

Velocity Optimization of Pure Electric Vehicles with Traffic Dynamics Consideration

Liuwang Kang, Haiying Shen, and <u>Ankur Sarker</u> Department of Computer Science, University of Virginia

Outline

- Introduction
- System Design
- Performance Evaluation
- Conclusion

Introduction

Factors impeding wide electric vehicle application

□ Short driving range

Introduction Factors impeding wide electric vehicle application

- □ Short driving range
- □ Limited battery cycle life

Introduction Solution: Velocity optimization

□ Consider constraints such as vehicle acceleration, speed limit, stop sign and traffic light on the road

Introduction Solution: Velocity optimization

□ Consider constraints such as vehicle acceleration, speed limit, stop sign and traffic light on the road

Optimize the velocity profile to reduce total energy consumption

Introduction Solution: Velocity optimization

□ Consider constraints such as vehicle acceleration, speed limit, stop sign and traffic light on the road

Optimize the velocity profile to reduce total energy consumption

Introduction

Challenges of current velocity optimization methods

How to estimate waiting vehicles in the traffic signal areas

Introduction

Challenges of current velocity optimization methods

How to estimate waiting vehicles in the traffic signal areas

How to apply waiting vehicle information into velocity optimization

Introduction Our method: DP-based velocity optimization system

□ Propose vehicle movement (VM) model

D Build queue length model

Introduction Our method: DP-based velocity optimization system

- □ Propose vehicle movement (VM) model
- Build queue length model
- Apply vehicle queue length into DP (Dynamic Programming) algorithm

System Design Overview

Queue length model

Waiting vehicles in traffic signal areas

System Design Energy consumption model of pure EVs

Driving force:

$$F_{drive} = m\frac{dv}{dt} + \frac{1}{2}\rho A_f C_d v^2 + mg\sin\theta + \mu mg\cos\theta$$

Driving force of pure EV

System Design Energy consumption model of pure EVs

Driving force:

$$F_{drive} = m\frac{dv}{dt} + \frac{1}{2}\rho A_f C_d v^2 + mg\sin\theta + \mu mg\cos\theta$$

C Energy generated by the battery pack: $E = UQ\eta_1\eta_2$

Driving force of pure EV

- U Battery pack voltage;
- Q Charge consumption;
- η_1 Battery transforming efficiency;
- η_2 Powertrain working efficiency;

System Design Energy consumption model of pure EVs

Driving force:

$$F_{drive} = m\frac{dv}{dt} + \frac{1}{2}\rho A_f C_d v^2 + mg\sin\theta + \mu mg\cos\theta$$

Energy generated by the battery pack:
E = UOn n

 $E = UQ\eta_1\eta_2$

• Energy consumption per time:

$$\xi = \frac{F_{drive}v}{U\eta_1\eta_2}$$

 $\frac{1}{2}\rho A_f C_d v^2 \qquad F_{drive}$ $mg \sin \theta \qquad \Theta$ $\mu mg \cos \theta \qquad \Theta$

Driving force of pure EV

- U Battery pack voltage;
- Q Charge consumption;
- η_1 Battery transforming efficiency;
- η_2 Powertrain working efficiency;

Queue length model is built to estimate waiting vehicle numbers in traffic signal areas:

D Vehicle arrival rate V_{in}

□ Vehicle leaving rate V_{out}

□ Arrival vehicle rate V_{in} : estimated based on real-time traffic volume

□ Arrival vehicle rate V_{in} : estimated based on real-time traffic volume

Vehicle leaving rate V_{out}: estimated with vehicle movement model

Arrival vehicle rate V_{in}: estimated based on real-time traffic volume

- Vehicle leaving rate V_{out}: estimated with vehicle movement model
- Queue length L_q : calculated with V_{in} and V_{out}

Arrival vehicle rate V_{in}: estimated based on real-time traffic volume

- Vehicle leaving rate V_{out}: estimated with vehicle movement model
- Queue length L_q : calculated with V_{in} and V_{out}

Experiment Simulation settings

1. Vehicle parameters in energy consumption model

Parameters	m	A _f	<i>C</i> _d	μ	η_1	η_2
Values	1300 kg	1.97 m ²	0.33	0.018	0.9	0.97

Experiment Simulation settings

1. Vehicle parameters in energy consumption model

Parameters	m	A _f	C _d	μ	η_1	η_2
Values	1300 kg	1.97 m ²	0.33	0.018	0.9	0.97

2. Experiment road segment on US-25 highway

Experiment Simulation settings

1. Vehicle parameters in energy consumption model

Parameters	m	A _f	C _d	μ	η_1	η_2
Values	1300 kg	1.97 m ²	0.33	0.018	0.9	0.97

2. Experiment road segment on US-25 highway

3. Velocity optimization results are verified in SUMO environment

Experiment Velocity optimization

Metric: Total energy consumption during the trip

Observation: Reduces by **8.4%** energy compared with current method in the experiment

Reason: Enables EVs to immediately pass through traffic lights without meeting waiting vehicles

Conclusion

- 1. We proposed a velocity optimization system for EVs with considering queue length in traffic signal areas
- 2. We conducted velocity optimization simulation study with SUMO to verify our method

Conclusion

- 1. We proposed a velocity optimization system for EVs with considering queue length in traffic signal areas
- 2. We conducted velocity optimization simulation study with SUMO to verify our method

Future work

- 1. Consider the effect of road gradient on the proposed system
- 2. More practical experiments in different traffic conditions

Thank you! Questions & Comments?

Ankur Sarker

as4mz@Virginia.edu

Ph.D. Candidate

Pervasive Communication Laboratory

University of Virginia