

Opportunistic Energy Sharing Between Power Grid and Electric Vehicles: A Game Theory-based Nonlinear Pricing Policy

Ankur Sarker[†], Zhuozhao Li[†], William Kolodzey^{‡,}, and Haiying Shen[†]

[†]Department of Computer Science, University of Virginia [‡]Electrical and Computer Engineering, Clemson University

Introduction Wireless Power Transfer System

Wireless power transfer (WPT) system:

- Provides drive-through energy for online electric vehicles (OLEVs)
- A dedicated charging lane, called charging section is installed on top of the road
- 3. It can mitigate EVs' battery related issues

Related work WPT Architecture

Power transfer architecture [IEEE APEC 2013]
 Analytical study of WPT infrastructure [JESTPE 2015]
 Battery size and charger placement of WPT [IEEE TITS 2013]

Related work WPT Architecture

- □ Power transfer architecture [IEEE APEC 2013]
- □ Analytical study of WPT infrastructure [JESTPE 2015]
- Battery size and charger placement of WPT [IEEE TITS 2013]

WPT and Power Gird

- Bidirectional static power transfer system [IEEE TITS 2011]
- □ Integration of EVs into power grid [IEEE ITEC 2015]
- □ Profit maximization of EVs [IJAT 2015]

Study the impact of OLEV on smart grid:

- 1. A road map of New York city (NYC)
- Power usages data of New York independent system operator (NYISO)
- 3. Traffic data of NYC
- 4. Simulation of Urban MObiltiy (SUMO) traffic simulator

18

24

Introduction Motivation

Actual and forecasted load

Power deficiency

Time (hrs)

—Deficiency

6

Power deficiency of NYISO

200

100

0

-100

-200

Deficiency (MWh)

*Integrated load is the actual load of power grid *Forcast load is the predicted load of power grid

Marginal price

Ancillary service cost

Economical impacts of power deficiency

*LBMP stands for location-based marginal price *Ancillary service accounts for the service to maintain stability of power supply

Energy consumption analysis of vehicles using SUMO:

- Download the OpenStreetMap and convert to SUMO net file
- Load net file, EVs, charging sections in SUMO
- 3. Calculate power consumption of OLEVs

OpenStreetMap

Intersection time

Amount of Power

Data-driven energy usage analysis of OLEVs

*Intersection time represents the time EVs are on top of charging section *Amount of power represents total hourly energy received by OLEVs

Introduction Pricing Policy

- 1. Traffic congestion is spatio-temporal, highly varied
- 2. Smart grid should adopt some pricing policy
- 3. Linear pricing policy would hurt smart grid

Introduction Pricing Policy

- 1. Traffic congestion is spatio-temporal, highly varied
- 2. Smart grid should adopt some pricing policy
- 3. Linear pricing policy would hurt smart grid

Our Approach: Non linear Pricing Policy

- Non linear pricing policy for smart grid
 Based on the current energy demands from OLEVs
- 2. Non cooperative game
 - Between different OLEVs to fix a price of energy
- 3. Reduce congestion at charging sections
 - Balance the load at different charging sections so that power distributions at different charging sections are even

Outline

- Introduction
- System Design
- Performance Evaluation
- Conclusion

Social welfare of OLEVs $\mathcal{W}(\mathbf{p}) = \sum_{n=1}^{N} \mathcal{U}_n(\sum_{c \in C} p_{n,c}) - \sum_{c \in C} \mathcal{V}(P_c) - \sum_{c \in C} A(P_c - \eta P_{line})$ Satisfaction of OLEV Price of power Congestion degree $\doteq \sum_{n=1}^{N} \mathcal{U}_n(p_n) - \sum_{c \in C} \mathcal{Z}(P_c)$

where

W(p)social welfare of OLEV

 $P_{n,c}$ is the power of OLEV n from charging section c

P_c is the total power from a charging section c

P_{line} maximum capacity of a charging section

Price function of OLEVs

$$\mathcal{Y}_{n,c}(\mathbf{p}_{-n}, p_{n,c}) = \mathcal{Z}\left(\sum_{j \in \mathcal{N}/\{n\}} p_{j,c} + p_{n,c}\right)$$

Price w.r.t. other EVs

Price function of OLEVs

$$\mathcal{Y}_{n,c}(\mathbf{p}_{-n}, p_{n,c}) = \mathcal{Z}\left(\sum_{j \in \mathcal{N}/\{n\}} p_{j,c} + p_{n,c}\right)$$

Price w.r.t. other EVs

Power payment of OLEVs

$$\xi_n(\mathbf{p}_{-n}, \mathbf{p}_n) = \sum_{\substack{c \in C \\ \text{Price w.r.t. other EVs}}} [\mathcal{Y}_{n,c}(\mathbf{p}_{-n}, \mathbf{p}_n) - \mathcal{Y}_{n,c}(\mathbf{p}_{-n}, \mathbf{0})]$$

Utility function of OLEVs

$$\mathcal{F}_n(\mathbf{p}_{-n},\mathbf{p}_n) = \mathcal{U}_n\left(\sum_{c\in\mathcal{C}} p_{n,c}\right) - \xi_n(\mathbf{p}_{-n},\mathbf{p}_n)$$

Satisfaction of OLEV Cost of schedule p_n

`

Utility function of OLEV n

$$\mathcal{F}_n(\mathbf{p}_{-n},\mathbf{p}_n) = \mathcal{U}_n\left(\sum_{c\in\mathcal{C}} p_{n,c}\right) - \xi_n(\mathbf{p}_{-n},\mathbf{p}_n)$$

Satisfaction of OLEV Cost of schedule p_n

`

Power schedule to minimize payment

$$\hat{\mathbf{p}}_{n}(p_{n}) = \arg \min_{\mathbf{p}_{n} \in \mathcal{P}_{n}(p_{n})} \sum_{c \in C} \mathcal{Y}_{n,c}(\mathbf{p}_{-n}, p_{n,c})$$
$$= \arg \min_{\mathbf{p}_{n} \in \mathcal{P}_{n}(p_{n})} \xi_{n}(\mathbf{p}_{-n}, \mathbf{p}_{n})$$

Find a schedule to minimize the cost

Smart grid

Smart grid

3. Find power schedule to minimize charging cost

System Design Asynchronous Response Strategy

OLEV n tries to maximize its individual utility (step 2)

$$p_n^{k+1} = \arg \max_{p_n \in \mathcal{P}_n} \mathcal{F}_n(p_n, \Psi_n^{k+1}(\cdot))$$
$$= \arg \max_{p_n \in \mathcal{P}_n} \mathcal{U}_n(p_n) - \Psi_n^{k+1}(p_n)$$

Find a power amount w.r.t. satisfaction and cost

System Design Asynchronous Response Strategy

OLEV n tries to maximize its individual utility (step 2)

$$p_n^{k+1} = \arg \max_{p_n \in \mathcal{P}_n} \mathcal{F}_n(p_n, \Psi_n^{k+1}(\cdot))$$
$$= \arg \max_{p_n \in \mathcal{P}_n} \mathcal{U}_n(p_n) - \Psi_n^{k+1}(p_n)$$
Find a power amount w.r.t.

satisfaction and cost Power payment function of OLEV n at step k+1 (step 4) $\Psi_n^{k+1}(p_n) = \xi_n(\mathbf{p}_n^k, \hat{\mathbf{p}}_n(p_n)), \forall n$ Updated power payment function based on requested amount \mathbf{p}_n^k

Outline

- Introduction
- System Design
- Performance Evaluation
- Conclusion

Experiment Simulation Settings

- 1. NYC Traffic data
- 2. 10-50 EVs
 - Each OLEV has 46.2Ah capacity, 399V regular voltage,
 325V cutoff voltage, and 240A current
 - b. SOC_{min} to 0.2 and SOC_{max} to 0.9.
- 3. 10-100 charging sections
- 4. Compare with linear pricing policy

Experiment Social Welfare

Metric: Social welfare

Observation: Increasing w.r.t. number of charging sections

Reason: More charging section increases social welfare of OLEVs

Social welfare

Experiment Congestion Degree

Metric: Payment

Observation: Non linear pricing consider congestion degree

Reason: Try to adjust schedule at different charging sections

Experiment Number of Updates

Metric: Number of updates

Observation: Requires less number of updates

Reason: Convergence is fast

Outline

- Introduction
- Motivation
- System Design
- Performance Evaluation
- Conclusion

Conclusions

- 1. We proposed a nonlinear pricing policy for OLEVs consider power taken from smart grid
- 2. We designed a non cooperative game between charging sections and OLEVs

Future Work

Further take into account:

- 1. Complex scenarios of OLEVs and roads
- 2. Consider the interest of smart grid
- 3. More experimental evaluations

Thank you! Questions & Comments?

Ankur Sarker

as4mz@Virginia.edu

PhD Candidate

Pervasive Communication Laboratory

University of Virginia