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Abstract—Electric vehicles (EVs) have great potential to reduce
dependency on fossil fuels. The recent surge in the development of
online EV (OLEV) will help to address the drawbacks associated
with current generation EVs, such as the heavy and expensive
batteries. OLEVs are integrated with the smart grid of power
infrastructure through a wireless power transfer system (WPT) to
increase the driving range of the OLEV. However, the integration
of OLEVs with the grid creates a tremendous load for the
smart grid. The demand of a power grid changes over time
and the price of power is not fixed throughout the day. There
should be some congestion avoidance and load balancing policy
implications to ensure quality of services for OLEVs. In this
paper, first, we conduct an analysis to show the existence of
unpredictable power load and congestion because of OLEVs. We
use the Simulation for Urban MObility tool and hourly traffic
counts of a road section of the New York City to analyze the
amount of energy OLEVs can receive at different times of the
day. Then, we present a game theory based on a distributed
power schedule framework to find the optimal schedule between
OLEVs and smart grid. In the proposed framework, OLEVs
receive the amount of power charging from the smart grid
based on a power payment function which is updated using best
response strategy. We prove that the updated power requests
converge to the optimal power schedule. In this way, the smart
grid maximizes the social welfare of OLEVs, which is defined as
mixed consideration of total satisfaction and its power charging
cost. Finally, we verify the performance of our proposed pricing
policy under different scenarios in a simulation study.

Index Terms—Electric vehicles; Online electric vehicles; Wire-
less power transfer; Smart grid; Power schedule; Game theoretic
pricing policy;

I. INTRODUCTION

According to a recent study [1], todays transportation sys-
tem mostly depends on petroleum-based energy consumption
where automobiles and other highway vehicles contribute to
high CO2 emissions. In 2014, overall emissions from trans-
portation activities increased by 17 percent. Electric vehicles
(EVs) have great potential to reduce fossil fuel consumption.
Several works already demonstrate the possible impact of EVs
on the road transportation system [2–5] such as petroleum
consumption reduction and environmental pollution reduction.
As the total number of vehicles keeps rising, countries are
urged to switch from gas-driven vehicles to EVs in order to
decrease the consumption of fossil fuels. For example, Tesla
Motors has launched the affordable “Model 3” EV on March
31, 2016 for mass production [6].

Since the onboard battery of an EV needs to meet the energy
demands of a vehicle on a long trip, the EV requires a battery
subject to drawbacks such as heavy weight, long charging
time, and large size. In conjunction with these obstacles,
EVs have a relatively short driving range compared to their
petroleum powered counterparts. To be adopted widely, EVs
need to overcome these drawbacks. To alleviate the battery-
related problems, wireless power transfer (WPT) systems have
been developed and successfully deployed at various public
sites to charge Online EVs (OLEVs) while they are moving
[7, 8]. To increase vehicle driving range, the WPT charges
OLEVs in-motion, when they pass charging sections installed
in roads, without physical contact between the utility power
supply and vehicle battery. Several works study the impact
stationary charging of EVs has on the power grid during
different periods of day [9–11]. However, the integration of
OLEVs into the power grid would increase the unpredictable
load and congestion of the power system operator [12]. In
addition, power system operators use ancillary services to
maintain the stability between power supply and demand to
secure reliable functionality of the power supply and ancillary
services require a quick response from the power resources.
Thus, the integration of OLEVs into the power grid would
also increase the ancillary services cost of the grid operators.

It is very important to avoid congestion and balance load
at different points of the grid so that the power grid operator
can provide quality of service (QoS) and encourage OLEVs to
get energy from the power grid while they are running on the
road. There should be some policies to balance the load and
avoid congestion at different points of the power grid [13–16].
Previous works (e.g., [17, 18, 9–11, 19]) do not proactively
disincentivize OLEVs from power allocation when the power
usage is high at charging sections.

In this paper, we consider a WPT system where several
charging sections are installed on top of a road or charging
lane. As a control unit of the power grid, the smart grid is
capable of processing data and communicating with others.
The smart grid is connected with the charging sections. While
driving, OLEVs can get energy from the smart grid via the
charging sections. In rest of the paper, we use the term “power”
as the transfer rate of energy. Fig. 1 shows an example of
a WPT system architecture. Each OLEV can communicate
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Fig. 1: The wireless power transfer system.

with the smart grid using vehicle-to-infrastructure (V2I) com-
munication. An OLEV may spend very little time on top
of a charging section based on its driving velocity. When
approaching a charging lane, the OLEVs and the smart grid
can share information with each other to find out the time each
OLEV would spend on top of charging sections. However,
more than the expected number of OLEVs at a charging
section at the same time easily leads to overload at the charging
section. As OLEVs do not know the expected amount of
power capacity of each charging section to avoid congestion
at the charging sections, the smart grid should determine some
policies to avoid congestion at the charging sections to ensure
the QoS to the OLEVs.

In this paper, at first, we conduct a study to show the
existence of unpredictable power load and congestion because
of OLEVs. We use daily traffic counts (the number of vehicles)
in the New York City (NYC) [20] and the Simulation for
Urban MObility (SUMO) tool to predict the amount of power
OLEVs can receive over the course of the day depending on
the number of OLEVs and their onboard energy.

We aim to maximize the social welfare of the OLEVs that
are in the WPT system. We define the social welfare of OLEVs
as a function which jointly considers the total satisfaction of
the OLEVs and the power charging cost over all the charging
sections. We introduce the power charging cost to take into
consideration of power demand, energy transfer efficiency,
and power capacity at each charging section. To maximize
the social welfare of OLEVs, we propose a nonlinear pricing
policy to determine the power payment function for OLEVs,
which decentivizes OLEVs proactively to request more power
when the power usage is high. Next, we design a strategy game
between different OLEVs with the help of smart grid to find
the optimal power schedule for OLEVs that maximizes the
social welfare of OLEVs. Based on the satisfaction function
and power payment function of OLEVs, we use the proposed
game to find the socially optimal power schedule. To find
the socially optimal power schedule, we use a decentralized
framework which involves iterative interaction among the
OLEVs and the smart grid. In the framework, we use an
asynchronous strategy where the OLEVs update their power

request according to the updated power payment function that
is calculated by the smart grid. We mathematically prove that
the best response strategy of the OLEVs converges to an
unique socially optimal power schedule. Finally, we evaluate
our nonlinear pricing policy in the simulation study.

The rest of this paper is organized as follows: Section II
presents an overview of related work. Section III presents
the background and motivation behind this work. Section
IV presents the problem formulation and game theory-based
distributed pricing policy for power transfer from the charging
sections to OLEVs to find out the optimal power schedule
using best response strategy. Section V presents a simulation
study to verify the performance of our proposed pricing
mechanism. Finally, Section VI concludes this paper with
remarks on our future work.

II. RELATED WORK

As a part of the future generation intelligent transporta-
tion systems [21–26], design criteria of the WPT systems is
discussed thoroughly in several existing works [27–32]. The
studies [27, 29] present different kinds of EV components
and the research challenges associated with the WPT sys-
tems. Onar et al. presented an overview of WPT magnetic
field measurements with discussion of several factors in the
power transfer procedures with the consideration of highway
surfacing materials [28]. Li et al. thoroughly presented an
analytic study of the technologies in the area applicable to EV
wireless charging [30]. The work [32] presents the design of
the electric components, an electromotive force shielding, and
an optimized core structure with large air gaps for the WPT
systems. The work [7] presents a WPT system consisting of a
cloud-based global grid controller and a fog-based local grid
controller and the authors tried to balance the SOC of OLEVs
considering several factors, i.e., different numbers of OLEVs
with heterogeneous vehicle parameters and priorities, different
sources-destinations, available energy, etc using gradient based
optimization method. The study by Ko and Jang [33] focuses
two main factors for a WPT system: the battery size and
the positions of power transmitters on the road. The authors
presented the solution of an optimization model using particle
swamp optimization technique to minimize the infrastructure
cost with reference to the battery size, the total number of
power transmitters, and their allocation. Another study [12]
presents a novel bidirectional WPT system for EV and V2G
systems which includes loose magnetic coupling charging
and discharging procedures. However, these methods do not
consider economical benefit of the WPT systems where the
smart grid can share its energy with OLEVs while they are
running.

Another set of existing works analyze the impact of sta-
tionary charging of EVs on the power grid [9–11, 18]. Chen
et. al [11] proposed research challenges to introducing the
integration of EVs into the power grid systems; especially, they
considered the existing load fluctuations of the power grid and
how these fluctuations would impact the integration of EVs.



The authors [10] presented an optimization framework to max-
imize the profit of EVs and satisfy trip energy requirements
with the consideration of bi-directional charging infrastructure.
To reduce the ancillary services cost and provide more flex-
ibility, the work [9] proposes a mathematical model to share
surplus energy from vehicles to the power grid. Tushar et. al
[17] presented a noncooperative Stackelberg game to facilitate
the energy trading between plug-in EVs and the smart grid. In
this game the smart grid would maximize its revenue whereas
plug-in EVs would balance the tradeoff between the battery
charging and its associated costs. However, the capacity of
the power grid operator and congestion degree should be
considered to reduce the operating cost of the power grid. In
this paper, we introduce a game theory-based pricing policy
[34] to incentivize the power grid when the congestion degree
is high.

III. BACKGROUND AND MOTIVATION

In this section, we try to verify the existence of power
deficiency in a grid where the smart grid shares its energy
with OLEVs using the WPT systems. At first, we look at the
power load of an existing grid operator to check if there is
any power deficiency such that congestion exists. Here, by the
word “congestion”, we mean that the demand from OLEVs
is larger than the power supply capacity at charging sections
due to the power deficiency. Then, we try to figure out the
approximate amount of energy OLEVs can receive in a single
day based on the real traffic trace of road sections.

Usually, electricity provided by the grid is grouped in sev-
eral different markets with correspondingly different control
periods. In electricity networks, there are four control periods:
baseload power, peak power, spinning reserves, and frequency
control. These control periods mainly differ in electricity
control method, response time, duration of the power dispatch,
contract terms, and price [35]. Baseload power is provided by
large power plants. Next, peak power is required at times of
day when power requirements are high. Then, spinning reserve
refers to the situation when power is needed immediately.
Finally, frequency control power is used to calibrate the
frequency and voltage of the grid by matching generation to
load demand. Usually, spinning reserves and frequency control
are forms of electric power referred to as “ancillary services”.
The demand of a power grid varies based on its customer
types, coverage area, time of day, day of week, and so on.
According to the New York Independent System Operator
(NYISO), the power demands are different in different regions
so that the electricity prices are varied based on the regional
demand and regional capacity and the operator needs to pay
some extra money due to power deficiency [36]. In addition
to ancillary services are services to ensure incessant power
supply which cost about 5–10% of total electricity cost, which
is about $12 billion per year in the U.S. [35]. The existence of
power deficiency would be a consequence of spending more
money for running ancillary services. As a matter of fact, the
interaction between the power grid and EVs offers possibilities
of more deficiency for the power grid system.
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Fig. 2: Power grid data from NYISO [36].

To verify the amount of existing power deficiency, we
collect and process NYISO’s load, price, and ancillary services
data of 12 May 2016. Fig. 2(a) shows load information on 12
May 2016 where we can find that power load varied from
4017.1MWh to 6657.8MWh for the day. Fig. 2(b) shows the
power deficiency (the difference between integrated load and
forecast load) for the same day where the deficiency would
be as high as 167.8MWh. In this instance, integrated load is
actual load generated by regular consumers of NYISO on that
day and forecast load is the predicted load by NYISO. The
power deficiency is basically caused by the uncertain nature
of regional power demand. Fig. 2(c) shows how much the
location-based marginal price (LBMP) varied throughout the
day due to the power deficiency. LBMP is decided based on
regional power demand and regional power supply [36]. In
such a case, LBMP would be as low as $12.52 to as high as
$244.04 based on the power deficiency. And, Fig. 2(d) shows
how much NYISO needs to pay for ancillary services on the
same day which varies based on the current power demand;
on average NYISO pays $13.41 on 12th May 2016. Based on
the above discussion, we can easily state that in the existing
power grid, power deficiency exists due to the unpredictable
load variations and the integration of OLEVs in the smart grid
would create more unpredictable load and increase the power
deficiency.

Now, we try to show that WPT systems can cause un-
predictable power load and the integration of OLEVs in the
power grid would create congestion at charging sections. We
present a real traffic trace-based simulation study to predict
the amount of energy OLEVs can receive from the power
grid using WPT system. To motivate our work, we illustrate
the potential deficiency caused by WPT systems to the smart
grid of a city. The amount of energy received by OLEVs
depends on the intersection time between OLEVs and charging
sections. Here, the intersection time is the actual time OLEVs
spend on top of the charging sections. This intersection time
actually depends on charging section coverage, charging sec-
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Fig. 3: Simulated intersection time and amount of power
between OLEVs and charging sections on Flatlands Avenue
in Brooklyn, NYC on January 31, 2013.

tion placement, OLEV participation, and OLEV willingness,
which are defined as followings: Charging section coverage
is the total length of installed charging sections and it mainly
includes the consideration of initial investment; Charging
section placement is simply the location of the charging
sections; OLEV participation is the fraction of total vehicles
equipped as OLEVs; and OLEV willingness is the fraction of
OLEVs that are both willing and able to get energy from the
smart grid. Of these factors, placement is the least quantifiable.
Typically, placement in various congested traffic areas will
increase intersection time. The other factors of coverage,
participation, and willingness are positively correlated with
intersection time. We expect more coverage and participation
to increase in cities as the benefits of the WPT systems become
pronounced. Willingness can be maximized by a fair pricing
system that incentivizes the smart grid to sell their energy, as
proposed in this paper.

We conduct the study based on the available traffic count of
the NYC from New York City Department of Transportation
(NYCDOT) on January 31st, 2013 [20]. Here, we use the
SUMO to generate the traffic based on the hourly traffic
counts. We set state of charge (SOC) of each vehicle’s battery
is equal to 50% and the maximum capacity of vehicle’s battery
is 2,000KWh. Here, SOC represents the amount of energy
stored in the battery at a certain time. We first download
the Flatlands Avenue in Brooklyn map from OpenStreetMap
to use with SUMO (as shown in Fig. 3(a)). In SUMO,
vehicles follow a car following model, maintain the inter-
vehicle safety distances [37] and follow the speed limits of
the road network. For a 200 total meters of charging section

having 100KW capacity placed around an intersection, our
simulation predicts a total of over 48 hours of intersection
time between vehicles and charging section over the course of
24 hours. The total intersection time considers the average
time of all vehicles on top of charging section (i.e., 100
vehicles and 2 minutes average time on charging section
result in approximately 3 hours total intersection time). The
hourly intersection is depicted in Fig. 3(b), as traffic changes
throughout the day. The upper solid line has the charging
section placed immediately before the traffic lights, and the
dashed line shows the intersection time if the charging section
is placed at the middle of a road instead. Fig. 3(c) shows the
projected power from the grid if we consider full participation
based on previous Fig. 3(b). Here, participation is the fraction
of total vehicles equipped as OLEVs. We find that OLEVs can
get as much as 4146.16KWh power from this intersection.
As of June 2011, there were 4371 intersections with traffic
lights in Brooklyn1. If we consider some other intersections
in NYC, then the aggregated power amount will be enough
to increase the power demand of the grid operator. Based on
OLEV participation and OLEV willingness, the power demand
would not be fixed over the period of time and the demand
would also be varied for different regions at same time. From
the above discussion, we can conclude that the load caused
by OLEVs in the power grid is not easily predictable and
the number of OLEVs would cause congestion at different
charging sections throughout the day.

IV. GAME THEORY-BASED PRICING FOR WIRELESS
POWER TRANSFER SYSTEM

In this section, we present a brief introduction of WPT
system in Sub-Section IV-A. Then, we formulate the problem
to find the optimal power schedule to transfer power from
charging sections to OLEVs and avoid congestion at charging
sections. To achieve this objective, the smart grid specifies a
nonlinear pricing policy that has a higher unit price when the
current energy sharing is higher comparing with the current
demand.

A. Wireless Power Transfer System

Suppose, several OLEVs are running on a lane. Each OLEV
is equipped with a battery to carry out the energy for the
entire travel time. The SOC of battery represents the amount
of energy stored at a particular time. During the trip, it might
be necessary that OLEVs need to take energy from the smart
grid. To facilitate the energy transportation, there are several
charging sections installed on top of the lane. The charging
sections are connected with the smart grid. In our model,
we consider a charging infrastructure where the smart grid
can transfer energy to OLEVs without having any physical
contacts. During the peak hours, the power load of smart
grid is varied and the integration of OLEVs into smart grid
causes a tremendous amount of unanticipated energy demand,
and, hence causes congestion at different charging sections.

1www.nyc.gov/html/dot/html/infrastructure/signals.shtml



Based on the expected travel time, each OLEV can decide the
amount of SOC it needs to finish the trip. Before approaching
to the charging lane, OLEVs can communicate with the smart
grid to inform their current positions and velocities. On the
other hand, the smart grid notifies OLEVs about the number
of charging sections and their positions. In this way, both
OLEVs and the smart grid can calculate the expected travel
time to reach different charging sections. The communication
between OLEVs and the smart grid can be taken place by V2I
communication (i.e., using IEEE-802.11p or 4G-LTE enabled
devices).

In our WPT system, several factors limit the amount of
power distribution from smart grid to OLEVs. First, the
capacity of the power line of each charging section and the
total time OLEVs stay on top of the charging sections are the
upper limits that each OLEV can receive the power to grid.
Here, the capacity of power line of a charging section can be
represented as follows [38]:

Pline =
V · Curr · l

vel
. (1)

Here, V is the line voltage, Curr is the maximum rated
current, l is the charging section length and vel is the velocity
of the OLEV. Since the line voltage, maximum current rate and
charging section length are almost fixed values for different
OLEVs, the Pline only depends on the velocity of OLEVs.

Next, the approximate amount of energy an OLEV can
receive is also limited by the required energy to finish its trip
minus the energy stored inside the battery. Basically, it is the
energy needed for planned travel minus the onboard energy
storage times the efficiency of converting stored energy to grid
power, then all divided by the duration of time the energy is
dispatched. It means [38]:

POLEV
n =

(SOCreq
n − SOCn + SOCmin) · Pmax · ηE

ηOLEV
, (2)

where Pmax is maximum power of the battery of OLEV in
kW, SOCmin is the minimum value of SOC, SOCreq

n is
the required SOC to finish OLEV n’s trip, ηOLEV is the
vehicle driving efficiency, ηE is energy transfer efficiency.
Here, SOCn and SOCreq

n are decreasing over the distance
OLEV traveled so far and thus, POLEV

n is varied based on the
time and OLEV’s properties. Thus, the total amount of power
an OLEV can receive is actually limited by:

pn,c ≤ min(Pline, POLEV). (3)

Here, pn,c is amount of power an OLEV n can receive from
a particular charging section c.

In next Sub-Section, we introduce the problem to find out
the optimum pricing policy of the smart grid.

B. Problem Statement

Suppose, there is a set N of OLEVs into our WPT
system where N = {1, 2, ..., N} and there is a set C of
charging sections installed on top of the charging lane where
C = {1, 2, ..., C} (as Fig. 4 shows). Let us denote pn,c the

...

...
OLEV 1

Charging section 1

OLEV 2 OLEV N

Charging section 2 Charging section C

Fig. 4: The mapping between OLEVs and charging sections.

amount of power OLEV n can get from charging section c at
a particular time. For a charging section c, Pc =

∑
n∈N pn,c

as the total power provided to all available OLEVs. We denote
Pc

Pline
as the congestion degree of charging section c. Let

us consider pn =
∑
c∈C pn,c as the total amount of power

allocated to OLEV n using all available charging sections
and pn = (pn,1, ..., pn,C) as the power schedule for OLEV
n from all charging sections. We define the power schedule
for the OLEVs in the system as p = (p1, ...,pN ) and we
also define the charging schedule for all the OLEVs except
OLEV n as p−n. Since an OLEV cannot accept more than
its capacity POLEVn , pn ≤ POLEVn always satisfies. We
consider Pn = {pn|

∑
c∈C pn,c ≤ POLEVn } as the set of all

feasible power distribution schedule of OLEV n, and we define
P = P1 × ... × PN as the set of all feasible power schedule
for all OLEVs. Since P is a compact and convex set, the
power schedule must satisfy each charging section’s capacity
constraint:

Pc =
∑
n∈N

pn,c ≤ ηPline, (4)

where η ∈ [0, 1] is the safety factor determined by the smart
grid to ensure that maximum capacity is not violated.

Next, we formulate the social welfare and utility functions
of OLEVs. We consider Un(

∑
c∈C pn,c) as the satisfaction

function of OLEV n for power schedule pn. Since a higher
power arrangement makes an OLEV more satisfied, the sat-
isfaction function Un(·), is considered to be non-decreasing.
However, the level of satisfaction of OLEV gradually gets
saturated based on the current SOC of the battery. Thus, we
can consider, Un(·) is a strictly increasing and strictly concave,
and its second derivative is continuous in pn. We represent
V(Pc) as the power charging cost for getting Pc of power
from charging section c. Thus, we can define social welfare
of OLEVs as satisfaction of OLEVs minus the cost related to
the amount of power charging:

W(p) =

N∑
n=1

Un(
∑
c∈C

pn,c)−
∑
c∈C

(V(Pc))

s.t. Pc − ηPline ≤ 0, ∀c.
p ∈ P. (5)

To integrate the constraints in the Equation (5) as in [39],
we change Equation (5) to an objective function such that
the power schedule maximizes the social welfare. We define



A(·) as the overload cost function associated with a charging
section. We define Z(x)

.
= V(x) + A(x − ηPline) as the

power charging cost, and overload cost for power reservation
x from a charging section. As V(·) and A(·) are strictly convex
functions, Z(·) is also strictly convex function. Since Un(·) is
strictly concave for each OLEV n and Z(·) is strictly convex,
W(·) is a strictly concave function in P . Thus, we can redefine
social welfare of OLEVs from Equation (5) as follows:

W(p) =

N∑
n=1

Un(
∑
c∈C

pn,c)−
∑
c∈C
V(Pc) (6)

−
∑
c∈C

A(Pc − ηPline)
.
=

N∑
n=1

Un(pn)−
∑
c∈C
Z(Pc),

p ∈ P. (7)

In Equation (7), we consider the socially optimal power
schedule as a feasible power schedule which maximizes the
social welfare of OLEVs. The smart grid determines the
payment for all OLEVs based on the capacity and currently
available power from charging sections.

In next Sub-Section, we introduce smart grid’s pricing
policy for individual OLEV.

C. Pricing Policy

In this Sub-Section, we propose the power pricing policy for
OLEVs. Notice that this policy helps to avoid congestion and
it also provides load balancing among charging sections. The
smart grid transfers the power charging cost from charging
sections to OLEVs. Let us define Yn,c(p) as the power
charging cost where OLEV n has been scheduled pn,c power
schedule and the other OLEVs have been scheduled p−n
power schedule on charging section c:

Yn,c(p−n, pn,c) = Z

( ∑
j∈N/{n}

pj,c + pn,c

)
. (8)

To pay for power schedule pn of OLEV n from charg-
ing sections, we formulate the power payment function as
ξn(p−n,pn) based on the fixed cost function as in the
following:

ξn(p−n,pn) =
∑
c∈C

[Yn,c(p−n,pn)− Yn,c(p−n,0)]. (9)

For each OLEV, Equation (9) is unbiased cost function, i.e.,
ξn(p−n,0) = 0,∀n, due to the fact that the term Yn,c(p−n,0)
is independent from pn. It means that if OLEV n does not
get any power from chargingsections, it does not need to pay
anything.

Actually, OLEV n pays based on its allocated power pn and
scheduled power pn over all chargingsections. Let us denote:

Pn(pn) = {pn|
∑
c∈C

pn,c = pn,∀C ∈ N : pn,c ≥ 0}, (10)

as the set of all feasible power schedules that OLEV n can
choose to schedule power from charging sections when OLEV
n requests pn amount of power to the smart grid. Now, OLEV

n’s power schedule pn is selected from all the feasible power
schedules as the amount of power to be transferred from
charging sections. Actually, the smart grid selects the power
schedule p̂n(pn) to minimize the cost from chargingsections.
Also, the selected power schedule minimizes the payment for
OLEV n:

p̂n(pn) = arg min
pn∈Pn(pn)

∑
c∈C
Yn,c(p−n, pn,c)

= arg min
pn∈Pn(pn)

ξn(p−n,pn). (11)

We represent p̂n,c(pn) as cth component of the feasible power
schedule p̂n(pn), which is derived from Equation (11). Now,
we define [x]+ = min{0.x}. In the following, Lemma IV.1
shows the processes to find out the unique power schedule
p̂n(pn) for OLEV n by the smart grid.

Lemma IV.1. There exists a unique constant level λ∗(pn) in
the total allocated power pn of OLEV n so that p̂n(pn) is
uniquely evaluated as in the following:

p̂n,c(pn) = [λ∗(pn)−
∑

j∈N/{n}

pj,c]
+,∀c ∈ C. (12)

Proof. We define L(p) as the Lagrangian of the objective
function of the term ξn(p−n,pn) from Equation (11) as in
the following:

L(p−n,pn) = ξn(p−n,pn)− ρ

(∑
c∈C

pn,c − pn

)
. (13)

Here, ρ is the Lagrange multiplier for the above equation.
p̂n(pn) ∈ Pn(pn) minimizes ξn(p−n,pn) in Pn(pn). Using
the Karush–Kuhn–Tucker (KKT) necessary conditions as in
Proposition 3.3.1 in [39], we can state that there is a constant
ρ∗ such that for every c in C, we have:

OcL(p−n, p̂n) = Z
′

( ∑
j∈N/{n}

pj,c + p̌n,c(pn)

)
(14)

−ρ∗ = 0.

Since Z is a strictly convex function, its first order derivative
Z ′

is a strictly increasing function. Thus, Z ′
is a one-to-one

function, and its inverse function (Z ′
)−1 exists. We define

λ∗(pn) = (Z ′
)−1(ρ∗). From Equation (14), we can derive:

λ∗(pn) = (Z
′
)−1(p∗) =

∑
j∈N/{n}

pj,c + p̂n,c(pn),∀c ∈ C. (15)

The results in Equation (12) directly follows Equation (15)
due to the fact that p̌n,c(pn) ≥ 0.

The smart grid tries to minimize power charging cost for
chargingsections and it calculates the power payment function
based on power schedule p̂n(pn). Then, the smart grid pro-
poses payment function Ψn(pn) to OLEV n, for pn amount
of power from charging sections as follows:

Ψn(pn) = ξn(p−n, p̂n(pn)). (16)



Then, to get pn amount of power, the utility function of OLEV
n is denoted as Fn(pn,Ψn(·)) and it is calculated as follows:

Fn(pn,Ψn(·)) = Un(pn)−Ψn(pn), (17)

Ψn(·) is derived from the initial power schedule of all OLEVs
except OLEV n (denoted as p−n) and the requested power
schedule for OLEV n (denoted as p̂n(pn)). We can also define
the utility function as Fn(p−n,pn):

Fn(p−n,pn) = Un

(∑
c∈C

pn,c

)
− ξn(p−n,pn). (18)

In following, Lemma IV.2 shows that chosen power sched-
ule by the smart grid for an OLEV is the best strategy to
minimize the power charging cost over the chargingsections.

Lemma IV.2. From Equation (16), when the power schedule
of other OLEVs is p−n, the smart grid proposes power
payment function Ψn(·) for OLEV n . The total received power
to maximize the utility of OLEV n, p∗n, is unique based on
Equation (17). From Equation (11), the unique power schedule
p∗n = p̂n(p∗n) is derived and it maximizes the utility function
of charging section n, Fn(p−n,pn) based on Equation (18).

Proof. Ψn(·) is a strictly convex function in [0, POLEVn ] and
Un(·) is a strictly concave function in [0, POLEVn ]. Thus, the
utility function Fn(pn,Ψn(pn)) is a strictly concave function
in pn. To maximize Fn(pn,Ψn(pn)) in [0, POLEVn ], p∗n is
the unique total amount of power. Thus, using Lemma IV.1,
the power schedule p̂k(p∗n) is the unique power schedule to
minimize ξn(p−n,pn) in Pn(p∗n). It implies that p̂n(p∗n) is
the unique power schedule to minimize Fn(p−n,pn) in Pn,
if and only if:

p∗n = arg max
pn∈[0,POLEV

n ]
Fn(pn,Ψn(·)

⇔ p̂n(p∗n) = arg max
pn∈Pn

Fn(p−n,pn). (19)

We assume that OLEVs’ satisfaction functions are unknown
to the smart grid. The demand of each OLEV would be
different than other OLEVs. Thus, it is reasonable to assume
that the smart grid asks OLEVs for power requirements and
based on the price function, each OLEV wants to maximize
their own utility and requests power amount to the smart
grid. Our main goal is to maximize social welfare of OLEVs.
It motivates us to design a strategic game between OLEVs
which is managed by the smart grid. In this game, the smart
grid gathers all the power requirements of the OLEVs, and
then proposes the power payment function ψn(·) for each
OLEV n. Then, each OLEV n receives the response from the
smart grid and decides the total power pn for itself (OLEV
n) to maximize their own utility. Then, based on OLEV n’s
total power pn, the smart grid determines the power schedule
pn(pn) and power payment function ψn(·) again. Actually,
the smart grid recalculates the power payment functions to
minimize the cost and notifies to OLEVs again.

As we mention earlier, the smart grid does not know the
satisfaction functions of the OLEVs. Then, we need an itera-
tive decentralized optimization framework to find the socially
optimal power schedule. In the next subsection, we propose a
distributed optimization update process to find out the socially
optimal power schedule.

D. Asynchronous-based Best Response Strategy
In this Sub-Section, we present distributed updating process

to find the socially optimal power schedule. In proposed de-
centralized framework, it is not necessary to reveal satisfaction
function Un(·) of OLEVs to the smart grid. The smart grid
uses an asynchronous-based best response strategy to decide
the power for each OLEV as in [40].

1) Decentralized Power Schedule: In a decentralized up-
dating framework, the best response strategy for each OLEV
is performed in the step-by-step iterative process. At first, the
smart grid reports the power payment function Ψn(.) to each
OLEV n to minimize the power charging cost over charging
sections in every step based on Lemma IV.1.

Then, a randomly chosen OLEV n updates its power request
to maximize its utility function Fn(pn,Ψn(.)). Based on
the response from OLEV n, the smart grid finds the power
schedule that minimizes power charging cost over the all
charging sections as in Lemma IV.1 and updates the power
payment function Ψn(.) again and charging section’s utility
Fc(pc,Ψc(.)) to OLEVs. Then, OLEVs updated their power
deduction amount and notify the smart grid. The smart grid
finds the power schedule that minimizes OLEVs’ power de-
duction cost over the all charging sections as in Lemma IV.1.
At iteration step k, we use pk as the updated power schedules
of OLEVs. The smart grid updates the power payment function
of OLEV n at step k + 1, Ψk+1

n (·)∀n ∈ N as follows:

Ψk+1
n (pn) = ξn(pkn, p̂n(pn)),∀n. (20)

Next, the smart grid announces the new power payment
function Ψk+1

n (.) and new power schedule pk+1
n to OLEV n.

Each OLEV n tries to maximize its individual utility based
on the response from the smart grid as follows:

pk+1
n = arg max

pn∈Pn

Fn(pn,Ψ
k+1
n (·))

= arg max
pn∈Pn

Un(pn)−Ψk+1
n (pn). (21)

Then, OLEV n notifies the newly calculated power amount
(based on its maximized utility) to the smart grid.

In the next subsection, we discuss the best response strategy
for each OLEV on how to find the the amount of power request
to maximize its utility.

E. Best Response Updating Strategy For an OLEV
In the proposed best response updating process, Equation

(21) is used to find the optimal power request for an OLEV
at step k + 1. The optimal power request is derived as in the
following Lemma.

Lemma IV.3. The optimal power request for an OLEV n at
(k + 1)th update iteration is derived as in the following:



pk+1
n =


0, δFn

δpn
(pn,Ψn(pn)) < 0,

POLEVn , δFn

δpn

(
POLEVn , ψn(POLEVn )

)
> 0,

argpn∈[0,POLEV
n ]

{
∂Fn

∂pn
(pn, ψn(pn)) = 0

}
, otherwise

(22)

Proof. The proof follows from the strictly concavity of
Fn(pn,Ψn(pn)) in [0, POLEVn ] with applying the first order
inequality condition as in [39]:

δFn
δpn

(pn,Ψn(pn))(pn − pk+1
n ) ≤ 0,∀pn ∈ [0, POLEVn ]. (23)

for three possible cases: (i) δFn

δpn
(pn,Ψn(pn)) < 0, (ii)

δFn

δpn
(pn,Ψn(pn)) > 0, (iii) δFn

δpn
(pn,Ψn(pn)) ≤ 0 and

δFn

δpn
(pn,Ψn(pn)) ≥ 0. For these three possible cases, the

unique solution to Equation (21) that maximizes the utility
of OLEV n at (k+ 1)th update step is derived as in Equation
(22).

F. Power Schedules of Charging Sections

Based on the iterative updating process, the smart grid
determines the power schedule for the OLEVs over all the
charging sections. The smart grid finds the unique constant
value λ∗(pk+1

n ) to determine the power schedule (pk+1
n =

p̂n(pk+1
n )) for OLEV n as in Equation (12). We define the

function Y (x), x ∈ R, as in the following:

Y (x) =
∑
c

[
x−

∑
j∈N/{n}

pj,c

]+
, x ∈ R. (24)

Y (x) is a strictly increasing function of x, (x ∈ R) and the
function Y (x) − a = 0 has a unique solution for a ≥ 0.
We get Y (λ∗(pn)) =

∑
c pn,c = pn from Equation (12). The

unique root of the function Y (x) − pk+1
n = 0, is equal to

λ∗(pk+1
n ). To find out λ∗(pk+1

n ), the smart grid can use the
bisection method as pk+1

n ≥ 0. Eventually, the smart grid finds
the power schedule for OLEV n at charging sections based on
Equation (12).

G. Convergence Analysis

In this subsection, we show that the proposed best response
updating strategy converges to a socially optimal power sched-
ule.

Theorem IV.1. The best response update process converges
to a socially optimal power schedule.

Proof. Now, we show that p∗ maximizes W(p) over P . Let
us show that pki+1 − pki converges to zero. Assume the
contrary, i.e. pki+1 − pki does not converge to zero. We
consider δki =‖ pki+1 − pki ‖2. There exists a subsequence
{li} ⊆ {ki} and ∃δ0 > 0 such that δli > δ0 based on our
contrary non-convergence assumption. Since the length of the
sequence {li} is infinite and the set N is finite and fixed,
the power schedule pn of OLEV n ∈ N is updated in an
infinite length subsequence {qi + 1} ⊆ {li}. We consider the

normalized difference vector dqin = pqi+1−pqi/δqi . We have
pqi+1 = pqi + δqidqin , ‖ dqin ‖2= 1 and dqin differs from
zero only along the nth block-component. Here, dqin belongs
to a compact set and has a limit point d̄n. We assume that
drin converges to d̄n by restricting to a further subsequence of
{ri} ⊆ {qi}.

Then, we consider ε ∈ [0, 1] and 0 ≤ εδ0 ≤ δri . Thus, prj +
εδ0d

ri
n lies on the segment joining pri and pri + δrin dridrin =

pri+1 and it belongs to the compact set P . pri+1 maximizes
W(·) over all p which differ from p along the nth block-
component. Thus, using the concavity of W(·), we obtain:

W(pri+1) ≥ W(pri+1 + εδ0d
ri) ≥ W(pri). (25)

SinceW(pri) converges toW(p∗),W(prj+1) also converges
to W(p∗). To obtain W(p∗) ≥ W(p∗ + εδ0d̄

ri) ≥ W(p∗),
we use the limit i tends to infinity. We observe that W(p∗) =
W(pri+1 + εδ0d̄

ri) for every ε ∈ [0, 1]. As a function of
the nth block component, εδ0d̄ri 6= 0 contradicts the strict
concavity of W(·) and it implies that pri − pri converges to
zero. In particular, pri+1 converges to p∗. Using this approach,
for every sequence {pqi} converging to p∗, the sequence
{pqi+K} also converges to p∗ for all K ∈ Z+. We already
know that the smart grid predefines the cycle length as N to
ensure the convergence of the update process. We consider that
pqi converges to p∗. Let {ri} be a subsequence of {qi} with
ri+1 − ri > N + K. If Zli = {pqi , ...,pqi+N+K}. As N is
the cycle length, the smart grid updates the power amount for
each OLEV n such that the amount is updated at least once in
Zli times. Let us consider ni as the OLEV i and its schedule
is updated at Zi for the first time. Since all the elements in
Zi converge to p∗, from Equation (21) of the power schedule
update process, we have:

W(pqi+ni) ≥ W(pn,p
qi+ni−1
−n ),∀pn ∈ Pn. (26)

Taking the limit as i tends to infinity, we conclude:

W(p∗) ≥ W(pn,p
∗
−n),∀pn ∈ Pn. (27)

Using the first order optimality conditions we obtain:

OnW(p∗)(pn − p∗n) ≤ 0,∀pn ∈ Pn. (28)

where OnW = δW
δpn

denotes the partial derivative of W(·)
with pn coordinate. From all the inequalities in Equation (28),
it concludes that OW(p∗)(p − p∗) ≤ 0,∀p ∈ P using the
Cartesian product structure of the set D. Based on the strictly
concavity of W(·), p∗ maximizes W(·) over P .

In next section, we evaluate our propose pricing policy to
evaluate its performance.

V. PERFORMANCE EVALUATION

In this section, we evaluated the performance of our pro-
posed game theory-based nonlinear pricing policy in different
scenarios and compared with linear pricing policy through
simulation study.
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Fig. 5: Results when velocities of OLEVs are 60mph.

A. Experimental Settings

In our simulation, we considered a WPT system where
several charging sections share power with the OLEVs using
Java programming language. Considering the hourly traffic
count of a day of the NYC [20], we varied the number of
OLEVs from 10 to 50 in each time the smart grid executed the
game and we varied the number of chargingsections from 10
to 100. We considered each OLEV has 46.2Ah capacity, 399V
regular voltage, 325V cutoff voltage, and 240A current [41].
To ensure the safety and battery life of the OLEVs, SOC of
OLEV cannot be lower than SOCmin and it cannot be higher
than SOCmax. According to the average daily driving distance
probability distribution obtained from National Household
Travel Survey (NHTS), nearly 70% are from 10–30 miles [42].
Thus, we considered OLEVs can receive up to 50% of their
SOC from the smart grid based on daily travel distance and
SOC requirements. we set SOCmin to 0.2 and SOCmax to
0.9.

In our game theory-based framework, we assigned the
satisfaction function as Un = log(1 + pn) for receiving
pn amount of power for OLEV n. The smart grid sets the
power cost for each OLEV to minimize the power charging
cost. We considered the nonlinear pricing policy as V(pn) =
β(α+ pn

POLEV
n

)2 to determine the power payment function for
each OLEV. Also, we considered the linear pricing policy as
V(pn) = βpn for comparison. We set β equaled to LBMP
defined by NYISO [36] and α equaled to 0.875 based on the
profit the smart grid wants to make. We assumed that the
smart grid determines the power schedules pn, for on-demand
instance OLEVs.
B. Experimental Results

Fig. 5 shows the experiment results when velocities of
OLEVs are 60mph and Fig. 6 shows the experiment results
when velocities are 80mph. Usually, the speed limit on a
freeway is either 80mph in rural areas or 65mph in urban
areas. Thus, our considerations of 60mph and 80mph vehicle
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Fig. 6: Results when velocities of OLEVs are 80mph.

velocities as experimental settings are practical, and these
velocities would evaluate the situations when EVs would spend
the least possible time on top of charging sections. In the
simulation study, at first, we measured the power payment of
OLEVs. We varied the desired congestion degree from 0.1 to 1
with step increase of 0.1. The congestion degree represents the
percentage of deducted power over the total power capacity
on the charging sections. After the optimal power schedule is
determined, we calculated the total power payment of OLEVs
based on Equation (7). Fig. 5(a) and Fig. 6(a) show the amount
of payment with respects to congestion degree when velocities
are 60mph and 80mph, respectively. Here, we compared our
nonlinear pricing policy with linear pricing policy discussed in
Section V-A. As we discussed, using nonlinear pricing policy,
the power payment cost increases as the congestion degree
increases. Thus, if charging sections are less congested based
on their capacity, OLEVs pay less for a specific amount of
power. Therefore, the OLEVs request more power when the
charging sections are less congested. In contrast, the power
payment does not change with the congestion degree when we
use linear pricing policy. We also found that higher velocity of
OLEVs decreases payment cost as the total amount of power
OLEV can receive decreases at the same time. As a result, the
congestion degree converges to the desired congestion degree
than using the linear pricing policy.

Next, in Fig. 5(b) and Fig. 6(b), we calculated the changes of
social welfare when the number of charging sections changes.
Here, we changed the number of OLEVs three times (30, 40,
and 50) to evaluate the effect of different number of OLEVs
on social welfare. We found that the social welfare increases
as well as the number of OLEVs increases. It demonstrates
that more OLEVs provides better social welfare, i.e., a higher
amount of power OLEVs can deduct from charging sections.
Through more charging sections, the smart grid is more likely
to be more satisfied with the OLEVs. As previous figures, We
also noticed the same relationship (more velocity causes more
social welfare) between velocity and social welfare.



In Fig. 5(c) and Fig. 6(c), we depicted the total power
charging scenarios for nonlinear and linear pricing policies.
Here, when OLEV velocity increases, the total power charging
from charging sections decreases. The figures show the total
charging power from 100 charging sections and when the
number of OLEVs was 50 and velocities of OLEVs were
approximately equal to 60mph and 80mph, respectively. The
simulation resulted from running the best response strategy
for 1000 number of updates. Here, the OLEVs compete with
each other for available power from charging sections. Using
proposed nonlinear pricing policy, at each iteration, the smart
grid schedules the power evenly from charging sections and
it balances power charging over the charging sections as in
Lemma IV.1 to minimize power charging cost for charging
sections. This results in the balanced load over charging
sections as shown in Fig. 5(c) and Fig. 6(c). Thus, the smart
grid balances load over charging sections using nonlinear
pricing policy. However, if the smart grid uses linear pricing
policy, the smart grid does not distribute power evenly over
all charging sections and different charging sections share their
power differently with all OLEVs. Thus, load balancing is not
maintained strictly if linear pricing policy is applied

Finally, we measured the convergence speed for our non-
linear pricing technique when the desired congestion degree
was set to 90%. Here, the convergence speed means how
fast the initial power schedule reaches to the optimal power
schedule. Figures 5(d) and 6(d) show the congestion degree
of OLEVs as the number of updates increases in the sim-
ulation. These figures are obtained by taking an average of
50 times of experiment runs. As it is seen, the congestion
degree converges faster when the velocity is 60mph, and it
needs fewer updates to converge than the case when velocity
is 80mph. As we discussed in the previous section, using
nonlinear pricing policy, the power payment cost increases as
the congestion degree increases. Thus, for the less congested
charging sections, OLEVs pay less for a specific amount of
power. Therefore, OLEVs request more power when charging
sections are less congested. Since the total amount of power
provided by OLEVs decreases when velocity increases, the
lower velocity of OLEVs causes faster convergence.

VI. CONCLUSION

We considered a WPT system where charging sections share
energy with OLEVs while they are running on the road.
We presented a game-theory based pricing framework for
opportunistic energy sharing from charging sections to OLEVs
such that load balance exists considering energy demand,
price, and availability. At first, we evaluated the motivation
of this work with a study of opportunistic energy sharing for
the WPT systems. We used hourly traffic count of a road
section in the NYC in SUMO to analyze the amount of energy
OLEVs can receive at different times of the day. We proposed
a distributed power schedule framework to find the optimal
schedule between OLEVs and charging sections of the smart
grid. The optimal power schedule for OLEVs is selected using
a best response-based strategic game. Actually, OLEVs pay

for the power received through charging sections based on
the power payment function. We proved that the initial power
schedule converges to the optimal power schedule mathemat-
ically. As a result, there is load balancing of power sharing
procedures among different charging sections. We verified the
performance of our proposed pricing policy with respect to
the degree of congestion in charging sections, total payment of
OLEVs, and the number of update procedures between OLEVs
and the smart grid. In future work, we plan to consider optimal
deployment of charging sections and communication receivers
to benefit both OLEVs and the smart grid. We also plan to
consider the effect charging section placement will have on
OLEV path planning. Cities may consider dedicating lanes to
OLEVs or placing charging sections at traffic lights or stop
signals and well-traveled road sections.
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[38] W. Kempton and J. Tomić, “Vehicle-to-grid power funda-
mentals: Calculating capacity and net revenue,” Journal
of power sources, 2005.

[39] D. P. Bertsekas, “Nonlinear programming,” 1999.
[40] M. J. Osborne and A. Rubinstein, A course in game

theory. MIT press, 1994.
[41] “Chevrolet-Spark,” www.chevrolet.com/Spark,

[Accessed: December 2016].
[42] “Summary of travel trends, NHTS,”

http://nhts.ornl.gov/2009/pub/stt.pdf, [Accessed:
December 2016].


