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Abstract—In this paper, we study the link scheduling problem
considering the fluctuating fading effect in transmissions. We
extend the previous deterministic physical interference model to
the Rayleigh-fading model that uses the stochastic propagation
to address fading effects. Based on this model, we formulate a
problem called Fading-Resistant Link Scheduling (Fading-R-LS)
problem, which aims to maximize the throughput of all links in
a single time slot. We prove that this problem is NP-hard. Based
on the geometric structure of Fading-R-LS, we then propose
two centralized schemes with O(g(L)) and O(1) performance
guarantee, respectively, where g(L) is the number of magnitudes
of transmission link lengths. Our experimental results show that
the superior performance of our proposed schemes compared to
previous schemes.

Index Terms—Link Scheduling; NP-hard; approximation al-
gorithm;

I. INTRODUCTION

In wireless networks, the problem of scheduling link trans-
missions, or the link scheduling problem, has been a subject of
significant research interest over the past years. Given a set of
transmission links, each of which is from a sender to a receiver
and associated with a specific data rate, this problem is to
determine which links should be active at what times in order
to optimize one or multiple performance objectives such as
throughput and delay. Due to the broadcast nature of wireless
communication, when a sender transmits a packet to a specific
receiver, it could become interference to other receivers. Thus,
when scheduling links, we need to consider how to select
links such that the interference among the links will not
fail transmissions. When studying the scheduling problem in
wireless networks, the choice of the interference model is of
fundamental significance. Though the scheduling problem has
been widely studied based on different interference models
[1]–[15], none of the previous works has proposed approx-
imation algorithms for this problem based on the physical
interference model considering fading effect in transmissions.

One of the most commonly used interference model in the
traditional scheduling problem is graph based model [1]–[9].
It only considers the interference on a receiver from other
senders within the transmission range. However, although the
interference from a single far-away sender can be relatively
small, the accumulated interference from several such senders
can be sufficiently high to corrupt a transmission. Hence, the
scheduling problem solutions based on the graph based model

cannot be guaranteed to work in many real scenarios. Another
interference model, named physical interference model or
Signal-to-Interference-plus-Noise Ratio (SINR) model, offers
a more realistic representation of wireless networks [10]–
[15]. In this model, a message is received successfully iff
the SINR is no smaller than a hardware-defined threshold.
This definition of a successful transmission, as opposed to the
graph based definition, accounts for interference generated by
senders located far away.

However, the SINR model still uses a limited view of
signal propagation. Its main assumption is that any signal
transmitted at power level P is always received at distance
d with strength Pd−α, where α is path loss exponent. The
real signal propagation is actually not deterministic, e.g.,
the links may become susceptible to fading fluctuations in
signal strength due to mobility in a multi-path propagation
environment [16]. Therefore, some advanced models using
stochastic approaches to consider fading effects have been
proposed [17], [18]. Most prominently, in the Rayleigh-fading
model, the signal strength is modeled by an exponentially
distributed random variable with mean Pd−α [16], [19]. This
however also makes the SINR non-deterministic, and hence
causes the judgement of successful transmission in analyzing
the link scheduling problem much more complicated. As a
result, finding solutions for the link scheduling problem with
the Rayleigh-fading model is a non-trivial task.

To address this problem, in this paper, we formulate a link
scheduling problem called Fading-Resistant Link Scheduling
problem (Fading-R-LS), in which the interferences among
links are modeled by the Rayleigh-fading channel model.
Given a set of links L, Fading-R-LS is to determine which
subset of L should be activated such that the total throughput
is maximized in one time slot. We first prove that this problem
is NP-hard, and then propose three solutions and analyze their
performance guarantees. In summary, this paper mainly has
four contributions:

1) Fading-R-LS formulation and analysis. We formulate
the Fading-R-LS problem that takes into account the
fading effect, which is not considered in previous
scheduling problems. In addition, we give an integer
linear programming (ILP) formulation of Fading-R-LS
and prove it is NP-hard.

2) Link diversity partition algorithm (LDP). According



to the geometric structure of Fading-R-LS, we propose
the LDP centralized method. It builds several link classes
based on link lengths and schedule the links in each class
separately. We prove that LDP has the performance guar-
antee of O(g(L)), where g(L) denotes the link diversity,
i.e., the number of length magnitudes of link set L.

3) Recursive link elimination algorithm (RLE). We then
consider a special case of Fading-R-LS, in which the
data rate of each link is the same, and propose the
RLE algorithm accordingly. RLE iteratively picks up the
unpicked link with the shortest link length and eliminates
other links that interfere with the picked link. We prove
RLE has the performance guarantee of O(∆α), where
∆ is the ratio between the maximum and the minimum
distances between nodes.

The remainder of this paper is organized as follows. Section
II builds the mathematical system model. Section III defines
Fading-R-LS and proves its hardness. To solve this problem,
we propose two centralized algorithms in Section IV. Section
V evaluates the performance of our proposed algorithms in
comparison with a pervious solution. Section VI presents
related work. Section VII concludes this paper with remarks
on our future work.

II. SYSTEM MODEL

In this section, we introduce the mathematical model to
calculate SINR with the consideration of the fading effect,
which will be used throughout this paper. Consider a wireless
network with N communication links

L = {(s1, r1), ..., (sN , rN )}, (1)

where (si, ri) represents a transmission link from sender si
to receiver ri with transmission rate λi. We do not consider
the scenario in which either a sender transmits to multiple
receivers or multiple senders transmit to a receiver, so we
assume that si 6= sj and ri 6= rj ∀i 6= j. The set of receivers
and the set of senders are denoted by

R = {r1, ..., rN} (2)

and
S = {s1, ..., sN}, (3)

respectively. For each receiver rj , we call si the desired
sender of rj if j = i; otherwise an interfering sender of rj .
The Euclidean distance between sender si and receiver rj is
denoted by di,j , and that two senders si and sj is denoted by
dsi,sj . We call di,i the length of link (si, ri).

We consider time-varying and frequency-flat fading wireless
channels. The channel effects from sender si to receiver rj
can be modeled by a single, complex and random channel
coefficient hi,j . We consider the Rayleigh fading channel
model [16]–[18], in which all |hi,j |2 are independent and
exponentially distributed with a mean value

σ2
i,j = Pd−αi,i (4)

where α is path loss exponent. By convention, we assume
that α > 2. We use Zi,j to represent the instantaneous signal
power received by rj from si. Zi,j is a random variable with
Cumulative Distribution Function (CDF) of

FZi,j = Pr{Zi,j ≤ x} = 1− e−x/Pd
−α
i,j . (5)

When multiple users transmit simultaneously, they interfere
with each other. We model interference by regarding all
competing transmissions as additive noise and denote it by
SINR. We denote ZP,j as the sum signal that rj receives from
sender set P (P ⊂ S), i.e.,

ZP,j =
∑
si∈P

Zi,j . (6)

We use a non-negative random variable Xj to represent the
SINR received by rj :

Xj =
Zj,j

N0 + ZP\sj ,j
. (7)

As N0 has negligible effect on the results [14], [15], [19], we
then ignore the influence of N0, hence

Xj =
Zj,j

ZP\sj ,j
. (8)

Receiver rj can correctly decode the message (or informed)
iff Xj ≥ γth, where γth is decoding threshold. In fading
channel models, the probability of successful transmission
never can be 0, so we assume an acceptable error probability
ε for transmission. That is, for any receiver rj , we say rj
can be informed by its desired sender sj if the probability of
Xj < γth is no larger than ε.

III. PROBLEM ANALYSIS

In this section, we first formulate the Fading-R-LS problem.
Its objective is to identify a subset of senders, denoted by P
(P ⊂ S), such that the throughput (i.e., the total data rate
successfully received by receivers) is maximized in one time
slot. In other words, we attempt to use one time slot to its full
capacity. Formally, we define the Fading-R-LS as follows:
Instance: A finite set of senders S and their respective
receivers R in a geometric plane, decoding threshold γth,
acceptable error rate ε, and a constant Λ.
Question: Existence of a subset of senders P , namely a
schedule, such that the total successful transmission rate is
no smaller than Λ, i.e.,

1) Pr(Xj < γth) < ε, ∀sj ∈ P and
2)
∑
sj∈P λj ≥ Λ.

We say a schedule P is feasible if all the senders in P
can successfully transmit the message with probability at least
1−ε. Below, we first derive the closed-form expression for the
probability of successful transmission Pr(Xj ≥ γth) for any
receiver rj (Theorem 3.1). Then, we prove that Fading-R-LS
is NP-hard (Theorem 3.2).



Theorem 3.1: Given an active link (sj , rj) and active
sender set P , the probability of successful transmission from
sj to rj is:

Pr(Xj ≥ γth) =
∏

si∈P\sj

1

1 + d−αi,j γth/d
−α
j,j

. (9)

Proof The CDF of the quotient Xj = Zi,j/ZP\sj ,j can be
computed as follows:

FXj (x) = P
(
Zj,j/ZP\sj ,j ≤ x

)
= P (Zj,j ≤ xZP\sj ,j)

=

∫ ∞
0

∫ xz

0

fZj,j (y)dy · fZP\sj,j (z)dz. (10)

By differentiating, we can obtain

fXj (x) =
d

dx
FXj (x)

=

∫ ∞
0

zfZj,j (xz)fZP\sj,j (z)dz

=

∫ ∞
0

z

Pd−αi,j
e
− xz

Pd
−α
i,j fZP\sj,j (z)dz. (11)

Then, the probability of successful transmission from si to rj
equals

Pr(Xj ≥ γth) =

∫ ∞
0

∫ ∞
γth

z

Pd−αj,j
e
− xz

Pd
−α
j,j fZP sj,j

(z)dxdz

=

∫ ∞
0

e
− γthz

Pd
−α
j,j fZP sj,j

(z)dz

= LZP\sj,j
(
γth/(Pd

−α
j,j )

)
(12)

where LZP\sj,j (ν) represents the Laplace transform of
fZP\sj,j (x). Because the Laplace transform of the exponential
distribution with mean 1/µ equals µ/(µ+ ν),

LZP\sj,j (ν) =
∏

si∈P\sj

1

1 + Pd−αi,j ν
. (13)

Consequently,

Pr(Xj ≥ γth) = LZP\sj,j
(
γth/Pd

−α
j,j

)
(14)

=
∏

si∈P\sj

1

1 + d−αi,j γth/d
−α
j,j

. (15)

According to Theorem 3.1, in the following, we formulate
the ILP form of the Fading-R-LS problem and prove that this
problem is NP-hard. First, we take the logarithm on both sides
of Equ. (9):

ln Pr(Xj ≥ γth) = −
∑

si∈P\sj

fi,j , (16)

where

fi,j =

{
ln
(
1 + (di,j/dj,j)

−α γth
)

if i 6= j
0 if i = j

(17)

We call fi,j the interference factor of si on rj . Accordingly,
we use fP\rj ,rj to denote the interference factor of P\rj on
rj , where

fP\rj ,rj =
∑

si∈P\rj

fi,j . (18)

... x
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Fig. 1. Mapping Fading-R-LS to Knapsack.

Corollary 3.1: Given an active link (sj , rj) and the active
sender set P , rj can be informed iff∑

si∈P\sj

fi,j ≤ γε, (19)

where γε = ln
(

1
1−ε

)
is a constant.

By Corollary 3.1, we formulate the ILP form of Fading-R-LS
as follows:

max
N∑
i=1

λixi (20)

s.t.

N∑
i=1

fi,jxi ≤ γε +M(1− xj), (21)

xi ∈ {0, 1}, i, j = 1, ..., N, (22)

where M is a constant with a very large value.
Theorem 3.2: The Fading-R-LS problem is NP-hard.

Proof We construct a polynomial time reduction from the
well-known Knapsack NP-hard problem [20] to Fading-R-LS.
The Knapsack problem can be formulated as follows: given n
kinds of items, x1, ..., xn; each item xj has a value pj and a
weight wj , and a bag that can carry weight W maximally, the
goal is to choose the items to put into the bag such that the
sum of the items’ values is no smaller than a constant C. For
any instance in the Knapsack problem, we construct a Fading-
R-LS instance that can be mapped to the Knapsack instance
(see Fig. 1). We position a sender node si in the plane for
each xi, such that the received signal power from si at (0, 0)
is wi, i.e.,

Loc(si) =

(e γεwiW − 1

γth

)− 1
α

, 0

 , ∀1 ≤ j ≤ n. (23)

Then, we set ri close enough to si to guarantee successful
reception regardless of other links:

Loc(ri) = Loc(si) + (δ, 0), ∀1 ≤ i ≤ n, (24)

where

δ = dmin/

((
(eγε/(n+1) − 1)/γth

)− 1
α

+ 1

)
(25)

and dmin is the minimum distance between any pair of senders.
After that, we place one more link ln+1, s.t.

Loc(sn+1) = (0, 1) , (26)
Loc(rn+1) = (0, 0). (27)



Thereafter, we assign a weight to each link:

λi = pi, ∀1 ≤ i ≤ n λn+1 = 2

n∑
j=1

pj . (28)

The question is whether there exists a schedule to make total
data rate (i.e., throughput) at least 2

∑n
j=1 pj+C for Fading-R-

LS. Now, we need to prove that the solution of the Fading-R-LS
instance exists iff the solution of the Knapsack problem exists.
⇒: Suppose that ∃X s.t.∑

xj∈X
pj ≥ C and

∑
xj∈X

wj ≤W. (29)

We activate each sender si if xi ∈ X . Also, sn+1 must be
active; otherwise the total data can never reach 2

∑n
j=1 pj+C.

First, rn+1 can successfully receive the packet because∑
si∈P\sn+1

fj,n+1 =
∑

si∈P\sn+1

ln

(
1 +

d−αi,j γth

d−αn+1,n+1

)

=
∑

si∈P\sn+1

ln

(
1 +

(
e
γεwi
W − 1

γth

)
γth

)
≤ γε (30)

Then, for each receiver rj s.t. xj ∈ X , we have

∑
si∈P\sj

fi,j ≤
∑

si∈P\sj

ln

(
1 +

(
dmin − δ

δ

)−α
γth

)
≤ γε. (31)

Hence, the total data rate is

λtotal =
∑
xi∈X

pixi + 2W ≥ C + 2W, (32)

which implies that exists a schedule such that total data rate
is at least 2

∑n
j=1 pj + C for Fading-R-LS.

⇐: Suppose there exists a Fading-R-LS schedule P such that
the total data rate is at least 2

∑n
j=1 pj + C, then rn+1 must

successfully receive the message, and hence∑
sj∈P\sn+1

fj,n+1 ≤ γε, (33)

which implies that
∑
si∈P sj

wj ≤ W (by Equ. (30)) and∑
si∈P sj

pj ≥ C. Let X = {xi|si ∈ P/sn+1}, then∑
xi∈X

pi ≥ C and
∑
xi∈X

wi ≤W. (34)

IV. CENTRALIZED ALGORITHMS

Since Fading-R-LS is a NP-hard problem, there are no poly-
nomial time solutions for determining the optimal schedule.
To solve this problem, in this section, we propose the Link
Diversity Partition algorithm (LDP) (Section IV-A). We further
propose a constant approximation ratio algorithm, namely
Recursive Link Elimination algorithm (RLE) (Section IV-B)
for the case when the data rate of each link is the same.

A. Link Diversity Partition Algorithm

The LDP algorithm is developed based on the approxima-
tion algorithm using the SINR model proposed in [14]. As
previously explained, the deterministic SINR model does not
consider the fluctuating fading in transmissions, which makes
the algorithm susceptible to fading environment. Instead,
LDP is advantageous by taking into account Rayleigh fading,
which however is a non-trivial task. Below, we first briefly
introduce the algorithm in [14], explain the faced challenge
and advantages of the LDP design, and then present LDP.

The algorithm in [14] builds disjoint link classes by clas-
sifying the links with similar lengths to one class. For each
link class, it partitions the entire network region into squares
and set neighboring squares to different colors (Figure 2(a)).
Such color setting makes the transmissions in the same-color
squares always have a certain distance between each other. The
size of the squares is calculated based on the SINR model to
ensure the successful transmissions of a selected link from
each same-color square when all these selected links transmit
simultaneously. Then, all the selected links from the same-
color squares form a feasible schedule. This algorithm selects
the schedule with the highest data rate among all the feasible
schedules.

To extend this algorithm for the Rayleigh fading model
is challenging because calculating the closed form of
successful transmission probability in Rayleigh fading model
is much more complex than that in the deterministic SINR
model, which makes the size of each square in the grid
difficult to estimate. Fortunately, in Corollary 3.1, we have
derived a linear formula (Formula (19)) to judge a successful
transmission under Rayleigh fading model. Also, this previous
algorithm sets both upper and lower bounds for the link
length of each class when building link classes. We further
improve this algorithm by only upper bounding the link
length of each class, since the transmission of a shorter-length
link will be successful if the transmission of a longer-length
link in the same square area is successful. This improvement
enhances the throughput as there are more link candidates
possibly with higher data rates for a schedule.

Definition 4.1: Length diversity set of a set of links L,
denoted by G(L), is defined by

G(L) = {h|∃l, l′ ∈ L : blog(d(l)/d(l′))c = h} (35)

and the link length diversity g(L) is defined by g(L) = |G(L)|,
where |G(L)| denotes the size of G(L). G(L) lists the
magnitudes of transmission link lengths, and g(L) represent
the number of these magnitudes. In real applications, g(L) is
usually a small constant [14].

In the following, we introduce LDP in detail. This algorithm
starts by building g(L) disjoint link classes L1, ..., Lg(L) from
L, s.t.

Lk = {(s, r) ∈ L|ds,r < 2hk+1δ} (36)

where δ is the length of the shortest link in L. That is,
each class includes the links with lengths no larger than a
specific magnitude. Thus, for each link class, the length of



Algorithm 1: Pseudo-code for LDP.

input : {L1, ..., Lg(L)}, {R1, ..., Rg(L)};
output: P;

1 for k ← 1 to g(L) do
2 Partition the network region into squares

Ak = {Aka,b} of size βk × βk;
3 Color the squares with {1, 2, 3, 4} s.t. no two

adjacent squares have the same color (see Fig. 2 (a));
4 for j ← 1 to 4 do
5 for each square in j that has receivers in Rk do
6 Pick the receiver ri with the maximum data

rate in the square and put it in P(k,j)
ldp ;

7 Remove ri from Rk;

8 P ← arg max{U(P(k,j)
ldp )|P(k,j)

ldp ,∀k, j};
9 return P;

links is upper bounded. Then, the desired signal power for
each link class has a lower bound. Next, for each link class
Lk, LDP constructs feasible schedules. The pseudocode of
this procedure is shown in Algorithm 1. When scheduling
Lk, the entire network region is partitioned into a set of
squares Ak = {Aka,b} (a, b = 1, 2, ...), where (a, b) represents
the location of the square in the grid. Each square has size
βk = 2hk+1βδ, where

β =

(
8ζ(α− 1)γth

γε

) 1
α

, (37)

in which ζ(α − 1) is the Riemann zeta function and it is
a constant for α > 2. We will show how the square size is
calculated with the consideration of the Rayleigh fading model
in the Proof of Theorem 4.1. We set these squares with four
colors j ∈ {1, 2, 3, 4} as shown in Figure 2(a). Then, each
pair of the same-color squares are kept far away from each
other. By picking senders in the same-color squares, we can
guarantee that the distances between the active senders are
large enough, and hence the interference is upper bounded.
In scheduling Lk, for each square of a specific color j, if
the square contains receivers in Rk which denotes the set of
receivers whose links are in Lk, we pick up the receiver with
the highest data rate and add its desired sender to P(k,j)

ldp , which
denotes the schedule built for link class Lk on color j. Because
there are g(L) link classes and each class has four schedules
for four colors, we can finally get 4g(L) feasible schedules:
P(k,j)
ldp (k = 1, ..., g(L), j = 1, 2, 3, 4). The purpose of the

above steps is to ensure that the SINR for each transmission
in the Rayleigh fading model is large enough to reach the
decoding threshold. As the objective of this link scheduling
problem is to maximize the throughput, the schedule with the
largest data rate is chosen from these schedules finally:

Pldp = arg max{U(P(k,j)
ldp )|P(k,j)

ldp ,∀k, j}, (38)

where U(P) denotes the data rate transmitted by sender set P .

(a) Partition (b) Proof of Theorem 4.1

Fig. 2. Link diversity partition algorithm (LDP).

Theorem 4.1: LDP provides a feasible schedule.

Proof Without loss of generality, we examine whether any
receiver rj ∈ Rk can successfully receive the packet from
sj . Consider the interference caused by the transmission from
other requests. Suppose rj is located in square Aka,b, since
links are scheduled concurrently iff their receivers reside in
different squares with the same color, and the distance between
same-color squares is 2qβk (q ∈ N), the interference can only
be caused by the senders whose receivers are in Aka±2q,b±2q ,
Aka±2q,b∓2q , A

k
a,b±2q , and Aka±2q,b (see Fig. 2 (b)). We use Qkq

to denote the set of all active senders whose receivers are in the
8q squares. For any interference link (si, rj) ∈ Qkq , because
the distance between ri and rj is at least 2qβk and the distance
between ri and si is at most 2hk+1δ. By triangle inequality,

dsi,rj ≥ dri,rj − dsi,ri (39)

≥ 2qβk − 2hk+1δ (40)
= 2hk+2qδβ − 2hk+1δ. (41)

Then, the interference factor of sj on ri is at most

fi,j = ln

(
1 +

d−αi,j γth

d−αj,j

)
(42)

≤
d−αi,j γth

d−αj,j
(43)

= (2qβ − 1)−αγth. (44)

Since there are at most 8q links in Qkq , the interference factor
of Qkq on rj is upper bounded by fQkq ,rj =

∑
si∈Qkq

fsi,rj ≤
8q·γth

(2qβ−1)α , and the interference factor of all active links Qk =

∪qQkq on ri is upper bounded by

fPldp,rj =

∞∑
q=1

fQkq ,rj (45)

≤
∞∑
q=1

8qγth
(2qβ − 1)α

(46)

≤
∞∑
q=1

8qγth
qαβα

≤ γε, (47)

which implies that rj can be informed.



Theorem 4.2: The approximation ratio of the link diversity
partition algorithm (LDP) is O(g(L)).

Proof We start by defining Pkopt to be the optimum schedule
comprised by the links (si, ri) such that

2hkδ ≤ di,i < 2hk+1δ. (48)

Then, U(Popt) =
∑g(L)
k=1 U(Pkopt). Now we show that any

optimal scheme can schedule at most u receivers within each
square in Ak in Pkopt, where u is a constant:

u = d γε

ln
(

1 + 1
2αβαγth

)e. (49)

For the sake of contradiction, assume that there exists a square
containing more than u receivers. We pick any link receiver
ri and calculate its interference factor:

fPopt,rj ≥
∑

si∈Pkopt

fi,j (50)

=
∑

si∈Pkopt

ln

(
1 +

d−αi,j γth

d−αj,j

)
(51)

≥
∑

si∈Pkopt

ln

(
1 +

2αhkδα

(2hk+1βδ)αγth

)
(52)

≥ γε. (53)

Therefore, given that every feasible schedule Pldp computed
by LDP contains the heaviest link in every square, the follow-
ing bound holds:

U(Pkldp) ≥
U(Pkopt)

4q
, j ∈ {1, ..., 4}, k ∈ {1, 2, ..., g(L)}

(54)
where Pkldp = arg max{U(P(k,j)

ldp )|P(k,j)
ldp ,∀j}. Since LDP

returns the schedule of the maximum data rate over all length
classes and colorings, the approximation ratio follows:

U(Pldp) ≥
∑g(L)
k=1 U(Pkldp)

4g(L)
(55)

≥
∑g(L)
k=1 U(Pkopt)

16g(L)

=
U(Popt)

16g(L)
(56)

which implies that U(Popt)
U(Pldp)

≤ 16g(L).

B. Recursive Link Elimination Algorithm

In this section, we consider a special case of Fading-R-LS,
in which the transmission rate of each link is the same, i.e.,
λi = λ ∀1 ≤ i ≤ N , which is true in many applications. For
example, sensors need to periodically report their collected
data to sink node, in which all the sensors have the same
data rate [21]. The link scheduling problem with the same
data rate for all the senders has been discussed in many
link scheduling works, like [22] [23]. We propose a greedy
algorithm, namely recursive link elimination algorithm (RLE),

Fig. 3. Proof of Theorem 4.3.
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Fig. 4. z-blue-dominant.

for this special case. Algorithm 2 shows the pseudocode for
RLE. In each iteration, the algorithm first greedily selects the
unpicked sender with the shortest link length, say si. The
rationale of this strategy is that the signal power received by
the receiver with a shorter link is always stronger, and hence
the receiver is more likely to successfully receive the packet.
Then, all links whose senders are within the radius c1dsi,ri of
the receiver ri are removed from L, where c1 is a constant to
be set later on (in Formula (59)). Second, all senders whose
receivers have interference factors above c2 from the selected
senders are removed, where c2 is a constant smaller than 1.
This process is repeated until all links in L have been either
active or deleted. Note that though this algorithm has a number
of iterations, all identified active links conduct transmissions
in one time slot simultaneously.

Algorithm 2: Pseudo-code for RLE.

input : S = {s1, ..., sN}
output: P

1 P ← φ;
2 while S 6= P do
3 Pick up the sender si that has the shortest link length

in L and add it to P;
4 Remove each sender sj , s.t. dsj ,ri < c1dsi,ri from S;
5 Remove each sender sj , s.t. fP,rj > c2γε from S;

6 return P;

Below, we prove that the schedule obtained by RLE is both
feasible (Theorem 4.3) and efficient, i.e., only a constant factor
away from the optimal (Theorem 4.4). We use ri to represent
a receiver whose desired sender is selected in Algorithm 2,
and use P−i and P+

i to denote the set of senders added after
and before si is selected, respectively.

Lemma 4.1: The distance between any two senders in P+
i

is no smaller than (c1 − 1)dsi,ri .

Proof The detailed proof can be found in Appendix.

Theorem 4.3: RLE provides a feasible solution.

Proof When sender si is added to the schedule, the inter-
ference factor of P−i on ri must be no larger than c2γεγth;
otherwise it has been deleted in a previous step. Therefore,
the interference factor on ri from concurrent active link set



P−i is fP−i ,ri ≤ c2γεγth. It remains to show that fP+
i ,ri

≤
(1− c2)γεγth.

We partition the entire network region into squares with
size χi × χi (see Fig. 3), where χi = (c1 − 1)dsi,ri/

√
2.

According to Lemma 4.1, any two senders in P+
i cannot be

located in the same square because the distance between the
senders in P+

i is at least (c1−1)dsi,ri , and the size of square
is (c1−1)dsi,ri/

√
2. We use Qiq to denote the set of senders in

the squares that is qχi away from ri. Then, there are at most
4(2q+ 1) senders in Qiq . The distance between the senders in
Qiq and ri is at least qχi, hence the interference factor of any
sender sj ∈ Qiq on ri is at most

fj,i = ln

(
1 +

d−αj,i γth

d−αi,i

)

≤
d−αj,i γth

d−αi,i

≤ (qχi)
−αγth

d−αi,i
.

The interference factor of Qiq on ri is then upper bounded by

fQiq,ri =
∑
sj∈Qiq

fj,i ≤
4(2q + 1)(qχi)

−αγth

d−αi,i
, (57)

and the interference factor of all active links P+
i = ∪qQiq on

ri is upper bounded by

fP+
i ,ri

=

∞∑
q=1

fQiq,ri ≤
∞∑
q=1

4(2q + 1)q−αχ−αi γth

d−αi,i

≤
∞∑
q=1

12q · q−αχ−αi · γth
d−αi,i

≤ 12χ−αi · γth
d−αi,i

ζ(α− 1). (58)

We set c1 by (to make fP+
i ,ri
≤ (1− c2)γε)

c1 =
√

2 (12ζ(α− 1)γth/(γε(1− c2)))
1
α + 1, (59)

we can get that

fP+
i ,ri

≤ 12χ−αi ζ(α− 1)γth

d−αsi,ri
(60)

=
12(
√

2(c1 − 1)di,i/2)−αζ(α− 1)γth

d−αsi,ri
= (1− c2)γε, (61)

In the following, we then analyze the efficiency of RLE. We
first derive Lemmas 4.2 - 4.4, based on which we prove
Theorem 4.4.

Lemma 4.2: Let P be a feasible solution and let si ∈ P .
The number of senders in P\si with distance kdsi,ri from si
is at most eγε−1

γth
(1 + k)α.

Proof The detailed proof can be found in Appendix.

Definition 4.2: (z-blue-dominant [15]) Let Nr and Nb be
two disjoint sets of points in a 2D Euclidean space, namely red
and blue points, respectively. Let circle Bd(sb) be the set of
points p such that d(p, sb) ≤ d. Then, for any positive integer
z, a point sb ∈ Nb is z-blue-dominant if every circle Bd(sb)
contains z times more blue than red points, or formally

|Bd(sb) ∩Nb| > z|Bd(sb) ∩Nr| ∀d ∈ R+. (62)

Fig. 4 gives an example for this definition: Nr = {s4, s7, s11}
and Nb = {s1, s2, s3, s5, s6, s8, s9, s10}. Because every circle
centered at s1 contains 2 times more blue points than red
points, s1 is a 2-blue-dominant.

Lemma 4.3: (Blue-dominant centers lemma [15]) For
any positive integer z, if |Nb| > 5z|Nr| then there exists at
least one z-blue-dominant point sb in Nb. In addition, given
a z-blue-dominant point sb, for each point sr in Nr, there
exists a subset of Nb corresponding to sr, denoted by G(sr),
s.t., 1) any point in G(sr) is farther from sr than from sb;
2) for any pair of points sr, s′r ∈ Nr, G(sr) and G(s′r) are
disjoint; and 3) the number of points in each subset G(sr) is
no smaller than z (See the proof in Lemma 4.4 in [15]).

Proof The detailed proof can be found in Appendix.

Lemma 4.4: Denote the set of all senders in the optimal
schedule and RLE by Popt and Prle, respectively. Then,
|Popt\Prle| ≤ 3α×5ε

c2(1−ε)γth |Prle|.

Theorem 4.4: The approximation ratio of the link elimina-
tion algorithm (RLE) is a constat: 3α×5ε

c2(1−ε)γth + 1.

Proof Denote the number of receivers informed by RLE and
the optimal schedule by Urle and Uopt, respectively. Then,
according to Lemma 4.4,

Uopt

Urle
≤ |Popt|

|Prle|
=
|Popt\Prle|
|Prle|

+ 1

≤ 3α × 5ε

c2(1− ε)γth
+ 1.

V. PERFORMANCE EVALUATION

In this section, we present experimental results to better
illustrate the practical appeal of our scheduling algorithms. In
the experiment, each sender was given a random location in
a 500 × 500 square, and each receiver was located from its
sender with a distance randomly selected from [5, 20] in a
random direction. The accepted error rate was set to 0.01, the
decoding threshold was set to 1, and the data rate of every
link was set to 1. We measured the following two metrics:

1) Throughput (or the total data rate successfully received
by receivers)

2) The number of failed transmissions.

We compare our algorithms with two other link scheduling
algorithms: ApproxLogN [14] and ApproxDiversity [15].

1) ApproxLogN partitions the link set into disjoint link
classes and schedules the links in each class separately.
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Fig. 5. Fading-resistant vs. fading-susceptible: # of failed transmissions

2) ApproxDiversity always picks up the shortest link and
excludes links conflicted with the picked links in each
iteration.

Unlike our algorithms, ApproxLogN and ApproxDiversity are
not fading-resistant although they are also polynomial time
algorithms based on the SINR model.

Fig. 5(a) and Fig. 5(b) show the number of failed trans-
missions of different algorithms versus the number of links
and path loss exponent (α), respectively. We see that LDP
and RLE have almost no failed transmissions, because they
always select the links that can guarantee successful transmis-
sions with high probability 1 − ε with fading consideration.
ApproxLogN and ApproxDiversity assume that the channel
is non-fading, which makes them fading-susceptible. Fig.
5(a) shows that the number of failed transmissions increases
as the number of nodes increases. This is because more
nodes cause more transmissions hence severer interference,
thus increasing the probability of a transmission failure. An
interesting observation from Fig. 5(b) is that the number of
failed transmissions decreases as α increases. This is because
when fading is more severe, the interference factors from all
undesired remote nodes are smaller (by Formula (17)), which
reduces the probability of a transmission failure.

We then measure the throughput of LDP and RLE. Fig. 6
shows that the throughput follows RLE > LDP with different
number of links or different α values. This is because LDP
only allows the links in the same class with the same color
being scheduled at the same time. Though such a mechanism
can prevent the conflict among the links, it reduces the number
of links that can be scheduled simultaneously. Fig, 6(a) shows
that the throughput increases as the number of links increases
since more transmissions lead to higher throughput. From Fig.
6(b), we find that the throughput increases as α increases. For
LDP, it is because when α increases, the partitioned square size
decreases (by Formula (37)), which leads to more partitioned
squares and hence more links to be scheduled. For RLE, it
is because smaller α makes few nodes eliminated in each
iteration (by Formula (59)). Fig. 5(b) indicates that higher
α value leads to higher transmission success probability, and
hence more links are likely to be scheduled in DLS.

VI. RELATED WORK

Based on the choice of interference models, the previous
works can be classified to two groups: graph based scheduling
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[1]–[9] and SINR based scheduling [11]–[15].

A. Graph based scheduling

Graph models have been served as the useful abstraction for
studying scheduling problems for many years. For example,
Sharma et al. [1] defined a k-hop interference model, in
which no two links within k-hops can successfully transmit
simultaneously. They proved that the scheduling problem is
NP-hard when k > 1 and cannot be approximated within a
factor that grows polynomially with the number of nodes in
the network. Lin and Shroff [2] proposed Greedy Maximal
Scheduling (GMS), which can be implemented in a distributed
manner. Joo et al. [3] further provided numerous analytic
results to characterize the performance limits of GMS. Wang
et al. [4] studied the link scheduling problem for a multi-
hop wireless network to maximize throughput. They assumed
each node has different transmission range and interference
range, and the methods they presented can achieve a constant
factor of the optimum. Cheng et al. [5] studied the problem in
multi-radio multi-channel wireless networks, and proved that
the problem is NP-hard in this scenario, in both the k-hop
interference model and unit disc model. Wang et al. [6] devel-
oped joint TCP congestion control and carrier sense multiple
access (CSMA) scheduling schemes for Internet traffic over
distributed multi-hop wireless links, in which the interference
among the links is modeled by a conflict graph and they
proved the global convergence of their schemes to optimal
network equilibrium using the Lyapunov method. Kar et al.
[7] considered the question of obtaining tight delay guarantees
for throughout-optimal link scheduling in arbitrary topology
wireless ad-hoc networks. Jiang et al. [8] presented a distribut-
ed randomized scheme for scheduling and congestion control,
which achieves near-optimal resource allocation when nodes
have concave utilities. Krifa and Barakat [9] investigated both
the problems of scheduling and buffer management in delay
tolerant networks. Although these algorithms present extensive
theoretical analysis, they are constrained to the limitations
of the graph interference model that omits the accumulative
nature of wireless signals (for both desired signals and unde-
sired interference). Comparing to graph model, SINR model
offers a more realistic representation of wireless networks. As
proved by Gronkvist et al. [10] using both theoretical analysis
and experiments, the graph based scheduling protocols are
inefficient in the SINR model.



B. SINR based scheduling

There have been many works studying the problem of joint
link scheduling and power control in the SINR model [24]–
[26]. For example, Kozat et al. [24] addressed the joint prob-
lem to minimize the total transmit power subject to the end-to-
end bandwidth guarantees and the bit error rate requirements
of each transmission. The problem is proved NP-hard by
constructing a reduction from integer programming. Leung and
Wang [25] proved that the problem of maximizing throughput
by adaptive modulation and power control while meeting
packet error constraints is NP-hard. In [26], Pei and Kumar
set the goal of the problem as maximizing capacity region of
the network, i.e. the maximum attainable network throughput.
They also proposed a low complexity distributed algorithm for
this problem. In addition, Hong and Scaglione [10] showed
that the graph based scheduling protocols are inefficient in
SINR model using both theoretical analysis and experiments.
Huang et al. [11] presented an optimization-based formulation
for joint scheduling and resource allocation in the uplink
OFDM access network and proposed heuristic solutions. Xu et
al. [12] studied periodic scheduling for data aggregation with
minimum delay under various interference models.

In addition, some works focus on designing algorithms
with lower approximation guarantee [13]–[15]. Brar et al.
[13] proposed a polynomial time algorithm and proved an
approximation ratio for their method under uniform random
node distribution. Goussevskaia et al. [14] formulated the
scheduling problem in the geometric SINR model, proved
its NP-hardness, and proposed a greedy solution with
performance guarantee O(g(L)), where nodes are arbitrarily
distributed in 2D Euclidean space, and showed that the
formulated problem is NP-hard. As a solution, they proposed
a greedy algorithm for the problem with performance
guarantee O(g(L)). Goussevskaia et al. also proposed a
scheduling algorithm with constant approximation guarantee,
which is independent of the network topology and size [15].
They further formulated a variation of the problem, in which
analog network coding is allowed, and presented NP-hard
proof of the problem [22]. However, the SINR model still
uses a limited view of signal propagation since it does not
consider the fading fluctuations in received signal strength
(e.g., caused by the mobility in a multi-path propagation
environment). Our work is the first that analyzes the hardness
of the link scheduling problem under Rayleigh-fading model
and proposes approximation algorithms for the problem.

VII. CONCLUSIONS

Previous link scheduling works did not consider the fluc-
tuating fading in transmissions, which makes the proposed
scheduling algorithms vulnerable to real wireless network
environment. In this paper, by incorporating Rayleigh fad-
ing model into the link scheduling problem, we formulated
a Fading-Resistant Link Scheduling problem (Fading-R-LS)
with the objective to maximize the network throughput. The
challenge for this problem is its complicated judgement for a
successful transmission. As a solution, we derived the closed

form of the probability distribution of the SINR received by
each receiver, and found that checking transmission success
is equivalent to checking whether the sum interference factor
from all the senders to this receiver is lower than a threshold.
Based on this finding, we proved Fading-R-LS to be NP-hard
and proposed two centralized algorithms (LDP and RLE) and
one decentralized algorithm (DLS). Both theoretical analysis
and experimental results demonstrate that LDP and RLE can
substantially improve packet delivery ratio in fading environ-
ments compared to previous algorithms, and DLS performs
even better than DLS in terms of throughput. In our future
work, we will further consider how to schedule all the links
with the minimum number of time slots, not just to maximize
the throughput in one time slot. We will also consider the
SINR link scheduling problem in a general case, not limited
to geometric model.
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APPENDIX

A. Proof of Lemma 4.1

Proof For any receiver rj whose desired sender sj is in P+
i ,

there is no other sender, say sl, in P+
i that has distance

smaller than c1dsj ,rj from rj . Based on this and the triangular
inequality, we can calculate the lower bound of the distance
between any two senders in P+

i :

dsl,sj ≥ dsl,rj − dsj ,rj (63)
≥ c1dsj ,rj − dsj ,rj (64)
≥ (c1 − 1)dsj ,rj (65)
≥ (c1 − 1)dsi,ri . (66)

B. Proof of Lemma 4.2

Proof For each sender sj ∈ P\si, its interference factor on

ri (fj,i) cannot be larger than γε. Accordingly,
(
dj,i
di,i

)−α
≤

eγε − 1. Since ln(1 + x) ≥ γεx
eγε−1 when x ∈ [0, eγε − 1], fj,i

is lower bounded by

fj,i = ln

(
1 +

d−αj,i γth

d−αi,i

)
≥ γε
eγε − 1

d−αj,i γth

d−αi,i
(67)

≥ γε
eγε − 1

(di,i + dj,i)
−α

d−αi,i
γth (68)

≥ γε (1 + k)
−α

eγε − 1
γth. (69)

Since the interference factor of P\si on ri cannot exceed γε,
there are at most eγε−1

γth
(1 + k)α = ε

(1−ε)γth (1 + k)α such
senders.

C. Proof of Lemma 4.4

Proof For the sake of contradiction, we assume that

|Popt\Prle| >
3α × 5ε

c2(1− ε)γth
|Prle|. (70)

We label the set of senders in Popt\Prle by blue (Nb =
Popt\Prle) and those in Prle by red (Nr = Prle). By Lemma
4.3, there is a z-blue-dominant point (sender) si ∈ Nb, where

z =
3αε

c2(1− ε)γth
. (71)

We shall argue that the sender si would have been picked by
RLE, leading to a contradiction.

According to Lemma 4.3, for any red point sj ∈ Nr, there
exists a subset of blue points G(sj) such that all the points
in G(sj) are closer to si than to sj and |G(sj)| ≥ z (z =

3αε
(1−ε)γth ). We can derive that

dsi,sj > 2dsi,ri ; (72)

otherwise the number of senders within distance 2dsi,ri from
si would be larger than (2+1)αε

c2(1−ε)γth ≥
3αε

(1−ε)γth , which contra-
dicts with the conclusion in Lemma 4.2. Based on the triangle
inequality,

dsj ,ri ≥ dsi,sj − dsi,ri > dsi,sj/2. (73)

For any point sl ∈ G(sj),

dsl,ri ≤ dsl,si + dsi,ri (74)
< dsj ,si + dsi,ri (75)
< dsj ,si + dsj ,si/2 (76)
= 3dsj ,si/2. (77)

Hence, the sum interference factor of the blue senders in G(sj)
on ri is lower bounded

∑
sl∈G(sj)

fl,i =
∑

sl∈G(sj)

ln

(
1 +

d−αl,i γth

d−αi,i

)
(78)

≥
∑

sl∈G(sj)

γεd
−α
l,i γth

(eγε − 1)d−αi,i
(79)

>
γε

eγε − 1

eγε − 1

c2γth
3α

3−α

2−α
d−αj,i γth

d−αi,i
(80)

=
d−αj,i

2−αd−αi,i

γε
c2

(81)

>
d−αj,i

d−αi,i

γε
c2
≥ γε
c2

ln

(
1 +

d−αj,i γth

d−αi,i

)
(82)

=
γεfj,i
c2

. (83)

This relationship holds for any sj ∈ Nr, and G(sj) and G(sl)
are disjoint ∀sj , sl ∈ Nr, then the total interference factor
that ri receives from the senders in Popt\Prle (blue points) is
at least γε

c2
times as high as the interference factor it would

receive from the senders in RLE (red points). Because the in-
terference factor of Nb on ri is at most γε. Therefore, we have
fNr,ri <

fNb,ri
γε
c2

≤ γε
γε
c2

= c2. which implies that si should not
have been deleted by RLE, which establishes the contradiction.


