) from a vehicle’s satisfaction degree
(Us(·)), as shown in Equation (8).

F (vi, αi, p
j
i ) = Us(vi, αi, p

j
i )− Ur(d, vi, p

j
i ) (7)

s.t. vi 6 vmax
i

where vi is the vehicle’s speed for optimization; αi is
a scale factor to make Us(·) and Ur(·) comparable; pji
is calculated by Equation (6).
Us(·) ought to be non-decreasing as each driver de-

sires high speed (i.e., short driving time). Meanwhile,
the marginal satisfaction degree of the driver is non-
increasing because the driver’s satisfaction degree grad-
ually gets saturated when the vehicle speed increases to
some level [26]. Moreover, Us(·) is inversely related with
the probability of accident because a lower possibility of
accident corresponds to higher level of satisfaction [39].
Considering these properties, we design Us(·) as a con-
cave function. Since the Natural Logarithmic Functions
are representative concave functions [40], we define:

Us(vi, αi, p
j
i ) = αi · ln(vi + pji

−1
) (8)

A driver’s potential risk of congestion is determined
by the accident probability of the road segment (pji ) and
vehicle flow rate [35] (Equation (1)).

Ur(d, vi, p
j
i ) = pjidvi (9)

The utility of a driver decreases with a higher vehicle
density and vice versa. Combining Equation (8) and
Equation (9) into Equation (8), we have:

F (vi, αi, p
j
i ) = αi · ln(vi + pji

−1
)− pjidvi (10)

s.t. vi 6 vmax
i

Note the gaming is executed periodically, so it is
possible that a vehicle may enter other road segments
during the current time slot. We use γi to denote the
percentage of T that the vehicle will spend on segment
si. Then, the utility of the vehicle is calculated by:

∑
i

γiF (vi, αi, p
j
i ) (11)

s.t. vi 6 vmax
i

3) Utility Function of Central Server: The central
server always aims at maximizing the vehicle flow rate
on overall road network:

L(d) =

Ns∑
i=1

di · vi (12)

where Ns is the total number of road segments.
4) Optimal Driving Speed Selection: Recall that

based on Equation (5), the central server predicts the
vehicle densities of all road segments. It then calculates
the average estimated vehicle density of the road network
during next period of gaming: dc+1 =

∑Ns

k=1 d
sk
i+1/Ns.

Based on dc+1, the central server determines a range of
expected vehicle densities that are achievable by vehicle
speed adjustment, and offers these densities to each
vehicle for selection, which is defined as:

du = ln(u+ 1) · dc+1, u ∈ [1, ..., n] (13)

We use D={d1, d2, ..., dn} to denote the n levels of
expected vehicle densities for Tc+1. In practice, n should
be at least larger than the exponent so that the vehi-
cle has multiple selections around dc+1. The central
server notifies drivers of the D. If dc+1 leads to an
increased expected vehicle density (du), the drivers will
be encouraged to decrease driving speed in order to
drive safely. Otherwise, the drivers will be encouraged
to increase driving speed in order to increase benefit
while maintaining driving safety. Note the increment
rate of Us(·) (Natural Logarithmic Function) is slower
than Ur(·) (Linear Function) when speed vi increases.
Therefore, according to Equation (8), increasing driving
speed on current road segment (vi) will reduce a driver’s
utility because Ur(·) will increase faster than Us(·).
Thus, driving at a slower speed can prevent the vehicle
density of the road network from further increasing, i.e.,
prevent traffic congestion.

For each du ∈ D, if a driver will drive in its current
road segment si during the next time slot, it chooses a
new speed that maximizes its utility F (·), denoted by
viu, as shown in Equation (14).

viu = arg max
vi6vmax

i

F (vi, αi, p
j
i ) (14)

If a driver will drive through more than one road
segment si, sj ,..., it chooses a set of speeds in each
of the segments to maximize its utility F (·), denoted by
{viu, vju, ...} as shown in Equation (15).

{viu, vju, ...} = arg max
vk6vmax

k

∑
k

γkF (vk, αk, p
j
k) (15)

Finally, the driver reports the n candidate speeds to the
central server. The central server finalizes the expected
vehicle density (dl) that maximizes its utility L(·) based
on the candidate speeds from all drivers.



dl = arg max
du∈D

L(du) = arg max
du∈D

du
∑
Ns

viu (16)

The central server then notifies all drivers of the new ex-
pected vehicle density dl. Then, among the n candidate
speeds, each driver picks the speed corresponding to dl.

V. PERFORMANCE EVALUATION

A. Experimental Settings

We conducted trace-driven experiments based on the
Rome [16] and the San Francisco [17] traces introduced
in Section III. Unless otherwise specified, the experiment
settings are the same as those in Section III. The number
of accidents occurred in Rome and San Francisco in
each month are obtained from [41] and [42], respectively.
The window size W was set to 7 days and Tw

j = 1h.
The scale factor αi was set to 2.85 for Rome and 5
for San Francisco. We measure a driver’s satisfaction
degree when (s)he drives on road segment si with
speed vi by ln(vi + pji

−1
)/ ln(vmax

i + pji
−1

) (deduced
from Equation (8)). The gaming procedures are launched
every 15mins in the two traces. To simulate that vehicles
drive by their optimal speeds, we dynamically update
the timestamps of arrivals at landmarks according to the
vehicles’ optimal speeds. Therefore, in the experiment,
the vehicles follow the movement paths recorded in the
traces but with modified timestamps.

We compared TOP with the traffic signal control
method [5] (Signal in short) and the vehicle speed
optimization method [7] (RealSpeed in short). Signal
uses vehicular ad hoc networks (VANETs) to formulate
vehicles into platoons. The controller at each intersection
uses the oldest-arrival-first scheduling algorithm to
arrange the passing of platoons so that the vehicles’
total travel time is minimized. In RealSpeed, by aiming
at reducing fuel consumption and satisfying driver with
reduced travel time, the vehicle speed is optimized by
dynamic programming constrained by speed limit, real-
time traffic and driver’s destination. To make RealSpeed
comparable to the other methods, we excluded its fuel
consumption constraint in our experiments. Signal and
RealSpeed cannot proactively avoid the generation of
road congestion in the future. Each experiment is for 30
days. In each hour throughout each day, we measured
the following metrics and report the average value in
each hour for the 30 days.
• Average vehicle speed: The average speed of all the

speeds determined by the games during an hour.
• Average flow rate: After each game, we calculate

the flow rate per road segment by
∑Ns

i=1 di · vi/Ns.
Then, we calculate the average flow rate per road
segment in all the games during an hour.
• Average driving time: The average driving time on

each road segment for all the travels on segments
during an hour.
• Average driver satisfaction: The average satisfac-

tion degree of the drivers after travels per hour.

B. Experimental Results

1) Average Vehicle Speed:
Figure 4(a) and Figure 5(a) show the average speed

of vehicles during different time intervals with the
Rome and San Francisco traces, respectively. We see
that for Rome, the average vehicle speeds follow:
TOP>RealSpeed>Signal. While for San Francisco, the
average vehicle speeds follow: TOP>Signal>RealSpeed.

TOP always has much higher average vehicle speed
than others in both traces. Before optimization, the future
traffic on the scheduled route has been deduced by the
central server from the vehicle trajectories. Although
the results might have deviation from the true results,
they are still effective in predicting the future movement
of vehicles. With gaming using the predicted vehicle
density, TOP enables the central server to maximally
avoid road congestion caused by confluent vehicle flows.
Meanwhile, each vehicle can drive by a speed as fast
and safely as possible. As a result, TOP generates the
highest average speed of vehicles. Both RealSpeed and
Signal do not proactively avoid generating congestions
in the future and congestions decrease vehicle speeds,
thus producing lower average speed of vehicles.

RealSpeed has the secondary performance in Rome,
but the lowest performance in San Francisco. In Re-
alSpeed, for a vehicle, the server generates a route
based on the collected information of the intended
travel. Then, the server collects the associated traffic
and geographical information, and calculates optimal
vehicle speed aiming at reducing travel time through
dynamic programming. However, since San Francisco
has many uniformly distributed road segments with short
lengths [17], the vehicle flow on the vehicle’s scheduled
route can be easily congested by vehicle flows from other
intersected road segments. In contrast, the road segments
in Rome have fewer intersections [16]. Therefore, the
vehicle traffic in the road network is less likely to be
congested than that in San Francisco.

Signal has the lowest average vehicle speed in Rome,
but the second lowest performance in San Francisco.
This is because Signal aims at reducing vehicles’ travel
time near intersections rather than in the global road
network. In Signal, the vehicle flows on the road network
are partitioned into several platoons of vehicles. By
viewing each platoon as a job, the traffic management
problem is formulated as a job scheduling problem at
intersections. To minimize the time of vehicles passing
the intersection, Signal utilizes the oldest-arrival-first
scheduling algorithm. However, Rome’s road segments
are quite crowded at popular sites and have short
distance [16], which make streets near popular sites
heavily utilized. Locally minimizing the time at certain
intersections inevitably exacerbates congestion at the
other intersections. Therefore, Signal cannot achieve an
optimal solution in the whole road network in Rome. In
contrast, the road segment distribution of San Francisco
is more uniform than that in Rome [17]. Therefore,
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(a) Average vehicle speed.
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(b) Average flow rate.
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(c) Average driving time.
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(d) Average driver satisfaction.
Fig. 4: Performance over time with the Rome trace.
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(b) Average flow rate.
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(c) Average driving time.
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(d) Average driver satisfaction.
Fig. 5: Performance over time with the San Francisco trace.

Signal can better schedule vehicles passing through the
intersections in San Francisco than in Rome, resulting
in the better performance of Signal in San Francisco.

2) Average Flow Rate:
Figure 4(b) and Figure 5(b) show the average flow

rate during different time intervals with the Rome
and San Francisco traces, respectively. We see that
for Rome, the average vehicle flow rates follow:
TOP>RealSpeed>Signal. While for San Francisco, the
results follow: TOP>Signal>RealSpeed.

The average flow vehicle rates follow the same trend
as the average vehicle speed result. Higher speed means
that the vehicle flow can move faster on road segment as
long as the vehicle density does not result in congestion.
Although some road segments may be too crowded
to let vehicles maintain high speeds, their flow rate
is still large as long as their vehicle density does not
exceed the jam level. Through comparing Figure 4(a)
and Figure 5(a) with Figure 4(b) and Figure 5(b), we can
see that although the average speed keeps above 15km/h,
the vehicle flow rate is as low as 1veh/h. This shows that
when the road network is non-congested, the vehicles in
Signal and RealSpeed can drive as fast as possible (i.e.,
speed limit), which results in acceptable average driving
speed. While without proactively avoiding congestion,
the vehicle flows may generate congestion.

3) Average Driving Time:
Figure 4(c) and Figure 5(c) show the average

driving time during different time intervals with the
Rome and San Francisco traces, respectively. We see
that for Rome, the average vehicle driving time fol-
lows: Signal>RealSpeed>TOP. While for San Fran-
cisco, the average vehicle driving time follows: Real-
Speed>Signal>TOP.

TOP always has the lowest driving time because each
vehicle can drive by a fast speed with low probability of
suffering from congestion. Signal has the highest driving

time in Rome, and the second highest driving time in San
Francisco. Correspondingly, RealSpeed has the second
highest driving time in Rome, and the highest driving
time in San Francisco. These results are consistent with
those of the average vehicle speed due to the same
reasons. It is noticeable that in San Francisco, there
is a heap between 0h and 1h. This is because there
is a drop of speed during this time interval. When
multiple vehicles simultaneously enter an intersection,
but traffic signals cannot schedule their passing in time,
the vehicles then wait in queues at the intersection.

4) Average Driver Satisfaction:
Figure 4(d) and Figure 5(d) show the average

driver satisfaction during different time intervals with
the Rome and San Francisco traces, respectively. We
see that for Rome, the average satisfaction follows:
TOP>RealSpeed>Signal. While for San Francisco, the
average satisfaction follows: TOP>Signal>RealSpeed.

Driver satisfaction is jointly determined by vehicle
speed and accident probability. Since the accident prob-
ability is calculated offline and does not change during
vehicles’ movement, drivers’ satisfaction is solely deter-
mined by the vehicle speed. Since TOP generates the
highest vehicle speed, it always ranks the highest and
achieves over 80% satisfaction in both traces. The sat-
isfaction results are consistent with the average vehicle
speed results due to the same reasons.

VI. CONCLUSION

Previous works for speed optimization does not
proactively avoid the generation of congestion in
the future. We proposed TOP, a vehicle trajectory
based driving speed optimization strategy aiming at
minimizing each vehicle’s travel time while avoiding
generation of congestion. Our analysis on the vehicle
mobility and congestion based on two real-world traces
support the motivation for the design of TOP. TOP uses



vehicle trajectories to estimate the vehicle density of
each road segment in the near future. Then, by using a
non-cooperative Stackelberg game between each vehicle
and the central server, the vehicle’s driving speed is
optimized so that it can drive as fast and safely as
possible while proactively avoiding generating conges-
tion. We have conducted extensive experiments based
on the two traces. The experiment results validate the
high effectiveness of TOP and its superior performance
compared to previous methods in terms of the utilization
of road network, congestions, and driver satisfaction. In
our future work, we plan to consider vehicles’ social re-
lationship in avoiding road congestion and develop more
reasonable schemes to motivate vehicle cooperation.
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