
CStorage: An Efficient Classification-based Image
Storage System in Cloud Datacenters

Haiying Shen
Department of Computer Science

University of Virginia
Charlottesville, VA

Email: hs6ms@virginia.edu

Heng Zhou
School of Computing
Clemson University

Clemson, SC
Email: hzhou3@clemson.edu

Abstract—Image storage systems are designed to support
images sharing and retrieving applications, especially for smart-
phone and other mobile devices. Existing image storage systems
store images in random data servers without considering their
similarities. When a front-end server sends out an image query,
it receives similar images from a large number of data servers,
causing possible network incast congestion and long query
latency. To solve this problem, we propose CStorage, an efficient
classification-based image storage system. In CStorage, similar
images are stored in the same data server. Thus, a front-
end server receives query results from a single data server,
which reduces the occurrence of incast congestion as well as
the image retrieval latency. CStorage also leverages the deep
learning technique to cluster images and provides a high precision
and recall rates. Experimental results show the effectiveness of
CStorage in reducing image retrieval latency and improving
precision and recall rates of searching results.

Index Terms—Image storage systems, Locality-sensitive hash-
ing, Deep learning, Incast congestion

I. INTRODUCTION

With the development of mobile device technology and
popularity of mobile devices, taking pictures and sharing
photos with other people have become a fashion nowadays.
Many technologies catering to these needs have burgeoned
in the last decade to make the image sharing activities more
efficient in terms of real-time uploading and accurate retrieval.
For example, Facebook launched f4, a new warm Binary Large
OBjects (BLOBs) storage system to achieve high storage
efficiency and to provide fault tolerance [1]. SmartEye [2]
selectively uploads representative images to the cloud by
making use of in-network deduplication over differentiated
services (DiffServ) in software-defined networks (SDN). Al-
though these technologies successfully provide good image
storage performance to a large extent, there still exists some
challenges. To illustrate these challenges, let us present two
typical scenarios as follows.

Scenario 1: When an earthquake or volcano eruption took
place, people in the disaster area may send photos of vicinity
area and other things to the Internet websites to share their
current situation. Most of these pictures contain very useful
information, which motivates people to search websites for
pictures taken in their hometown and streets to have an
understanding of their families’ safety. Network congestion
may happen if a large number of photos are uploaded and

downloaded after the disaster, causing a long latency before
desired photos can be received. If we place similar images on
the same server, or servers closely connected, we can save the
accessing time.

Scenario 2: Once a disaster is reported, the rescuers can
schedule a more efficient rescue route according to the damage
level of buildings and/or the severity of wounded people.
Meanwhile, the government sectors like National Response
Center manage to estimate the life and property loss of a
specific area by scrutinizing photos taken from that location.
If we can extract only the pictures of damaged buildings from
the large pool of all photos uploaded and store similar ones
taken in the same area to the same server, the sectors can get
the search results faster.

Existing image storage systems, however, exhibit ineffi-
ciency when they try to handle situations in above scenarios.
In these scenarios, users have a natural requirement for low
latency and high accuracy when searching photos. Current
works [1]–[4] cannot meet these requirements satisfactorily.
First, similarities between images are not considered when
storing images in the datacenters. When users search similar
images, the front-end server must send requests to all data
servers storing related images, which leads to a large number
of concurrent data transmissions. The distributed placement of
similar photos could easily cause the incast traffic congestion
[5]. Since datacenters or clusters are characterized by high-
bandwidth and low-latency, incast congestion may severely de-
grade the performance in such computing environment where
the many-to-one traffic pattern is common. In the image stor-
age system, when a large number of data servers return their
query results back to the front-end server, it will result in incast
network congestion with a high probability. Second, users in
both scenarios want to receive photos accurately.Recent work
such as SmartEye [2] cannot meet this requirement because it
only uses hand-crafted features to identify similar images.

To meet the aforementioned challenges, we propose CStor-
age, a classification-based image storage system that achieves
low latency and high accuracy. while retaining the performance
of existing image uploading and storage schemes. The key in
the design of our proposed CStorage system is to cluster and
store similar images into the same data server. CStorage uses
the state-of-the-art image feature extraction algorithm (i.e.,



deep learning) and similarity-preserving hashing functions to
generate a hash code for each image. As a consequence, CStor-
age can retrieve images with higher accuracy. Specifically, we
list the contributions of this paper as follows:

1) CStorage leverages the deep learning technique to ex-
tract image features, which are more accurate than hand-
crafted image features such as PCA-SIFT.

2) CStorage significantly reduces the image retrieval la-
tency primarily caused by incast network congestion.

3) We conduct extensive experiment with millions of im-
ages. Experimental results show the effectiveness of
CStorage in reducing image retrieval latency and im-
proving retrieval accuracy.

The paper is organized as follows. The related work of
image sharing is briefly described in Section II. Section III
presents the design of our proposed CStorage system. Sec-
tion IV presents the performance evaluation of CStorage. Sec-
tion V concludes the paper with remarks on our future work.

II. RELATED WORK

There are several groups of existing work related to our
image storage system, as will be introduced below.

A. Image Feature Extraction and Representation

Traditionally, SIFT [6] or PCA-SIFT [7] are used to extract
hand-crafted features describing an image and represent them
in a compact way.In recent years, deep hashing methods based
on deep learning neural network [8], [9] gradually replace the
hand-crafted feature extraction methods due to their prominent
advantages in semantic recognition or aggregation and a large
number of successful applications in image processing. Among
various deep neural networks, two attract strong interest from
researchers and practitioners: recurrent neural networks (RNN)
[10], [11] and convolutional neural networks (CNN) [8], [12],
[13]. Supervised semantics-preserving deep hashing (SSDH),
for example, is one of deep hash learning algorithms that unify
both classification and binary codes generation in one CNN
deep learning model [14].

B. Similarity-Preserving Hashing and Aggregation

Hashing techniques have long been used to cluster data of
similar properties.In this paper, we employ a specific type
of hashing technique called Similarity-Preserving Hashing
(SPH), or Semantic Aggregation Hashing, which is in contrast
to cryptographic hash functions in that it aims to maintain
resemblance between two data items by mapping similar
inputs to similar hash values. Harbour [15] devised the original
technique behind SPH. Locality sensitive hashing (LSH) [16]–
[19] brings itself under the spotlight of the academia due to its
lower probability of false positive and false negative, as well
as its low computational cost. For this reason, we employ LSH
in our proposed system. SmartEye [2] uses the Bloom filter
[20] as input to LSH to aggregate correlated images together.
Clustering hash codes can be implemented by a fast binary
k-means algorithm [21].

C. Image Storage

Various distributed image storage systems in cloud have
been developed [1], [2]. Facebook’s warm BLOB storage
system f4 [1] groups servers into different zones and allo-
cates images into these zones to achieve high storage effi-
ciency.SmartEye [2] selectively uploads representative images
to the cloud to save bandwidth usage in case of disasters.
Existing image storage systems do not consider the similarities
between images when allocating them to the data servers. In
CStorage, we aim to overcome this drawback by clustering
similar images and storing images from the same cluster into
the same data server.

III. SYSTEM DESIGN

In this section, we present the details of the design of our
proposed CStorage system.

A. Overview

Figure 1 shows an overview of the system design of
CStorage. When a user uploads an image to a front-end server
for storage or as a reference for image searching, this image
is sent to a centralized server in the cloud.

As depicted in Figure 1, in the first step, the image hashing
module extracts features from the uploaded image using a deep
learning technique. The extracted features are then transformed
to a hash code using a similarity-preserving hashing algorithm.
In the second step, the image clustering module aggregates and
clusters these hash codes. The third step is the image storage
and retrieval module which is responsible for storing all user
images into data servers.

1

Cloud 
servers

New image
Similarity 
preserving 

hash

Feature 
extraction

Hash code 
of image

…

…

…

…

Image 
cluster 1

Image 
cluster 2

Image 
cluster 3

Image clustering module

Store images

…

Image hash module

23
Image storage and 
retrieval module

Fig. 1. Overview of the CStorage image storage system.

The image retrieval process is similar to the image upload-
ing process. In this process, a user provides a reference image
and expects to download images similar to it. The user also
needs to provide the time/location information to narrow down
the retrieval results.

B. Image Hashing Module

In the image hashing module, the features of an image are
extracted by using a deep learning technique, and the extracted



features are then transformed to a vector of binary numbers
using a similarity-preserving hashing algorithm.

After an image (or a reference image for image retrieval)
is uploaded to the datacenter, the centralized server needs
to extract features from this image so as to understand its
semantic contents. The features extracted should be invariant
to perturbations such as affine transformations and brightness
variations caused by changes in camera pose and lighting.
To this end, traditional methods like scale-invariant feature
transform (SIFT) [6] and PCA-SIFT [7] extract hand-crafted
features (i.e., keypoints) from images. However, SIFT and
PCA-SIFT are proved to be ineffective and inaccurate when
representing images [14]. In order to present an image with
less memory usage and facilitate the image clustering process,
we hash an image into a single vector of binary number.
Specifically, we use the SSDH deep hashing algorithm. We
adopt the 16-weight layers model of the very deep convolu-
tional network (ConvNets) [12] to exact features from images
and represent each image by a binary vector in hamming
space. Comparing to the hand-crafted features, deep learning
features are capable of achieving higher accuracy in semantic
segmentation and object recognition [14].

We use set Y = {y1, y2, ..., yi, ..., yn} to represent all n
images in the system, where yi is image i. After applying the
ConvNets-based image hashing, each image is represent by
a binary vector. That is, image yi is represented by a d-bit
binary vector xi = {b1, b2, ..., bd}, bd ∈ {0, 1}. Then, the set
of all images is represented by X = {x1, x2, ..., xi, ..., xn},
i.e., X = {Xi}d×n.

C. Image Clustering Module

The hundreds of millions of images stored in the datacenter
need to be classified into thousands of clusters to facilitate
similarity searching. The clustering algorithm is conducted
periodically to update clusters of images. Once the clusters
are built, when a user uploads an image, it is classified into
an existing cluster. Below, we explain how to classify a large
number of images to a number of clusters.

We need to consider two issues in designing an efficient
clustering algorithm. First, in order to increase indexing ef-
ficiency, the similarity-preserving hash binary vectors need
to be stored in the memory of the server. The SSDH deep
hashing algorithm enables each image to be represented by
a short hash binary vector. Thus, we can store the binary
vectors of hundreds of millions of images in the memory of a
single machine. Second, we need to improve the computational
efficiency in clustering images. Although some clustering
algorithms like kd-tree based k-means algorithm [22] can
cluster a large number of images, if both the number of images
and number of clusters are large, these algorithms require a
long computational latency.

The Binary k-means algorithm (Bk-means) [21] was devel-
oped to overcome this challenge. Bk-means is a fast clustering
algorithm on binary vectors. It builds a hash table to index all
cluster centers and finds the nearest center for each image in
constant time. Therefore, to perform the clustering procedure

Front‐end 
server

Image 
cluster 1

Store

Rack

Centralized
server

Image 
cluster 2

Store

…

Image 
cluster 3

Store

Rack

Image 
cluster 4

Store

…… … … …

Fig. 2. Overview of the image storage and retrieval module.

efficiently, in this paper, we adopt the Bk-means algorithm to
cluster image into a set of clusters.

Algorithm 1 Pseudocode for clustering images into clusters.
1: Input: image dataset X = {x1, x2, ..., xn};

initial clusters with centers C = {c1, c2, ..., ck};
2: Output: optimized clusters with centers

C ′ = {c′1, c′2, ..., c′k};
3: while r > 0 //iteration not end
4: for each xi ∈ X //assign each image to a nearest

cluster
5: select a cluster for xi

6: end for
7: for each cj ∈ C //update cluster centers
8: for each cjq ∈ cj //iterate each dimension of vector

cj
9: calculate mjq =

∑p
i=1 xiq

10: calculate new vector c′jq
11: end for
12: end for
13: assign C ′ to C //use C in the next iteration
14: reduce r by 1
15: end while
16: return image clusters with centers C ′ = {c′1, c′2, ..., c′k};

We describe the process of clustering all images in the sys-
tem in Algorithm 1. The computation complexity of Algorithm
1 is log(rnkd), in which r is the number of iterations, n
is the number of images, k is the number of clusters and
d is the number of dimensions in the image vector. Using
this offline clustering algorithm, the centralized server divides
all images stored in the system into a number of clusters
based on the features extracted from images. To increase
the clustering precision, the offline clustering algorithm is
executed periodically.

D. Image Storage and Retrieval module

Figure 2 shows an overview of the image storage and
retrieval module in the cloud datacenter. The centralized server
is connected to all data servers in the datacenter, and data
servers are divided into different racks. A particular data
server is designated to store a cluster of images having similar
features. These images are associated with the time/location



information, and the data server further classifies the images
by them using index tables. That is, an index table records
images with the same time or the same location.

Inside a datacenter, front-end servers are responsible for
receiving image requests from users. There are generally two
types of requests: image storage requests and image query
requests. In both types of requests, a user needs to upload an
image and time/location information of this image. Front-end
servers then forward the requests to the centralized server.

After the centralized server receives an image from a front-
end server for storage, it extracts its features and generates a
hash code using the image hashing module. It then identifies
its image cluster whose center is the closest to the image. It
then forwards the image to the data server of the image cluster.

When a user searches for similar images, he/she uploads a
reference image and specifies the time/location information of
his/her desired images. This request is sent to the centralized
server, which generates a hash code using the image hashing
module. It then identifies the cluster that the reference image
belongs to and locates the data server storing this cluster.
Next it forwards the image request to the data server. The
data server returns all images with the specified time/location
to the front-end server. This design can be easily extended
to enable users to specify time/location ranges and returning
images with time/location in the specified ranges.

IV. PERFORMANCE EVALUATION

The contribution of the CStorage system system is its
efficiency in terms of low image retrieval latency and high
retrieval precision in retrieving similar images. We conduct
extensive experiments and show the results in this section to
demonstrate various advantages of CStorage.

A. Experiment Settings

To simulate a datacenter structure, we constructed a typical
fat-tree [23] structure using 1000 data servers with 60 data
servers inside each rack [24]. Each data server stores a cluster
of images. We set the capacity of the downlink, uplink and
buffer size of each switch to 1Gbps, 1Gbps [25] and 100kb
[26], respectively. We simulated one front-end server that
is connected to all the data servers in the datacenter. We
generated image retrieval requests on the front-end server, and
each data server receiving the request returns all similar image
to the front-end server.

In our experiments, we varied the image query rates from 50
queries per second to 250 queries per second to test the perfor-
mance of image storage systems [27]. When a server (either
a front-end server or a data server) receives multiple image
transmission requests from other servers, all incoming images
are received by the server sequentially and wait in a queue.
Each image is divided into a number of packets and each
packet is 1kb. The sender server finishes sending an image to
the receiver server when the image’s last packet is received by
the receiver server. The timeout of TCP packet retransmission
was set to 10ms [28]. A sender server sends out a packet again
if it does not receive an acknowledgement from the receiver

server after 10ms, and it terminates sending this packet after
5 consecutive timeouts. If packet transmission timeout occurs
when a sender server sends an image to the receiver server,
we regards it as one instance of incast congestion.

We used the ILSVRC2012 image dataset, a subset of
ImageNet [29] widely used in academia in the research on
computer vision and image recognition [8], [21]. ILSVRC2012
contains more than 1.2 million images and 1000 clusters of
similar images; each cluster roughly contains more than 1000
images. Images in a cluster are considered to be similar in the
simulation and experiment. Transfer learning techniques [30]
reuse previously learned image features to provide guidance
for clustering. In our experiment, we adopted a publicly
available CNN model [31] which is built by utilizing a transfer
learning technique, so that we avoid the training process from
the scratch. We manually attached time/location information to
each image. Specifically, the year of each image was randomly
selected in [2010, 2015] and the location of each image was
randomly selected among 20 cities. An image retrieval request
is generated by randomly choosing a reference image and
time/location information such as “request for images that are
similar to image X, taken in 2012 in city Y”.

1) Comparison Methods: To evaluate the performance of
CStorage in comparison with existing image storage systems,
we have implemented three comparison methods including
SmartEye [2], f4 [1] and Baseline. We use the SmartEye
approaches to create an image storage system though it is
not the purpose of this work. SmartEye applies PCA-SIFT to
represent the features of an image by a number of vectors
of real numbers. In our implementation, the dimensionality of
each PCA-SIFT feature was set to 36 since this value achieves
the best similarity matching performance [7]. It then uses LSH
to all feature vectors of an image to generate a single hash
value vector for this image. It finally clusters all images based
on their hash vectors and stores each image cluster into the
same data server. In f4, each image is randomly stored in
a distributed data server without considering the similarities
between images. In f4, the centralized server uses our feature
exaction and clustering techniques. It records the clustering
results in a table. To retrieve similar images, it searches the
table for images in the same cluster. In Baseline, each image
is stored in a random data server without considering the
similarities between images. The centralized server uses the
feature exaction and clustering techniques of SmartEye. It
records the clustering results in a table. To retrieve similar
images, it searches the table for images in the same cluster.

2) Performance Metrics: We use the following five metrics
to measure the performance of the image storage systems.
The first two metrics represent low-latency requirement of the
system while the latter two metrics measure the accuracy of
retrieving similar images.
•Average image upload latency. This metric measures the
total time used to upload an image to the designated storage
server, including transmission time from the front-end server to
the centralized server, time for image hashing and clustering,
and transmission time of the image from the centralized server



0

2

4

6

8

50 100 150 200 250

Im
ag
e 
u
p
lo
ad

 la
te
n
cy
 

(m
s)

Upload rate

Baseline SmartEye f4 CStorage

Fig. 3. Image upload latency.

0

10

20

30

40

50

60

50 100 150 200 250Im
ag
e 
re
tr
ie
va
l l
at
en

cy
 

(m
s)

Query rate

Baseline SmartEye f4 CStorage

Fig. 4. Image retrieval latency.

to the data server.
•Average image retrieval latency. This metric measures the
total time used to return all similar images to the front-end
server. The image retrieval latency consists of three parts:
1) upload reference image from the front-end server to the
centralized server, 2) processing in the centralized server
including image hashing and clustering, and 3) transmission
of all similar images from data servers to the front-end server.
The average retrieval latency sums up all these three parts
which reflects the actual latency experienced by a user at the
client end issuing a download request. This metric reflects the
actual latency experienced by a user at the client end issuing
a download request.
• Purity. Purity represents how well we cluster similar images
into one cluster. For each cluster resulting from a clustering
algorithm, we calculate the cluster purity of this cluster as the
portion of correctly classified images in this cluster.
• Precision. Precision is defined by the ratio of the number
of correctly returned results to the total number of returned
results. It reflects the precision of the retrieved set of similar
images to the reference image uploaded by the requester.
•Recall. Recall is defined by the ratio of the number of
correctly returned results to the total number of correct results.
It reflects the recall of retrieved set of similar images to the
reference image uploaded by the requester.

B. Performance on Latency

Figure 3 shows the average image upload latency when
the upload image rates increase from 50 images per second
to 250 images per second. We see that Baseline and f4
generate a shorter image upload latency due to the reason that
they store an input image in a random data server without
extracting its features and classifying it to an image cluster.
In CStorage and SmartEye, we first need to extract features
from an input image and identify the cluster that the image
belongs to. We then allocate the input image into the data
server of the image cluster. SmartEye generates a longer image
upload latency than CStorage due to the reason that SmartEye
uses PCA-SIFT to represent the features by a number of
vectors of real numbers, and these vectors need longer latency
to process when clustering the images. On the other hand,
CStorage represents an image by features exacted from deep
convolutional network, which are denoted by a single binary
vector in hamming space. The binary vector needs shorter
latency to process when clustering the images.

0

0.2

0.4

0.6

0.8

1

1.2

600 700 800 900 1000

A
ve
ra
ge
 p
u
ri
ty

Number of clusters

Baseline SmartEye f4 CStorage

Fig. 5. Purity.

0

0.2

0.4

0.6

0.8

1

1.2

50 100 150 200 250

A
ve
ra
ge
 p
re
ci
si
on

Query rate

Baseline SmartEye f4 CStorage

Fig. 6. Precision.

Figure 4 shows the average image retrieval latency versus
image query rate. In this experiment, we varied the image
query rates from 50 queries per second to 250 queries per
second. From the figure, we see that the relative performance
between different methods in image retrieval latency follows:
CStorage<SmartEye<f4<Baseline, and CStorage generates a
substantially shorter retrieval latency than other methods. In
Baseline and f4, the images that belong to the same image
cluster are randomly stored in different data servers. When
the front-end server sends out an image query, the centralized
server will forward the query to all data servers storing similar
images. A large number of servers will transfer similar images
to the front-end server in a short time. An excessive number of
simultaneous responses to the front-end server will cause in-
cast congestion on the front-end server side. Some packets will
be dropped and the data servers need to retransmit the missing
packets, leading to a long latency. CStorage generates a shorter
image retrieval latency than SmartEye because CStorage uses
features exacted from deep convolutional network to cluster
images and generates shorter latency when it clusters the input
image as shown in Figure 3. On the other hand, SmartEye
uses PCA-SIFT to represent the features by multiple vectors
of real numbers, which need longer latency to process when
clustering the images compared to vectors of binary numbers
used in CStorage.

C. Performance on Image Retrieval Accuracy

Figure 5 shows the 90th percentile, median and 10th

percentile of the purity for different numbers of randomly
selected clusters. We see that in CStorage and f4, the 90th

percentile purity values are close to 1, and the 10th percentile
purity values are higher than 0.8, which demonstrates a high
clustering accuracy of these methods. This is because they
uses features exacted from deep convolutional network to
cluster images. Deep learning is an effective tool in clustering
images and similar images are more likely to be allocated to
the same data server. SmartEye and Baseline generate lower
90th percentile, median and 10th purity values than CStorage
and f4 because they use PCA-SIFT to cluster images, which
are less effective in reflecting the semantic contents in the
images.

Figure 6 shows the average precision versus image query
rate. We see that f4 and CStorage generate higher precision
due to the reason that they both use features exacted from
deep convolutional network to cluster images, and the returned
images are likely to be allocated to the same cluster. Baseline



and SmartEye generate lower precision due to the reason they
use hand-crafted features to identify similar images, which
cannot effectively reflect the semantic contents in the images.

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250
Av
er
ag
e 
re
ca
ll

Query rate

Baseline SmartEye f4 CStorage

Fig. 7. Recall.

Figure 7 shows the av-
erage recall with differ-
ent image query rates. We
see that f4 and CStorage
generate higher recall due
to the reason that they
both use features exacted
from deep convolutional
network to cluster images,
which are effective in re-
flecting the semantic con-
tents of the images. Thus, they are likely to allocate all similar
images to the same cluster. Baseline and SmartEye generate
lower recall due to the same reason as in Figure 6.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented CStorage, a novel classification-
based image storage and retrieval system, which achieves low
latency and high accuracy in image searching. The key of our
design is to cluster similar images and store similar images
in the same data server, instead of spreading randomly to
all servers in the datacenter. By leveraging the state-of-the-
art deep learning technique for similar image classification,
CStorage manages to improve the image retrieval accuracy
and recall rate. To verify the efficiency and effectiveness of
CStorage, we conducted extensive experiments on a large-
scale image dataset and the results shows that CStorage
outperforms some image storage systems. In the future, we
would make a thorough exploration of the most recent deep
learning models and adapt it to CStorage to further improve
the performance.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
OAC-1724845, ACI-1719397 and CNS-1733596, and Mi-
crosoft Research Faculty Fellowship 8300751. We would like
to thank Dr. Yuhua Lin for his help in this work.

REFERENCES

[1] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill,
Ernest Lin, Weiwen Liu, Satadru Pan, Shiva Shankar, Viswanath Sivaku-
mar, Linpeng Tang, and Sanjeev Kumar. f4: Facebook’s warm blob
storage system. In Proc. of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2014.

[2] Yu Hua, Wenbo He, Xue Liu, and Dan Feng. Smarteye: Real-time and
efficient cloud image sharing for disaster environments. In Proc. of the
IEEE Conference on Computer Communications (INFOCOM), 2015.

[3] Doug Beaver, Sanjeev Kumar, Harry C Li, Jason Sobel, and Peter Vajgel.
Finding a needle in haystack: Facebook’s photo storage. In Proc. the
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2010.

[4] H. Wang, H. Shen, and G. Liu. Swarm-based incast congestion control
in datacenters serving web applications. In Proc. of SPAA, 2017.

[5] Haitao Wu, Zhenqian Feng, Chuanxiong Guo, and Yongguang Zhang.
Ictcp: Incast congestion control for tcp in data-center networks.
IEEE/ACM Transactions on Networking, 21(2):345 – 358, 2013.

[6] David G. Lowe. Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision, 60(2):91–110, 2004.

[7] Y. Ke and R. Sukthankar. Pca-sift: A more distinctive representation
for local image descriptors. In Proc. of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2004.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Proc. of the Annual
Conference on Neural Information Processing Systems (NIPS), 2012.

[9] Jianlong Fu, Tao Mei, Kuiyuan Yang, Hanqing Lu, and Yong Ru.
Tagging personal photos with transfer deep learning. In Proc. of the
International World Wide Web Conference (WWW), 2015.

[10] Wim De Mulder, Steven Bethard, and Marie-Francine Moens. A survey
on the application of recurrent neural networks to statistical language
modeling. Computer Speech & Language, 30(1):61–98, Mar. 2015.

[11] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and
J. Schmidhuber. A novel connectionist system for improved uncon-
strained handwriting recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 31(5):855 – 868, 2009.

[12] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[13] H. Sak, A. W. Senior, and F. Beaufays. Long short-term memory
recurrent neural network architectures for large scale acoustic model-
ing. In Proc. of the Annual Conference of the International Speech
Communication Association (Interspeech), 2014.

[14] Huei-Fang Yang, Kevin Lin, and Chu-Song Chen. Supervised learning
of semantics-preserving hashing via deep neural networks for large-scale
image search. arXiv preprint arXiv:1507.00101, 2015.

[15] N. Harbour. Dcfldd. defense computer forensics lab. In Available:
http://dcfldd.sourceforge.net. 2002.

[16] P. Indyk and R. Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proc. of ACM Symposium
on Theory of Computing (STOC), 1998.

[17] J. Tang, Z. Li, L. Zhang, and Q. Huang. Semantic-aware hashing
for social image retrieval. In Proc. of the Annual ACM International
Conference on Multimedia Retrieval (ICMR), 2015.

[18] F. Zhao, Y. Huang, L. Wang, and T. Tan. Deep semantic rank-
ing based hashing for multi-label image retrieval. arXiv preprint
arXiv:1501.06272, 2015.

[19] L. Li, C. C. Yan, W. Ji, B.-W. Chen, S. Jiang, and Q. Huang. Lsh-
based semantic dictionary learning for large scale image understanding.
Journal of Visual Communication and Image Representation, 31:231–
236, 2015.

[20] B. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[21] Yunchao Gong, Marcin Pawlowski, Fei Yang, Louis Brandy, Lubomir
Boundev, and Rob Fergus. Web scale photo hash clustering on a single
machine. In Proc. of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[22] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-man. Object
retrieval with large vocabularies and fast spatial matching. In Proc. of
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2007.

[23] G. Liu, H. Shen, and H. Wang. Computing load aware and long-view
load balancing for cluster storage systems. In Proc. of Big Data, 2015.

[24] T. Benson, A. Akella, and D. A. Maltz. Network Traffic Characteristics
of Data Centers in the Wild. In Proc. of Internet Measurement
Conference (IMC), 2010.

[25] Cisco Nexus 3064 Switch. http://www.cisco.com/c/en/us/products/
switches/nexus-3064-switch/.

[26] S. Shukla, S. Chan, A. Tam, A. Gupta, Y. Xu, and H. Chao. Tcp plato:
packet labelling to alleviate time-out. IEEE Journal on Selected Areas
in Communications, 32(1):65–76, 2014.

[27] G. Buehrer, B. W Weide, and P. A. Sivilotti. Using parse tree validation
to prevent sql injection attacks. In Proc. of the International workshop
on Software engineering and middleware (SEM), 2005.

[28] V. Paxson, M. Allman, J. Chu, and M. Sargent. Computing TCP’s
Retransmission Timer. Technical report, RFC2988, November, 2011.

[29] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet:
A large-scale hierarchical image database. In Proc. of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2009.

[30] A. Quattoni, M. Collins, and T. Darrell. Transfer learning for image
classification with sparse prototype representations. In Proc. of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2008.

[31] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions
on Knowledge and Data Engineering (TKDE), 22(10):1345–1359, 2010.


