Distributed Privacy-Protecting Routing in DTN: Concealing the Information Indispensable in Routing *

Kang Chen¹ and Haiying Shen²

¹Dept. of ECE, Southern Illinois University, IL, USA
²Dept. of CS, University of Virginia, VA, USA

* Majority was done when at Clemson
Outline

• Introduction
• System Design
• Performance Evaluation
• Conclusion
Introduction

• Delay/Disruption Tolerant Networks (DTNs)
 • A challenging form of mobile network
 • Nodes are sparsely distributed
 • Opportunistic node encountering
 • No infrastructure, only Peer-to-Peer communication

• Network Features
 • Limited resources
 • Frequent network partition and disconnection
 • End-to-end path cannot be ensured
Introduction

• Routing is possible
 • Often in a store-carry-forward manner

 ![Routing Example](image)

 s → r → d

 • Utility based routing principle
 • Define a utility that represents how likely to meet a node (directly) or deliver a packet to a node (indirectly)
 • When two nodes meet, they exchange and compare routing utilities for each destination, and always forward a packet to the node with a higher utility value

• Common utility definitions
 • Meeting frequency; social closeness; network centrality, etc.
Introduction

• Privacy concerns
 • Those routing utilities contain much private information
 • Meeting frequency, social relationship, locations, etc.
 • More severe in DTNs involving human-operated devices
 • Pocket switched network, Vehicular DTNs, etc.

• Malicious nodes could take advantage of them
 • Fabricate routing utilities to attract and drop packets
 • Disseminate virus to specific targets or locations
Introduction

• Challenges
 • On one side, disclosing routing utilities is not privacy preserving
 • On the other side, DTN routing requires nodes to exchange such information

• Goal
 • Harmonizing both needs
 • Anonymizing such information by
 • Carefully disclosing partial routing utility information that is enough for correct routing
 • Altering the packet forwarding sequences
Outline

• Introduction
• System Design
• Performance Evaluation
• Conclusion
System Design : Utility Anonymity

• Some definitions
 • Routing utility: \(U_{ij} = \{n_i, n_j, v_{ij}\} \),
 • \(v_{ij} \) denotes \(n_i \)'s utility value for \(n_j \)

 • Commutative encryption: \(E(\cdot) \)
 • \(E_{k_1} (E_{k_2} (M)) = E_{k_2} (E_{k_1} (K)) \) for encryption key \(k_1 \) and \(k_2 \)

 • Order-preserving hashing: \(H(\cdot) \)
 • If \(v_1 > v_2 \), \(H(v_1) > H(v_2) \)
System Design: Utility Anonymity

• Observations
 • \(U_{ij} = \{n_i, n_j, v_{ij}\} \) is anonymized when any of the three elements is anonymized (assume enough nodes in the network)
 • To ensure correct routing, two nodes just need to know the order of their utility values for the same destination

• Solution
 • Nodes exchange partially encrypted/hashed routing utility
 • Nodes could identify and compare routing utility for the same destination node
 • But at least one of three element is not disclosed to the other node
System Design: Utility Anonymity

- Illustration scenario
 - \(n_1 \) meets \(n_2 \) for packet forwarding
 - \(n_1 \) is selected as the node that will do utility comparison
 - \(n_1 \) pick key \(k_1 \) and hashing function \(H_1 \), \(n_2 \) pick key \(k_2 \) and hashing function \(H_2 \)
- Step 1
 \[
 n_1 \rightarrow n_2 : U'_{1x} = (n_1, E_{k_1}(n_x), v_{1x})
 \]
 \(n_2 \) generates \(U''_{1x} = (n_1, E_{k_2}(E_{k_1}(n_x)), H_2(v_{1x})) \)
 \[
 n_2 \rightarrow n_1 : U''_{1x}
 \]
 \[
 n_2 \rightarrow n_1 : U'_2x = (n_2, E_{k_2}(n_x), H_2(v_{2x}))
 \]
 \(n_1 \) generates \(U''_{2x} = (n_2, E_{k_1}(E_{k_2}(n_x)), H_2(v_{2x})) \)
System Design: Utility Anonymity

- **Step 2**
 \[n_1 \text{now has} \]
 \[U''_{1x} = (n_1, E_{k_2}(E_{k_1}(n_x)), H_2(v_{1x})) \]
 \[U''_{2x} = (n_2, E_{k_1}(E_{k_2}(n_x)), H_2(v_{2x})) \]
 Due to commutative encryption, routing utilities with the same \(n_x \) could be identified
 Due to order-preserving hashing, their utility values \((H_2(v_{1x}) \) and \(H_2(v_{2x}) \)) could be compared

- **Step 3**
 \[n_1 \text{informs } n_2 \text{ those destinations that it has a higher utility value} \]
 \[n_1 \rightarrow n_2 : E_{k_2}(n_x) \text{ if } H_2(v_{1x}) > H_2(v_{2x}) \]
 \[n_2 \text{ decrypts and knows that } n_1 \text{ is the forwarder for which dest. and informs } n_1 \]
 \[\text{It further knows itself is the forwarder for which dest.} \]
System Design : Utility Anonymity

- Summary

 - Anonymity is attained:
 - Each node can only get the utilities with at least one element encryptedhashed

 - Routing is ensured:
 - Routing utilities are successfully compared
System Design : Forwarder Anonymity

• **Forwarder**
 • The node that holds the packet (i.e., the node with the highest utility for the destination of the packet)

 • Such information is private too
 • Targeting a specific destination by tracking packets destined to the destination

• n_2 has the highest utility value for n_{10} among all neighbors.
• It is the forwarder for packets destined to n_{10}
System Design : Forwarder Anonymity

• How to protect such forwarder information?
 • Forwarder information contains two parts: <dest., forwarder>

• Hide one by changing the process of routing utility comparison and packet forwarding
 • Choose a relay node among the group of encountered nodes
 • The relay node knows the forwarder for each encrypted destination

• Only applies when a group of nodes meet
 • No way to hide when only two nodes meet
System Design : Forwarder Anonymity

• Illustration scenario
 • \(n_1, n_2, n_3, n_4 \) meet for packet forwarding
 • \(n_2 \) is selected as the relay node, the remaining form the Neighbor set
 • \(n_1 \) is the head of the neighbor set and decides a group key \(k_n \)

• Step 1
 • Each node in the neighbor set encrypts its routing utility with \(k_n \) and send to \(n_2 \)
System Design: Forwarder Anonymity

- Step 2

\(n_1 \) and \(n_2 \) compare routing utilities from the neighbor set and those on \(n_2 \) following the method for Utility Anonymity.

- Step 3

\(n_2 \) builds a relay table as the following:

<table>
<thead>
<tr>
<th>(k_n)-encrypted destination</th>
<th>Forwarder</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{E}_{k_n}(n_a))</td>
<td>(n_1)</td>
</tr>
<tr>
<td>(\mathcal{E}_{k_n}(n_c))</td>
<td>(n_3)</td>
</tr>
<tr>
<td>(\mathcal{E}_{k_n}(n_d))</td>
<td>(n_4)</td>
</tr>
</tbody>
</table>
System Design: Forwarder Anonymity

• Step 4

\[n_1, n_3, \text{ and } n_4 \text{ encrypt its packets’ destination with } k_n \text{ and send to } n_2 \text{ for relay} \]

\[n_2 \text{ searches the relay table and forward the packet if there is a hit, or keep the packet if not (itself is the forwarder)} \]

• Summary

 • \(n_2 \) only knows the forwarder for each \(k_n \)-encrypted destination, so it cannot know the complete forwarder information
 • Others only know that packets are relayed by \(n_2 \)
Outline

- Introduction
- System Design
- Performance Evaluation
- Conclusion
Evaluation

• Traces
 • Haggle: encountering of mobile devices in a conference
 • MIT Reality: encountering of mobile devices on a campus

• Methods
 • Privacy protection is analyzed in the paper
 • Measuring the routing performance with the proposed methods
 • Using PROPHET* as the baseline routing algorithm
 • PROPHET-G denotes extended pair-wise encountering assumption

Evaluation : Routing Performance

• MIT Reality trace

- B-ReHider and E-ReHider indicate utility anonymity and its extended version
- B-FwHider and E-FwHider indicate forwarder anonymity and its extended version
- Routing efficiency is not affected with the privacy protection schemes
Evaluation: Routing Performance

- Haggle trace

- The same result as in the MIT Reality trace
Conclusion

- Routing utilities in DTNs contain much privacy information but need to be disclosed for correct routing
- Solution:
 - Careful encryption to let nodes only share partial utility information that is enough for correct routing
 - Altering the packet forwarding sequences to further anonymity forwarder information
- Future work:
 - Energy consumption
 - Loose the limit and allow a white-list
Thank you!
Questions & Comments?