
HealthEdge: Task Scheduling for Edge Computing with Health Emergency and
Human Behavior Consideration in Smart Homes

Haoyu Wang∗, Jiaqi Gong†, Yan Zhuang∗, Haiying Shen∗, John Lach‡
∗ Department of Computer Science

University of Virginia, Charlottesville, VA, Email: hw8c, yz8bk, hs6ms@virginia.edu
† Department of Information Systems

University of Maryland in Baltimore County, Baltimore, MD, Email: jgong@umbc.edu
‡ Department of ECE

University of Virginia, Charlottesville, VA, Email: jlach@virginia.edu

Abstract—Nowadays, a large amount of services are deployed
on the edge of the network from the cloud since processing data
at the edge can reduce response time and lower bandwidth cost
for applications such as healthcare in smart homes. Resource
management is very important in the edge computing since it is
able to increase the system efficiency and improve the quality
of service. A common approach for resource management
in edge computing is to assign tasks to the remote cloud
or edge devices just according to several factors such as
energy, bandwidth consumption, and latency. However, the
approach is insufficiently efficient and falls short in meeting the
requirements of handling health emergency when being applied
in smart homes for healthcare. In this paper, we propose a
task scheduling approach called HealthEdge that sets different
processing priorities for different tasks based on the collected
data on human health status and determines whether a task
should run in a local device or a remote cloud in order to reduce
its total processing time as much as possible. Based on a real
trace from five patients, we conduct a trace-driven experiment
to evaluate the performance of HealthEdge in comparison
with other methods. The results show that HealthEdge can
optimally assign tasks between the network edge and cloud,
which can reduce the task processing time, reduce bandwidth
consumption and increase local edge workstation utilization.

I. INTRODUCTION

Although the integration of smart Internet of Things (IoT)
and cloud computing enables many applications, completely
moving all the computing tasks to the cloud is inefficient
in several scenarios. For instance, when the bandwidth is
limited and response time requirement is strict, uploading
the data to the cloud for processing may incur longer
response time and occupy large portion of the bandwidth.
A study reported that the bandwidth demand nearly double
each year [1, 2], which would even increase the response
time. Fortunately, since the IoT devices become increasingly
powerful nowadays, the data processing can be executed at
the edge of networks, namely the edge computing [3]. By
allowing the computation near the data source and avoid
unnecessary data movement, edge computing gains several
benefits, e.g., providing efficient network operation and fast
service delivery to ensure the quality of service and improve

the user experience [4–7]. Therefore, recently, an increasing
amount of services are pushed back to the edge of the
network from the cloud to reduce response time and lower
bandwidth cost. The wide proliferation of IoT and mobile
devices with more powerful computation ability changes the
role of edge computing device from data consumer to data
producer/consumer in the entire computing paradigm.

Meanwhile, the healthcare domain starts to leverage edge
computing to improve healthcare services. The healthcare
platform deployed in a smart home enables utilizing sensors
and mobile devices, and scaling data storage and pro-
cessing power, for different kinds of healthcare analysis.
It enables the sharing of analytical results and accessing
to the processing and storage infrastructure with reduced
response time and optimized resource utilization [3, 8–10].
For example, in a standard healthcare scenario, assisted
persons are monitored by many different sensors gathering
data and processing the data in edge workstations (i.e.,
servers) or the private cloud data center managed by the
hospital. The doctors can diagnose and make decisions
with these data processing results. Computing tasks on
processing the collected data facilitate inferring complex
human behaviors [11] and diagnosing possible diseases like
neurologic disorders [12], multiple sclerosis diagnosis [13],
fall detection [14], respiratory failure in the elderly [15],
alzheimer’s disease [16] and coronary heart disease [17].
Also, this healthcare platform provides an infrastructure for
large-scale data analysis for health in communities, public
and global.

In edge computing, resource management plays an sig-
nificant role for assigning tasks (that are generated by local
devices) to the remote cloud (the central of the network) or
local servers/devices (the edge of the network). A common
approach for resource management in edge computing is to
assign tasks to the remote cloud or local servers according
to several factors such as energy, bandwidth consumption
and latency. These methods can be generally classified
into three categories based on their goals: (1) reducing
energy consumption (e.g., [18]), (2) improving system

throughput (e.g., [19]), and (3) reducing task completion
time (e.g., [18]). For instance, Aazam et al. [19] proposed
a predication model to dynamically estimate the resource
utilization based on users’ behaviors and allocate resource
accordingly. Huerta-Canepa et al. [20] proposed an ap-
plication offloading decision-making scheme based on the
application features. Cuervo et al. [21] proposed a resource
management strategy to estimate energy consumption of
the mobile platform and offload the computation task in
order to accommodate the network bandwidth and latency
changes. Jia et al. [22] proposed an online task management
algorithm to minimize the the application completion time
by considering the general task dependency in the mobile
device.

Though these methods are effective in achieving their
goals, they are insufficiently efficient and falls short in
meeting the requirements of the aforementioned healthcare
platforms at smart homes. First, the healthcare platforms
have higher requirement on the task latency in order to
ensure patients’ safety. Second, compared with other appli-
cation domains, the healthcare platforms are more sensitive
to network dynamics (e.g., changes of available bandwidth
and latency). In this paper, we consider the resource manage-
ment in the healthcare platforms in smart homes between the
network edge (e.g., smart home sensors) and the central of
the network (e.g., the private cloud data center). Specifically,
we propose a task scheduling approach called HealthEdge
that sets different processing priorities for different tasks
based on the collected data on human health status, and
determines whether a task should run in a local device or a
remote cloud in order to reduce its total processing time as
much as possible. In HealthEdge, the system architecture
is separated into two tiers, where the private cloud data
center is in the first tier, the network edge including sensors
and edge workstations are in the second tier. All the tasks
are generated by the sensors and then the tasks will be
transferred to the edge workstation. Our contributions in this
paper are as follows:

1. We first formulate the task scheduling resource manage-
ment problem and then prove that it is an NP-hard problem.

2. We propose a heuristic resource management
HealthEdge that sets different priorities for different tasks
based on the human health status to decide each task’s
execution location (the edge workstation or the private cloud
center) and its location in the task waiting queue, which
gives higher-priority tasks to start earlier and also minimize
the task processing time.

3. We construct a trace-driven simulation to evaluate
the performance of HealthEdge on bandwidth utilization,
task processing time, edge workstation CPU utilization and
the scheduling time, as well as the processing time for
emergency tasks.

We believe HealthEdge can also improve existing resource
management approaches in the edge computing domain for

other applications by differentiating different task priority
and considering the human status. The security of health
tasks is very important to protect the users’ privacy but it
is not our focus in this paper and we leave it as our future.
The rest of this paper is organized as follows. In Section II,
we present the background and related work on resource
management in healthcare systems and in edge computing.
In Section III, we introduce the architecture of HealthEdge,
formulate the task assignment into mathematical problem
and prove that it is NP-head. In Section IV, we present the
HealthEdge resource management system, which focuses on
task scheduling and the queue optimization. In Section V, we
present trace-driven experimental results for HealthEdge in
comparison with other methods. Finally, Section VI presents
conclusions and discusses the future work.

II. RELATED WORK

There is an increasing interest in utilizing wireless and
mobile technologies for improving the performance of
healthcare systems recently, especially with the rise of the
cloud computing and Internet of Things (IoT). Meanwhile,
there are many increasing interests on the research topics
of mobile edge computing and its resource management.
Below, we present the related work regarding health IoT
systems, interactions between human behavior and health
IoT systems, edge computing and its resource management.

A. Health IoT Systems

In the last decade, smart home technologies designed for
specific research purpose has been developed for persons
with dementia [23], assistive living for seniors [24], indi-
viduals with obesity [25], and so on. Recently, researchers
started rethinking the technological trend of utilizing wire-
less and mobile technologies in healthcare applications. For
instance, Stankovic [26] discussed the research directions of
these systems in wireless and mobile healthcare applications,
specifically emphasizing how to develop interventions for
patients optimally, and also indicted [27] the potential trend
of emerging IoT for healthcare, specifically discussing the
knowledge exploration in the vast amount of data generated
from the IoT sensors. Bakar [28] reviewed the activity
monitoring and anomaly detection in the smart homes.

There is also an emerging technological trend that inte-
grate cloud computing and IoT for healthcare applications.
Fortino et al. [29] presented a framework for integrating
body sensor networks and cloud computing to solve the tech-
nical issues such as heterogeneity of sensor data, resources
scalability (i.e. storage and processing power) and pricing
of services. Gravina et al. [30] developed a specific cloud-
based activity monitoring system leveraging cloud comput-
ing techniques. Abawajy et al. [31] developed a pervasive
patient health monitoring system and demonstrated how the
integration of cloud computing and IoT makes the system
flexible, scalable, and energy-efficient. Besides such general

Figure 1: The overview of HealthEdge, which consists of three major components: task priority determination, latency estimation and
priority-considered task queuing.

purpose systems, Sareen et al. [32] developed a specific
system to detect epileptic seizures using cloud computing
and sensor networks to provide a real-time response to the
seizure events.

The significant interconnections between human behavior
and health IoT systems have been investigated in vari-
ous dimensions. This human-centric computing perspective
enhanced the performance of the health IoT systems in
many ways. For instance, Chen et al. [33] integrated human
behavior into the energy management system to optimize
the operation efficiency. Ji et al. [34] utilized the wearable
sensor data to analyze human behavior to increase the
system awareness of personal demands. Huang et al. [35]
emphasized that the prediction abilities of smart home tech-
nologies could enhance the relationship between the system
and human. Also, Yang et al. [36] investigated the user
acceptance of smart home services from the perspectives
about human behavior.

B. Mobile Edge Computing

More recently, several works have been conducted to pro-
mote the edge computing research in term of infrastructure
development. Sun et al. [37] designed a novel architecture,
edgeIoT, to process the collected data streams efficiently
at the mobile edge. Jang et al. [38] developed an edge
cloud infrastructure that provides a new abstraction for the
application developer to manage the sensors and actuator on
the edge cloud side. Nastic et al. [39] proposed a middleware
infrastructure between the IoT and cloud, which is able to
provide a generic and light-weight abstraction to customize
and manage the edge applications and resources. Also,
the development of mobile edge computing infrastructure
facilitates the cloud service and improve the user experience.
For instance, Shi et al. [3] indicated that utilizing edge
computing can reduce the shopping-cart update latency and
enhance the user experience for online shopping.

Resource management is an important research topic for
mobile edge computing. One key of this problem is to deter-
mine which task should be offloaded to the cloud and when
it should be offloaded. Many research studies investigated
this topic. Rudenko et al. [40] claimed that the energy can
be saved by offloading task to remote servers. Cuervo [21]

proposed a code offload solution for mobile edge computing
in order to accommodate the network bandwidth and latency
changes. Chun et al. [41] presented the CloneCloud, which
uses a static code analyzer to determine which task should be
offloaded. Aazam et al. [19] proposed a predication model
to dynamically estimate the resource utilization based on
users’ behaviors and allocate resource accordingly. However,
they did not consider to prioritize the task, therefore, some
mission/safety-critical tasks can suffer longer latency.

These computation offloading schemes are unsuitable for
healthcare systems. First, the properties of healthcare dataset
is quite different with the dataset from other applications,
e.g, larger size of the dataset obtained from the long-
term monitoring. Beside, these methods failed to consider
the impact of human dynamics on the network dynamics.
Furthermore, some tasks in the health IoT applications
should be prioritized based on clinician or user’s preference,
e.g., physiological signal monitoring has higher priority over
environment monitoring. Therefore, the current computation
offloading schemes are not applicable to the health IoT
applications and we aim to design a new task scheduling
system for the healthcare IoT systems.

III. SYSTEM ARCHITECTURE AND PROBLEM
FORMULATION

HealthEdge considers task emergency and human behav-
ior in task scheduling for the optimization of the resource
management. That is, it determines whether a task should
be executed in the cloud or a local server (i.e., edge device).
In the rest of the section, first, we describe the architecture
of HealthEdge. Second, we formulate the problem for the
resource management optimization for automatically allo-
cating the tasks and resources to minimize the task latency.

A. System Architecture

Figure 1 demonstrated the architecture of the HealthEdge
health IoT system for a person’s living apartment. Each
sensor monitors the variables from the human body directly
or the house environment. When the sensors are monitoring
their targets, they also send the live data sets to the edge
workstation concurrently. The edge workstation periodically
(different tasks have different time periods) processes these

data sets and then sends the results to the private cloud data
center or sends all the unprocessed data sets to the private
cloud data center directly. The private cloud data center
collects all the results (generated by the private cloud data
center or the edge workstation) and then send them to the
doctors to make decision for the users. For some emergency
situation, reducing the emergency-related task processing
time is very important. In the meantime, we also need to
fully utilize the edge workstation, save the bandwidth cost
to achieve better performance.

The tasks cane be divided into several layers, including
monitoring layer, processing layer, a temporary storage
layer, security layer, transport layer, and user interface
layer. Different layers contain scalable tasks. All of these
parameters might be captured in reconfigurable sampling
rates which depend on the needs of the processing layer
and the inputs from the user interface layer. The tasks in
these layers can be deployed in local computation resources
such as the microprocessor of the sensor nodes, or in global
resources such as the near-the-edge cloud.

HealthEdge sets up a scenario with the consideration
of the demands of health monitoring and real-time health
services responses at the smart home. The wireless and
mobile sensor nodes are equipped for capturing behavioral
and environmental parameters. Also, the nodes have abilities
for computation, storage, and wireless communication to
the Internet. There are edge workstation(s) at the smart
home. Near-the-edge private cloud data center is deployed to
manage and support the sensor nodes, including computation
resources and data storage.

B. Problem Formulation

In this section, we formulate the problem of task assign-
ment among the edge workstations and the private cloud
data centers. We focus on edge workstations here and our
work can be easily extended to edge devices by including
edge devices as task running options. Table I lists the major
notations used in this paper. We use Xtk

si , a binary variable,
to denote the assignment of task tk to edge workstation si
or to the private cloud data center. We use U tksi to denote the
assigned CPU capacity for the task tk in edge workstation
si. Then, we can have the task assignment f represented as
a set of mappings below:

f ={〈s1, (Xt1
s1 · U

t1
s1 , X

t2
s1 · U

t2
s1 , ..., X

tk
s1 · U

tk
s1)〉, ...,

〈si, (Xt1
si · U

t1
si , X

t2
si · U

t2
si , ..., X

tk
si · U

tk
si)〉, ...}

For a set of tasks J generated in a certain period of
time, we aim to minimize the total processing time of the
tasks without overloading any edge workstations. Another
important consideration is the network traffic load, caused by
data transmission from the edge workstations to the private
cloud data center. We assume that all the data needed by
task tk is stored in one edge workstation. We use Dtk

si to
denote the size of the data needed by task tk, and that all

Table I: Notations.

Notation Description
M entire edge workstation set
si edge workstation/server i (si ∈ M)
J entire task set
tk task k (tk ∈ J)
Γtk emergency level of task tk
X

tk
si the execution destination of task tk

D
tk
si size of data needed by task tk, which is stored on si

Ctk computing resources needed by tk
U

tk
si assigned CPU capacity for tk on server si

Bsi available bandwidth between si and the cloud
Φf traffic load for task assignment schedule f
Ωf total processing time for task assignment schedule f
T a unit time period

the data is stored in edge workstation si. The total network
traffic load of all the tasks is calculated by:

Φf =
∑

tk∈(X
tk
si

=1)

Dtk
si .

We need to minimize network traffic load and fully utilize
the computing capacity of edge workstation. Task tk has
an emergency level denoted by Γtk (0 ≤ Γ ≤ 1) which
represents the urgent level of the task. A higher Γ value
means the task is more urgent and vice versa. In order to
lower the processing time of more urgent tasks, we have
the weighted processing time Ω of task tk. Thus, the total
weighted processing time for f is

Ωf =
∑

tk∈(X
tk
si

=0)

Γtk · C
tk

U tksi
+

∑
tk∈(X

tk
si

=1)

Γtk ·
Dtk
si

Bsi
.

We aim to find a task assignment plan f , so that the traffic
load and the weighted average processing time need to be
minimized. Thus, we formulate the problem of optimized
task assignment as a nonlinear programming as:

Min Φf · Ωf (1)

subject to
∑

tk∈J T

Dtk
si /T ≤ Bsi , ∀si ∈M, ∀tk ∈ J

(2)∑
tk∈J

U tksi ·X
tk
si ≤ Usi ,∀si ∈M (3)

Xtk
si ∈ {0, 1}, ∀si ∈M, ∀tk ∈ J (4)

0 ≤ Γtk ≤ 1, ∀tk ∈ J (5)

In constraint (2), J T is the task set that includes the tasks
transferred from edge workstation si to the private cloud
data center during T . This constraint ensures the tasks can
not occupy bandwidth more than the available bandwidth.
Constraint (3) ensures that the total computing CPU utiliza-

tion occupied by the tasks can not exceed the available CPU
utilization for each edge workstation. Constraint (4) ensures
that the task will be assigned on the edge workstation or the
private cloud data center. 0 and 1 represent that the task is
assigned on the edge workstation or the private cloud data
center, respectively. Constraint (5) limits the emergency level
Γtk is between 0 to 1.

Lemma: The formulated task assignment problem is NP-
Hard.

Proof. Suppose that all the edge workstations are homo-
geneous with same computing capacity and storage capacity.
Assume that the private cloud has sufficient computing
capacity to process many tasks, the emergency levels of
all the tasks are the same, and we consider the traffic load
cost to the cloud. Then, the task assignment problem can
be created as a task assignment schedule to minimize the
network load traffic under computing capacity constraints
and bandwidth limitation between all edge workstations
and the private cloud, which is a weighted bin packing
problem [42]. Since the weighted bin packing problem is
NP-hard, our efficiency task assignment problem is also NP-
hard. We then propose our heuristic HealthEdge system to
solve this problem in section IV.

IV. DESIGN OF HealthEdge

HealthEdge is a heuristic method to solve the task as-
signment problem that aims to minimize the task processing
time and save the bandwidth consumption while meeting the
requirement on handling emergency tasks. It decides whether
to assign a task to an edge workstation at home or the private
cloud data center owned by the hospital or government, and
which edge workstation to choose if the former option is
chosen.

Task emergency
determination

H
u

m
a

n
 b

eh
a

vi
o

r
fa

ct
o

r
g

en
er

a
ti

o
n

Incoming task

Priority-based
task queuing

Queuing latency
prediction

Computing time
prediction

Queuing latency
prediction

Transmission time
prediction

Computing time
prediction

Human behavior
prediction

Workload and available
resource prediction

Choose the task execution location with
the shortest processing time

Lo
ca

l e
d

g
e

w
o

rk
st

a
ti

o
n

 p
ro

ce
ss

in
g

 t
im

e
p

re
d

ic
ti

o
n

C
lo

u
d

 p
ro

ce
ss

in
g

 t
im

e
p

re
d

ic
ti

o
n

R
em

o
te

 e
d

g
e

w
o

rk
st

a
ti

o
n

 p
ro

ce
ss

in
g

 t
im

e
p

re
d

ic
ti

o
n

Queuing latency
prediction

Transmission time
prediction

Computing time
prediction

Figure 2: Flowchart showing how to assign a task to the edge
workstation or the private cloud data center.

Figure 2 shows the flowchart illustrating how to assign
a task to the edge workstation or the private cloud data
center. Given an incoming new task, HealthEdge deter-
mines the task emergency level (Section IV-A), and then
determines its location in the queue of each possible task
execution location (Section IV-B). As we will describe in
Section IV-C, HealthEdge also predicts human behavior
to predict the workload and available resource of the task
execution location options. The option can be the local edge
workstation that has the task’s required datasets, a remote
edge workstation that does not have the task’s required
datasets, and the cloud. Based on the location in the queue
and the predicted available resources of each option, it
calculates the task processing time of each option. Finally,
it chooses the the task execution location with the shortest
processing time.

A. Task Emergency Determination

We first introduce how to determine a task’s emergency
level Γ based on the information extracted from the sensors.
This Γ is a metric to describe the emergency level of one
certain task, which will affect the schedule about whether
the task needs to be processed in the edge workstation or
the private cloud data center.

The emergency level is determined by the sensed data or
the data processing results. Here, we use simple range check-
ing for the human body sensed data. It can be easily extended
to consider other more complex data processing results such
as heart attack symptom initial observation. According to
the real trace we use, we select five representative features
of human body: 1) body temperature from temperature
sensor; 2) blood glucose level from glucose monitor; 3)
heart beat rate from ECG (Electrocardiogram) sensor; 4)
motion information from accelerator and gyroscope sensor;
and 5) blood pressure and blood oxygen saturation from
pulse oximeter sensor.

According to the historical log of the human behavior
features listed above, we generates the reference range
with upper and lower bounds for each feature. We use t-
distribution to estimate the range which is widely used in the
healthcare area [43]. Following t-distribution, for a normal
sample size of n (n > 0), x is the sample feature like the
body temperature. The mean (x) is computed as

x =

∑n
i=1 xi
n

(6)

Then the standard deviation of the sample feature sx is:

sx =

√√√√ 1

n− 1

n∑
i=1

(xi − x)
2 (7)

In this way, the upper bound vu and lower bound vl can be

represented as:

vu = x−
√
n+ 1

n
· sx · tα,n−1, (8)

vl = x+

√
n+ 1

n
· sx · tα,n−1, (9)

where tα,n−1 donates the standard t-distribution coefficient
for sample size n. We group samples by age and gender, and
calculate the reference range for each group. Given the age
and gender information of a person, the reference range of a
particular health parameter being monitored should be within
vl and vu, which represents the normal health conditions.
At a given time t, the recorded value of particular health
parameter is denoted by vt. Then Γ at the given time t can
be calculated as:

Γ =

∣∣∣∣∣ (vu − vt)2 − (vl − vt)2

(vu − vl)2

∣∣∣∣∣ (10)

A higher Γ value means a higher emergency level and vice
versa. Clearly, when vt = (vl + vu)/2, Γ = 0, which
represents the most un-emergency situation. Theoretically,
in some cases, the value of Γ may exceed 1. In order to
unify the value, for all Γ > 1, we limit the maximum value
by changing Γ = 1 which is the highest emergency level.

For example, for body temperature, the reference rage is
vl = 35.5 and vu = 37.5. Then, if the body temperature is
36.5 degree, the emergency level will be 0, which means it is
not an emergency situation. If the body temperature is 38.5
degree, Γ = 0.75, which represents an emergency situation.
Once the body temperature is 39.5 degree, Γ = 1 (Γ = 3
and is unified to 1), indicates the most emergency situation.
All the emergency tasks need to be processed immediately.

B. Priority-based Task Queuing

Each edge workstation maintains two queues: cloud queue
and edge queue. The cloud queue contains all the tasks that
the workstation will send to the cloud, and the edge queue
contains all the tasks that will run in the workstation. Recall
that each task has an emergency level Γ. We set a threshold
L; if Γ > L, the task must be executed immediately.
Otherwise, the task is delay tolerable. We call these tasks
emergency tasks and non-emergency tasks.

For emergency tasks, rather than using the First-in-first-
out (FIFO) rule, we order the tasks in each queue based
on the descending order of the task emergency levels. This
way, higher emergency tasks will be executed at an earlier
time, which will help meet the requirement on emergency
handling in the health IoT system. We further propose
a method to order the emergency tasks with the same
emergency levels, and the non-emergency tasks, as presented
below.

Different from the tasks in the edge queue, for the tasks
in the cloud queue, their datasets for processing need to

be transmit to the cloud, which generate a certain latency.
Therefore, if a task with a larger dataset starts earlier than
other tasks with smaller datasets, it will delay the other tasks.
Also, if a task has waited in the queue for a longer time, it
should give a higher priority to start. Otherwise, tasks with
lower emergency or larger datasets will be delayed for a long
time. In order not to delay the task processing in general,
we further determine the priority of emergency tasks with
the same emergency levels, and the non-emergency tasks in
the cloud queue and edge queue based on the following two
equations, respectively.

Ptk =
Γα · (Ttk)β

Dtk
, (11)

Ptk = Γα · (Ttk)β , (12)

where α and β are used to give different weights to
different factors. A new task is inserted to a queue based
on the tasks’ priority values. As a result, emergency tasks
can run as fast as possible. For delay-tolerant tasks, tasks
with longer queuing time and smaller datasets (if the tasks
are in the cloud queue) will have a higher priority to be
processed earlier. This method not only considers to meet
the emergency handling requirement but also helps reduce
task processing latency and increase throughput.

C. Task Latency Estimation and Task Scheduling

As we indicated previously, human behaviors influence
the workload of edge workstations. Researchers have devel-
oped supervised and unsupervised machine learning tech-
niques [44, 45, 11] to extract information from sensed data
for human behavior inference[46, 11, 47, 48, 33, 34]. We use
the existing methods to predict the human behaviors and then
accordingly predict the workloads at each time in a future
time period using the machine learning techniques [49].
The workloads include the computation workload for each
workstation, the available network bandwidth between each
workstation and the cloud.

Therefore, we can use the historical log about a task (such
as processing time, dataset size, available bandwidth) to
predict resource requirement and processing time of a similar
task. Based upon the historical log in the edge workstation,
task tn has the previous computation time T ′cmpn and CPU
utilization U ′n. If HealthEdge assigns the task tn on an
edge workstation, the edge workstation inserts it into the
task queue (denoted by Qs) which already contains the
previous assigned tasks based on the method introduced in
Section IV-B. The queuing latency T quetn of task tn is the
sum of the processing times of the tasks processing task tn
at the head of Qs:

T quetn =

ns−1∑
i=1

T cmpti , ∀ti ∈ Qs, (13)

where ns is the number of tasks proceeding task tn in the
queue. The computing time is inversely proportional to the
computing ability. Then, the predicted computation time of
a task T cmpti is:

T cmpti =
U ′tisi
U tisi
· T ′cmpti , (14)

where U tisi means the predicted CPU capacity of the edge
workstation that task tn can use and U ′tnsi means the previous
CPU capacity supplied to a similar task as ti by the
edge workstation. Recall that the future CPU capacity is
predicted based on the human behavior as explained above.
Accordingly, tcmptn can be calculated. From Equations (13)
and (14), the predicted processing time (denoted by tptn of
task tn assigned on the edge workstation equals:

T ptn = T cmptn + T quetn (15)

If HealthEdge assigns the task tn to the private cloud data
center, the edge workstation puts it in a data transmission
queue Qd which consists the previous assigned tasks to the
private cloud data center. The computing ability of data cen-
ter is much higher than the edge workstation. Furthermore, it
has much more computing slots to calculate the tasks. Thus,
we neglect the tasks waiting time within data center. The
queuing latency equals:

T quetn =

nd−1∑
i=1

T tranti , ∀ti ∈ Qd, (16)

where nd − 1 is the number of tasks proceeding task tn in
cloud queue Qd. The predicted data transmission time of
task i can be calculated as:

T tranti =
Dti
si

Bsi
, (17)

where Dti
si denotes the size of all data set needed by task

ti and Bsi means the current available bandwidth between
the edge workstation s and the private cloud data center.
Recall that Bsi is predicted based on the human behavior
as explained above. Then, data transmission time for task tn
(T trann) can be calculated based on Equation (17).

According to Equation (14), the predicted computing time
on the private cloud data center T cmptn can be calculated by:

T cmptn =
T cmptn

Θ
(18)

where Θ is the difference ratio of computing ability between
the edge workstation and the data center. This parameter
can be set depending on the practical situation. Finally, we
calculate the predicted total processing time on the private
cloud data center of task tn, which is the sum of the queuing
time, data transmission time and computation time:

T ptn = T quetn + T trantn + T cmptn . (19)

Using the same method as the above, we can calculate
the processing time of task tn if we assign it to another
workstation that does not have its required datasets. Finally,
HealEdge chooses the edge workstation or the cloud that
leads to the shortest task processing time.

V. PERFORMANCE EVALUATION

A. Experimental Setup

In this section, we conduct trace-driven experiment on
JAVA-based simulation. In the simulation, there are 50 to
300 workstations and one private cloud data center in our
system. Each workstation is located in one apartment and
connected to 5 sensors. 1) Temperature sensor; 2) Glucose
monitor; 3) ECG sensor; 4) Accelerator and gyroscope
sensor; 5) and Pulse oximeter sensor. We assume the storage
capacity of sensors and workstations are not the bottleneck in
our simulation. We set the bandwidth as 100Mbps between
each workstation to the private data center. There are 60
nodes with Intel E5-2650 v4, 32 GB RAM in the simulated
private data center. The computing ability of one node in
the private data center is 200 times as that of an edge
workstation.

B. Workload Description

Our team has been engaging in the development of home
monitoring systems and the exploration of these systems
in numerous clinical and environmental contexts. The trace
for driving the large-scale simulation in this study is from
our real-world deployment of a customized monitoring sys-
tem for persons with dementia in central Virginia area.
Our previous work [23] has described the system, sensors,
collected data and related tasks in signal processing and
modeling. Here, we only highlight the overview of this trace.
This one-month (from Dec. 1 to Dec. 31 in 2016) dataset
consists of the human behavior dataset (e.g., physiological
signal and activity datasets) and environment datasets (e.g.,
temperature, humidity, light, and noise datasets). Specifi-
cally, the physiological signal datasets includes heartbeat
and Galvanic Skin Response (GSR) data. The sampling
frequency is scalable depending on the resolution of the
information required. ECG data in high sampling rate is
useful for cardiac disease diagnosis, while ECG data in
low sampling rate such as heart rate data could be helpful
for energy expenditure estimation or fitness monitoring. The
tasks for this data contain data preprocessing (e.g. QRS wave
detection, RR interval or heart rate variability extraction, and
denoising), anomaly detection, and other medical analysis.

C. Comparison Methods

We compare HealthEdge with the following methods: Dis-
tributed, Centralized and Spanedge [50]. Distributed assigns
all the tasks generated within each workstation area on the
local workstation as much as possible. If the workstation is
overloaded, all the other tasks are added in the waiting queue

based on First-in-first-out. Centralized assigns all the tasks
generated by all the workstations areas on the private data
center even though some tasks need huge amount of data
(which increases the network load tremendously). SpanEdge
groups all the tasks into two parts: local-task and global task,
where the local-task refers to the task which needs data only
from one workstation and a global task refers to the task that
requires the results of a group of local-tasks. Based on this
classification, local-task is assigned to the edge workstation
and the global-task is assigned to the cloud data center. In
HealthEdge, if the datasets needed by a global task are stored
in multiple edge workstations, the task will be assigned to
the cloud.

D. Performance on Bandwidth Utilization

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

B
a

n
d

w
id

t
h

 U
t
il

iz
a

t
io

n

Day Hours

Bandwidth Centralized Destributed
SpanEdge HealthEdge

Figure 3: Bandwidth utilization.

0.E+0

1.E+4

2.E+4

3.E+4

4.E+4

5.E+4

6.E+4

50 100 150 200 250 300

N
e

t
w

o
r
k
 L

o
a

d
 (

G
B

)

Number of Workstations

Distributed Centralized

SpanEdge HealthEdge

Figure 4: Network load.

In this section, we evaluate the performance on network
bandwidth utilization for all methods. We attempt to check
if the methods use most of the available bandwidth, leaving
little bandwidth to users for daily use and hence adversely
affecting user experience. In Figure 3, we show the average
bandwidth utilization at each hour per day per smart home
from the one-month trace. Bandwidth means the average
bandwidth utilization by the user’s family excluding the
bandwidth utilization for the health systems. We can see that
the bandwidth utilization varied a lot over time. From 9:00 to
14:00 and 20:00 to 23:00, the bandwidth utilization is almost
50% on average. In order to provide better user experience, a
task assignment method should limit the network bandwidth
usage and leave enough bandwidth to users for daily use.
Centralized assigns all the tasks on the private cloud and
the total bandwidth utilization is 100%. Because Centralized
occupies most of the bandwidth, it not only cannot leave
sufficient bandwidth to users for daily use, but also generates
two problems. First, it increases network cost to the users.
Second, it can cause the network congestion, prevents timely
data transmission, and finally cannot finish all the tasks on
time. Distributed generates the lowest bandwidth utilization
among all the methods. This is because it assigns all the
tasks on the local workstation so that each workstation
doesn’t need to transfer data to the private cloud, which saves
the bandwidth utilization. Although Distributed achieves the
lowest bandwidth utilization, the computing capacity of local
workstation is much lower than the private cloud. It can not

complete all the tasks on time especially for those emergency
tasks. Though SpanEdge only assigns global-tasks to the
cloud, it also uses most of the bandwidth, leading to nearly
100% total bandwidth utilization. Thus, SpanEdge generates
the same problems as Centralized. HealthEdge assigns the
tasks based on their dataset size and predicted available
bandwidth at that time. Its total utilization is from 85%
to 90%. Therefore, HealthEdge can avoid the problems
of SpanEdge and Centralized. That is, HealthEdge leaves
a certain amount of bandwidth to users for daily use, it
constrains network cost and won’t cause network congestion
which enable to complete tasks timely.

We also measured the total network load in Figure 4. It
shows the number of workstations versus the total network
load in GB. It shows that the network load performance
follows Centralized> SpanEdge>HealthEdge>Distributed.
Centralized assigns all the tasks to the private cloud so that
it generates the highest network load. SpanEdge assigns
the tasks which need the data from other workstations to
the cloud. Because it assigns some tasks only use local
data, it can achieve lower network load than Centralized.
HealthEdge assigns the tasks based on the data size and
predicted available bandwidth. To decrease processing time
and network load, the tasks that need less amount of data
can be assigned on the private cloud and the tasks that need
a large amount of data tend to be assigned on the local
workstation. Because it assigns some tasks to the private
cloud, it costs higher network load than Distributed, which
assigns all the tasks on the local workstations. Therefore,
Figure 4 shows that HealthEdge can achieve lower network
load compared with SpanEdge.

E. Performance on Task Processing Time

Figure 5 shows the total ask processing time in sec-
onds versus the number of workstations versus. The result
follows Distributed >Centralized>SpanEdge>HealthEdge.
Distributed assigns all the tasks to the local workstations
which have much less computing capacity than the private
cloud. Therefore, it generates the highest processing time.
Centralized assigns all the tasks to the private cloud. Because
the computing capacity of the private cloud is much higher
than the local workstations, Centralized can achieve much
lower task processing time although it costs high network
load. SpanEdge assigns some tasks which needs data from
many workstations to the private cloud so that it can use the
private cloud to process large amount of data and achieve
the lower processing time than Centralized. HealthEdge
tends to assign computing-intensive task to the private cloud
and data-intensive tasks to the local workstation. It fully
utilizes the computing capacity of local workstation and
saves the data transmission latency. As a result, HealthEdge
can achieve the best performance on the task processing
time.

We consider the tasks with Γ ≥ 0.8 as emergency tasks.

0
250
500
750

1000
1250
1500
1750

50 100 150 200 250 300
Number of Workstations

HealthEdge SpanEdge Centralized Distributed

T
o

t
a

l
P

r
o

c
e

s
s
in

g
T

im
e

(s
)

Figure 5: Total processing time.

0

200

400

600

800

1000

50 100 150 200 250 300T
o

ta
l

P
r
o

c
e

s
s
in

g
 T

im
e

(s

)

Number of Workstations

HealthEdge SpanEdge Centralized Distributed

Figure 6: Total processing time
on emergency task.

Figure 6 shows the total processing time of the emergency
tasks versus the number of workstations. The result follows
Distributed>Centralized >SpanEdge>HealthEdge. The dif-
ference between Figure 6 and Figure 5 is that HealthEdge
is much lower than SpanEdge in Figure 6. In Centralized,
Distributed and SpanEdge, all the tasks have the same
priority to be processed so that those emergency tasks may
not be processed faster than other regular tasks. It leads
to higher latency for the emergency tasks than that in
HealthEdge. HealthEdge determines the priority of tasks
based on the human health status in the task assignment.
For those emergency task (with higher Γ values), they
have higher priorities to be processed with shorter queuing
latency. Therefore, HealthEdge can achieve the shortest
processing time for emergency tasks among the different
methods.

F. Performance on CPU Utilization

Figure 7 shows the average CPU utilization of lo-
cal workstation versus the number of workstations. It
shows that the CPU utilization percentage follows Dis-
tributed>HealthEdge>SpanEdge>Centralized. Centralized
assigns all the tasks to the private cloud so that it costs
no CPU utilization of local workstations. SpanEdge as-
signs tasks which need the data from other worksta-
tions to the cloud and assigns tasks which need data
only from the local workstations on the local work-
stations. Without considering the computing capacity of
the edge workstations, it achieves almost 100% CPU
utilization, which is higher than that of HealthEdge.

0%

20%

40%

60%

80%

100%

120%

50 100 150 200 250 300

C
P

U
 U

ti
li
z
a

ti
o

n
 o

f
L
o

c
a

l
W

o
rk

s
ta

ti
o

n

Number of Workstations

HealthEdge SpanEdge Centralized Distributed

Figure 7: CPU utilization.

HealthEdge assigns the
tasks based on the pre-
dicted processing time
on the edge workstation
and the private cloud
data center. The tasks
that need less amount
of data but high com-
puting requirement tend
to be assigned to the
private cloud. The tasks
that need a larger amount of data but lower computing
requirement tend to be assigned on the local workstation. In

the meantime, when HealthEdge assigns tasks, it considers
the computing capacity on each workstation for latency
estimation, so that it achieves higher CPU utilization but
lower than 100%, which means it can avoid overloading
the workstations. Distributed assigns all the tasks on the
local workstation so that the CPU utilization is 100%, which
actually cannot guarantee the performance of the tasks due
to overload. Therefore, the result shows that HealthEdge can
achieve high CPU utilization of local workstations without
overloading them.

VI. CONCLUSION AND FUTURE WORK

In this paper, we addressed the task scheduling prob-
lem for resource management in the edge computing for
health IoT systems at smart homes. The solution deter-
mines whether to run a task in an edge workstation or
the remote private cloud data center. We first formulate the
problem, which has been proved NP-hard. We then proposed
HealthEdge, a heuristic solution for assigning tasks between
the edge workstation and the private cloud data center. Based
on human health status from the sensed data, we set different
priorities on different tasks based on tasks’ emergency levels.
Then, we propose a priority-based task queuing method that
enables emergency tasks to be processed earlier. Meanwhile,
it avoids delaying waiting tasks according to the task waiting
time and processing time. Further, HealthEdge predicts
human behaviors and hence available resources for each
server and its bandwidths to the cloud. based on which it
estimates the data transmission latency, queuing latency and
computing latency to predict the total processing time of
a task in each edge workstation and the private cloud data
center. Finally, HealthEdge assigns the task to the destination
with the shortest estimated processing time. We construct
a trace-driven simulation to evaluate the performance of
HealthEdge in comparison with other methods.

ACKNOWLEDGMENT

This research was supported in part by U.S. NSF grants
OAC-1724845, ACI-1719397 and CNS-1733596, and Mi-
crosoft Research Faculty Fellowship 8300751.

REFERENCES
[1] D. Gilstrap. Ericsson mobility report. Ericsson, 2013.
[2] H. Wang, J. Gong, Y. Zhuang, H. Shen, and J. Lach. Healthedge: Task

scheduling for edge computing with health emergency and human
behavior consideration in smart homes. In Proc. of NAS, poster
session, 2017.

[3] W. Shi and S. Dustdar. The promise of edge computing. Computer,
2016.

[4] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, and A Neal.
Mobile-edge computing introductory technical white paper. Journal
of Mobile-edge Computing (MEC) industry initiative, 2014.

[5] L. Yan, H. Shen, J. Zhao, C. Xu, F. Luo, and C. Qiu. Catcharger:
Deploying wireless charging lanes in a metropolitan road network
through categorization and clustering of vehicle traffic. In Proc. of
INFOCOM, 2017.

[6] L. Kang H. Shen and A. Sarker. Velocity optimization of pure electric
vehicles with traffic dynamics and driving safety considerations. In
Proc. of ICDCS, 2017.

[7] H. Shen, G. Liu, and H. Wang. An economical and slo-guaranteed
cloud storage service across multiple cloud service providers. Trans.
on TPDS, 2017.

[8] H. Wang, H. Shen, and G. Liu. Swarm-based incast congestion control
in datacenters serving web applications. In Proc. of SPAA, 2017.

[9] G. Liu, H. Shen, and H. Wang. Computing load aware and long-view
load balancing for cluster storage systems. In Proc. of Big Data,
2015.

[10] G. Liu, H. Shen, and H. Wang. Towards long-view computing load
balancing in cluster storage systems. Trans. of TPDS, 2017.

[11] W. T. Riley, D. E. Rivera, A. A. Atienza, W. Nilsen, S. M. Allison,
and R. Mermelstein. Health behavior models in the age of mobile
interventions: are our theories up to the task? Translational behavioral
medicine, 2011.

[12] Y. K. Axelrod and M. N. Diringer. Temperature management in acute
neurologic disorders. Neurologic clinics, 2008.

[13] J. Gong, M. D. Goldman, and J. Lach. Deepmotion: a deep convolu-
tional neural network on inertial body sensors for gait assessment in
multiple sclerosis. 2016.

[14] Q. Li, J. A. Stankovic, M. A. Hanson, A. T. Barth, J. Lach,
and G. Zhou. Accurate, fast fall detection using gyroscopes and
accelerometer-derived posture information. In Proc. of Wearable and
Implantable Body Sensor Networks, 2009.

[15] P. Ray, S. Birolleau, Y. Lefort, M. Becquemin, C. Beigelman, R. Is-
nard, A. Teixeira, M. Arthaud, B. Riou, and J. Boddaert. Acute
respiratory failure in the elderly: etiology, emergency diagnosis and
prognosis. Critical care, 2006.

[16] J. Gong, K. M. Rose, I. A. Emi, J. P. Specht, E. Hoque, D. Fan, S. R.
Dandu, R. F. Dickerson, Y. Perkhounkova, and J. Lach. Home wireless
sensing system for monitoring nighttime agitation and incontinence in
patients with alzheimer’s disease. In Proc. of Wireless Health, 2015.

[17] P. C. van den Hoogen, E. J. Feskens, N. J. Nagelkerke, A. Menotti,
A. Nissinen, and D. Kromhout. The relation between blood pressure
and mortality due to coronary heart disease among men in different
parts of the world. New England Journal of Medicine, 2000.

[18] X. Chen, L. Jiao, W. Li, and X. Fu. Efficient multi-user computation
offloading for mobile-edge cloud computing. Trans. on Networking,
2016.

[19] M. Aazam and E. Huh. Fog computing micro datacenter based
dynamic resource estimation and pricing model for iot. In Proc. of
AINA, 2015.

[20] G. Huerta-Canepa and D. Lee. An adaptable application offloading
scheme based on application behavior. In Proc. of Advanced Infor-
mation Networking and Applications-Workshops, 2008.

[21] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. Maui: making smartphones last longer with
code offload. In Proc. of Mobile systems, applications, and services,
2010.

[22] M. Jia, J. Cao, and L. Yang. Heuristic offloading of concurrent tasks
for computation-intensive applications in mobile cloud computing. In
Proc. of INFOCOM workshops, 2014.

[23] R. Alam, J. Gong, and J. Lach. Besi: Reliable and heterogeneous
sensing and intervention for in-home health applications. In Proc. of
CHASE, 2017.

[24] P. Khosravi and A. H. Ghapanchi. Investigating the effectiveness of
technologies applied to assist seniors: A systematic literature review.
International Journal of medical informatics, 2016.

[25] J. J. Smith, P. J. Morgan, R. C. Plotnikoff, K. A. Dally, J. Salmon,
A. D. Okely, T. L. Finn, and D. R. Lubans. Smart-phone obesity
prevention trial for adolescent boys in low-income communities: the
atlas rct. Pediatrics, 2014.

[26] J. A. Stankovic. Research directions for cyber physical systems
in wireless and mobile healthcare. ACM Trans. on Cyber-Physical
Systems, 2016.

[27] J. A. Stankovic. Research directions for the internet of things. Journal
of Internet of Things, 2014.

[28] U. Bakar, H. Ghayvat, S. Hasanm, and S. Mukhopadhyay. Activity
and anomaly detection in smart home: A survey. In Next Generation
Sensors and Systems. 2016.

[29] G. Fortino, D. Parisi, V. Pirrone, and Di F. G. Bodycloud: A saas
approach for community body sensor networks. Future Generation

Computer Systems, 2014.
[30] R. Gravina, C. Ma, P. Pace, G. Aloi, W. Russo, W. Li, and G. Fortino.

Cloud-based activity-aaservice cyber–physical framework for human
activity monitoring in mobility. Future Generation Computer Systems,
2016.

[31] J. H. Abawajy and M. M. Hassan. Federated internet of things and
cloud computing pervasive patient health monitoring system. IEEE
Journal of Communications Magazine, 2017.

[32] S. Sareen, S. K. Sood, and S. K. Gupta. An automatic prediction
of epileptic seizures using cloud computing and wireless sensor
networks. Journal of medical systems, 2016.

[33] S. Chen, T. Liu, F. Gao, J. Ji, Z. Xu, B. Qian, H. Wu, and X. Guan.
Butler, not servant: A human-centric smart home energy management
system. IEEE Journal of Communications Magazine, 2017.

[34] J. Ji, T. Liu, C. Shen, H. Wu, W. Liu, M. Su, S. Chen, and Z. Jia.
A human-centered smart home system with wearable-sensor behavior
analysis. In Proc. of CASE, 2016.

[35] F. Huang and S. Tseng. Predictable smart home system integrated with
heterogeneous network and cloud computing. In Proc. of ICMLC,
2016.

[36] H. Yang, H. Lee, and H. Zo. User acceptance of smart home
services: an extension of the theory of planned behavior. Industrial
Management & Data Systems, 2017.

[37] X. Sun and N. Ansari. Edgeiot: Mobile edge computing for the
internet of things. Journal of Communications Magazine, 2016.

[38] M. Jang, H. Lee, K. Schwan, and K. Bhardwaj. Soul: An edge-cloud
system for mobile applications in a sensor-rich world. In Proc. of
Edge Computing (SEC), 2016.

[39] S. Nastic, H. Truong, and S. Dustdar. A middleware infrastructure
for utility-based provisioning of iot cloud systems. In Proc. of SEC,
2016.

[40] A. Rudenko, P. Reiher, G. Popek, and G. Kuenning. Saving portable
computer battery power through remote process execution. Proc. of
SIGMOBILE, 1998.

[41] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. Clonecloud:
elastic execution between mobile device and cloud. In Proc. of
Computer systems, 2011.

[42] M. R. Gary and D. S. Johnson. Computers and intractability: A guide
to the theory of np-completeness, 1979.

[43] Y. Zheng, X. Ding, C. C. Poon, B. P. Lo, H. Zhang, X. Zhou, G. Yang,
N. Zhao, and Y. Zhang. Unobtrusive sensing and wearable devices
for health informatics. Trans. on Biomedical Engineering, 2014.

[44] Andreas Bulling, Ulf Blanke, and Bernt Schiele. A tutorial on
human activity recognition using body-worn inertial sensors. ACM
Computing Surveys (CSUR), 46(3):33, 2014.

[45] Subhas Chandra Mukhopadhyay. Wearable sensors for human activity
monitoring: A review. IEEE sensors journal, 15(3):1321–1330, 2015.

[46] D. Spruijt-Metz and W. Nilsen. Dynamic models of behavior for
just-in-time adaptive interventions. Journal of Pervasive Computing,
2014.

[47] M. S. H. Aung, F. Alquaddoomi, C. K. Hsieh, M. Rabbi, L. Yang, J. P.
Pollak, D. Estrin, and T. Choudhury. Leveraging multi-modal sensing
for mobile health: A case review in chronic pain. IEEE Journal of
Selected Topics in Signal Processing, 10(5):962–974, Aug 2016.

[48] M. Tsai, C. Wu, S. K. Pradhan, Y. Xie, T. Li, L. Fu, and Y. Zeng.
Context-aware activity prediction using human behavior pattern in
real smart home environments. In Proc. of CASE, 2016.

[49] M. Kubat, R. C. Holte, and S. Matwin. Machine learning for the
detection of oil spills in satellite radar images. Machine learning,
1998.

[50] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and V. Vlassov.
Spanedge: Towards unifying stream processing over central and near-
the-edge data centers. In Proc. of SEC, 2016.

