
Considering Resource Demand Misalignments To
Reduce Resource Over-Provisioning in Cloud

Datacenters
Liuhua Chen

Department of Electrical and Computer Engineering
Clemson University, Clemson, 29634

Email: liuhuac@clemson.edu

Haiying Shen
Department of Computer Science

University of Virginia, Charlottesville, 22904
Email: hs6ms@virginia.edu

Abstract—Previous resource provisioning strategies in cloud
datacenters allocate physical resources to virtual machines (VMs)
based on the predicted resource utilization pattern of VMs. The
pattern for VMs of a job is usually derived from historical
utilizations of multiple VMs of the job. We observed that these
utilization curves are usually misaligned in time, which would
lead to resource over-prediction and hence over-provisioning.
Since this resource utilization misalignment problem has not
been revealed and studied before, in this paper, we study the VM
resource utilization from public datacenter traces to verify the ex-
istence of the utilization misalignments. Then, to reduce resource
over-provisioning, we propose three VM resource utilization
pattern refinement algorithms to improve the original generated
pattern by lowering the cap of the pattern, reducing cap provision
duration and varying the minimum value of the pattern. These
algorithms can be used in any resource provisioning strategy that
considers predicted resource utilizations of VMs of a job. We then
adopt these refinement algorithms in an initial VM allocation
mechanism and test them in trace-driven experiments and real-
world cluster experiments. The experimental results show that
each improved mechanism can increase resource efficiency up to
74%, and reduce the number of PMs needed to satisfy tenant
requests up to 47% while conforming the SLO requirement.

I. INTRODUCTION

The rapid development of cloud computing brings about the
requirement of high resource utilizations in big datacenters in
order to save energy consumption. Maximizing energy effi-
ciency and resource utilization while satisfying Service Level
Objective (SLO) [2] for tenants require effective management
of resource provisioning. Existing works for improving re-
source utilization in cloud datacenter mainly focus on Virtual
Machine (VM) consolidation, i.e., an approach for efficient
usage of computer server resources in order to reduce the total
number of servers used. Due to the largely oversubscribed
nature of today’s datacenters [12], resources such as CPU and
bandwidth can become scarce resources shared across many
tenants. When VMs with intensive resource consumptions are
located in the same physical machine (PM), they compete for
the scarce resources, which may lead to extended execution
time and violations of SLOs [23].

Considerable research efforts have been devoted to effective
resource provisioning. Some works [7], [8], [13], [15]–[18],
[21], [22], [30], [32], [34] show that the VMs (or tasks) of

Al
loc

ati
on

 (%
)

0 Time

Trace 1
Trace 2

rising
edge

falling
edge

offset derived
pattern

t1 t2 t3 t4

minimum
base

Fig. 1. Resc. emand misalignment.

0

0.5

1

R
e

so
u

rc
e

 e
ff

ic
ie

n
cy

 

Google

PlanetLab

Fig. 2. Resource efficiency.

the same job (or application) share similar resource utilization
patterns (e.g., the patterns of the two VMs in Figure 1)
and use the derived pattern of VMs (or tasks) for resource
provisioning for each VM (or task) of the job (or application)
to increase resource utilization. As the derived patterns are
used for resource provisioning for both VMs and tasks, we
do not specifically distinguish VMs and tasks in the following
discussions. The pattern derivation of a job’s VM is always
conducted based on the historical resource utilization traces of
many VMs of this job using techniques such as fast fourier
transform [10]. It first finds the maximum demand at each
time to get the envelop, and then smoothes the envelop [7].
However, we found that the utilization curves for different
VMs of the same job may be misaligned in time, which would
generate a pulse wider than the actual pulse in the pattern (e.g.,
the blue part in Figure 1). We use pulse deviation between
VMs to measure the demand misalignment, which is defined
as the time difference of the same rising or falling edges
of the pulses of the VMs of a job. Using such a pattern
to guide resource provisioning will lead to resource over-
provisioning. For example, in Figure 1, if the actual demand
is similar to trace 1, the provisioned resource from t3 to t4
is wasted. However, previous resource provisioning strategies
neglect these resource utilization misalignments, which would
lead to low resource efficiency. Here, resource efficiency is
defined as the ratio between utilized and allocated amount of
resource during the provision time. We also implemented a
previous resource provisioning strategy in [7], and conducted
experiments with Google Cluster trace [11] and PlanetLab
trace [6]. This algorithm generates the pattern based on the



maximum utilization among a group of similar VM resource
utilization traces at each time point, and hence the misalign-
ments of the traces tend to yield a pattern with a pulse width
larger than the actual pulse width. Figure 2 shows that it can
only achieve resource efficiencies of 66% and 32% for the two
traces, respectively.

This resource utilization misalignment problem has not been
revealed and studied before, so in this paper, we study this
problem through measuring the VM resource utilization from
public datacenter traces. Our study verifies the existence of
misalignments of the resource utilization. In order to improve
resource utilization in resource provisioning, we propose three
VM resource utilization pattern refinement algorithms that
improve the original generated pattern by lowering the cap
of the pattern, reducing cap provision duration and varying
the minimum value of the pattern, respectively. The refined
utilization patterns will be used for resource provisioning.

The time sharing resources (e.g., CPU, bandwidth) have a
feature that they can be elastically provided to a VM. That is,
the amount of resource allocated to a VM within a short time
period (e.g., 1 second) can be elastic and will not obviously
affect the job completion time in the VM as long as the total
amount allocated to the VM is no less than the required amount
within the required time period. The first algorithm lowers the
cap of a pulse in the original pattern, so that the amount of
provisioned resource during the pulse period exactly equals
the demanded resource amount. The second algorithm reduces
the provision duration of the cap so that the actual subsequent
resource utilization pattern matches the predicted pattern. As
shown in Figure 1, each pattern has a minimum base value.
The third algorithm finds the minimum base value that leads to
the maximum resource efficiency to refine the original pattern.

The contribution of this paper can be summarized as:
• This work is the first that studies the resource demand

misalignment of the VMs for the same job. We study the
VM resource utilization from public datacenter traces and
find that different VMs running the same job exhibit similar
periodical resource utilization patterns, but their resource
utilization curves exhibit misalignments in time.

• This work is the first that refines the resource utiliza-
tion patterns in pattern derivation to avoid resource over-
provisioning. To avoid overestimation in generated resource
utilization pattern caused by the misalignments, we propose
three algorithms to refine the resource utilization patterns.

• We apply our three algorithms to the predicted patterns
in the VM allocation mechanism [7]. We conduct
comprehensive trace-driven simulation and real-world
cluster experiments to measure this mechanism with and
without each of our algorithms. Experimental results show
that the allocation mechanism based on the refined patterns
significantly reduces the number of PMs and increases
resource efficiency while conforming the SLO requirement.
Through this work, we want to show that there exist demand

misalignments among VMs for the same job in some applica-
tions and environments. Therefore, if a cloud runs many jobs
that have demand misalignments, which leads to significant re-

source over-provisioning, the cloud can use our proposed solu-
tions to reduce resource over-provisioning. The rest of the arti-
cle is organized as follows. Section II studies the VM resource
utilization from public datacenter traces to verify the existence
of the misalignment feature of the resource utilizations of the
VMs of the same job. Section III presents the rationale of
pattern refinement and three refinement algorithms. Section
IV evaluates our algorithms in trace-driven simulation exper-
iments. Section V evaluates our algorithms in a real-world
testbed. Section VI presents the related work. Finally, Section
VII summarizes the paper with remarks on our future work.

II. TRACE STUDY

In this section, we statistically study the VM resource
utilizations from public datacenter traces including Google
Cluster trace and PlanetLab trace. We aim to find the answers
for the following questions.
• Whether VMs running the same job (or application) have

similar resource utilization patterns in terms of magnitude
and the timing of demand arrivals?

• Whether the resource utilization misalignments widely exist
in VMs running the same job (or application)?

• Whether the patterns generated by a previous pattern detec-
tion algorithm [7] tend to generate low resource efficiency?

A. Google Cluster Trace

We first analyze the resource utilization from the Google
Cluster trace [11]. The Google Cluster trace records the CPU
and memory resource usages on a cluster of about 11000
machines from May 2011 for 29 days. In this measurement,
we randomly selected 100 jobs with 29920 tasks in total. For
each job, we found all of its tasks from the trace and parsed the
CPU and memory utilization of these tasks during this period.
We calculated the statistical correlation coefficient (denoted by
cr) for each pair of the task resource utilization traces x and
y of the same job to show their similarities.

cr =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2 ·∑n
i=1(yi − ȳ)2

(1)

where xi and yi are the utilization values at position i in the
corresponding trace, x̄ and ȳ are the average utilizations of
the corresponding trace and n is the total number of positions.
The correlation coefficient illustrates a quantitative measure of
the correlation (i.e., statistical relationships) between the two
utilization traces. A correlation coefficient closer to 1 means
that the two traces are more similar, a correlation coefficient
closer to -1 indicates a more perfect negative correlation, that
is, the two traces are opposite to each other in terms of
magnitude, and a correlation coefficient closer to 0 means less
similarity between the two traces.

Figure 3 shows the cumulative distribution functions (CDF)
of task pairs corresponding to the correlation coefficient.
Figure 3(a) shows the results from the CPU utilization trace
and Figure 3(b) shows the results from the memory utilization
trace. For CPU utilization, 20% of the task pairs have correla-
tion coefficient higher than 0.3. For memory utilization, 20%
of the task pairs have correlation coefficient higher than 0.5.



0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

C
D

F 

Correlation coefficient 

(a) Google CPU trace.

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

C
D

F 

Correlation coefficient 

(b) Google memory trace.
Fig. 3. CDF of correlation coefficient of Google trace.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

C
D

F 

Deviation (minutes) 

(a) Google CPU trace.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

C
D

F 

Deviation (minutes) 

(b) Google memory trace.
Fig. 4. CDF of pulse deviation of Google trace.

These results indicate that tasks running the same application
may not have similar resource utilization patterns. This might
be caused by the reason that the traces are misaligned in
time, that is, the exact timing of rising and falling of the
resource demands may not be exactly the same, though their
patterns in one seasonal period are similar as observed in
previous works [7], [13], [15], [18], [30]. In order to study how
much these resource utilizations are misaligned, we conducted
experiments to measure the pulse deviation of each pair of the
resource utilizations for the same job. Figure 4 shows the CDF
of the task pairs corresponding to the absolute pulse deviation.
The jobs being studied have an average running time of around
100 minutes. We see that the resource utilizations have pulse
deviation spanning from 0 to 10 minutes. Only 30% of the
task pairs have pulse deviation 0. A majority (e.g., 70%) of
the task pairs have absolute pulse deviation values greater than
5 minutes, indicating that there exist many pulse deviations in
the trace and the deviation is relatively high.

B. PlanetLab Trace

In this section, we analyze the resource utilization from the
PlanetLab trace [6]. The PlanetLab trace contains the CPU
utilization of each VM in PlanetLab every 5 minutes for 24
hours in 10 random days in March and April 2011. In the
experiment, we selected VM CPU utilization time series from
the trace, and categorized the VMs running the same job into
one group. We identified the VMs for the same job by the
names of the trace file. For example, trace files with the same
file name are VMs that run the same job in different places and
times. Figure 5 shows the CDF of VM pairs corresponding to
the correlation coefficient. We see that around 70% (e.g., from
0.2 to 0.9) of the VM pairs have correlation coefficient in the
range from 0 to 0.2, which indicates that the similarity between
VMs running the same job in PlanetLab trace is similar to
Google trace. It confirms the conjecture that there might exist

0

0.2

0.4

0.6

0.8

1

-0.2 0 0.2 0.4 0.6 0.8 1

C
D

F 

Correlation coefficient 

Fig. 5. CDF of correlation coefficient
of PlanetLab trace.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

C
D

F 

Deviation (minutes) 

Fig. 6. CDF of pulse deviation of
PlanetLab trace.

resource utilization misalignments since their patterns in one
seasonal period are similar as observed in previous works [7],
[13], [15], [18], [30]. Figure 6 shows the CDF of the VM pairs
corresponding to the pulse deviations. The jobs being studied
have an average running time of around 100 minutes. We see
that the resource utilizations have pulse deviation spanning
from 0 to 10 minutes. Only 5% of the VM pairs have pulse
deviation 0. This result confirms that there exist many pulse
deviations in the utilization traces and the pulse deviation can
be high.

Algorithm 1: VM resource demand pattern detection.
1: Input: Di(t): Resource demands of a set of VMs
2: Output: P(t): VM resource demand pattern
3: /* Find the maximum demand at each time */
4: E(tj) = maxi∈N{Di(tj)} for each time tj
5: /* Smooth the maximum resource demand series */
6: E(tj) ← LowPassFilter(E(tj)) for each time tj
7: /* Use sliding window W to derive pattern */
8: P(tj) = maxtj∈[tj ,tj+W ]{E(tj)} for each time tj
9: /* Round the resource demand values */

10: P(tj) ← Round(P(tj)) for each time tj
11: return P(t) (t = T0, ..., T0 + T )

C. Resource Efficiency

In the previous predictive-based resource provisioning meth-
ods, the resource demand pattern of a job’s VM is derived
from the demand patters of multiple VMs of this job. We take
Algorithm 1 in [7] as an example. We use Di(t) to denote the
amount of resource demand of VM i among N VMs at time t.
The algorithm first finds the maximum demand E(t) among the
set of Di(t) (i = 1, 2, ..., N) at each time t (Line 4). Then, it
passes E(t) through a low pass filter (Line 6) to remove high
frequency components to smooth E(t). The algorithm then
utilizes a sliding window of size W to find the envelop of
E(t) (Line 8). Finally, it rounds the demand values (Line 10).

In this experiment, we used Algorithm 1 to determine the
resource demand pattern and evaluated its resource efficiency.
Specifically, we conducted experiments on predicting VM
resource demand pattern based on resource utilization records
of a group of VMs running the same application. We randomly
selected a number of jobs, derived the CPU utilization of a VM
in each job using all of its VMs and compared it with the real
utilizations of each VM. The resource efficiency is calculated
by dividing the amount of the provisioned resource based on
the predicted pattern by the amount of real utilized resource.
For example, given the demand time series D(tj) (j = 1, 2, ...)



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
D

F
 

Resource efficiency 

(a) CPU efficiency.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
D

F
 

Resource efficiency 

(b) Memory efficiency.
Fig. 7. CDF of resource efficiency of Google trace.

and allocated resource time series A(tj) (j = 1, 2, ...), which
is determined by the generated pattern of the algorithm, we
need to determine the utilization time series U(tj) (j =
1, 2, ...), which is calculated by U(tj) = D(tj) if D(tj) <
A(tj); U(tj) = A(tj) if D(tj) ≥ A(tj). The resource
efficiency is calculated by

∑U(tj)∑A(tj)
. Finally, these resource

efficiencies of all VMs are used to plot the CDF figure.
Specifically, for the Google Cluster trace and PlanetLab

trace, we randomly selected 100 and 1000 jobs, and tested
the resource efficiency of 1550 and 4695 VMs, respectively.
Figure 7(a) and Figure 7(b) show the CDF of tasks correspond-
ing to the resource efficiency of the Google Cluster trace in
terms of CPU utilization and memory utilization, respectively.
We see that around 80% of the tasks have resource efficiencies
smaller than 0.8 for CPU utilization, and 80% of the tasks have
resource efficiencies smaller than 0.7 for memory utilization.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
D

F 

Resource efficiency 

Fig. 8. CDF of resource efficiency of
Planetlab trace.

Similarly, Figure 8 shows
the CDF of the VMs cor-
responding to the resource
efficiency of the Planet-
Lab trace. We see that
80% of the results have re-
source efficiencies smaller
than 0.5. The measurement
results indicate that there is
a large amount of resource
over-provisioning and the resource efficiencies of the previous
predictive-based resource allocation algorithm can be further
improved.

III. PATTERN REFINEMENT ALGORITHMS

In the above section, we verified that the resource utilization
patterns of multiple VMs of a job may have misalignments
in time. Such misalignments may lead to resource over-
provisioning and low resource efficiency. Many types of hard-
ware resources (e.g., CPU, bandwidth and I/O resources) are
shared by VMs in temporal manners, that is, VMs take turns
to use the resources. This time sharing feature enables elastic
resource provisioning. In Section III-A, we show that the
elastic resource provisioning makes it possible for the original
pattern detection algorithm to refine the pattern in order to
further reduce provided resource and increase the resource
efficiency. In Section III-B, we propose three refinement algo-
rithms based on Algorithm 1. The first and second refinement
algorithms leverage the elastic provisioning feature of resource
to further improve the resource efficiency. The third refinement

Al
loc

at
ion

 (%
)

0 Time

Resource allocation
Alternated allocation
Resource utilization
Elongate utilization

unused
resource

b

t1 t2 t3

(a) Elastic resource provisioning.

Al
loc

at
ion

 (%
)

0 Time

Trace 1
Trace 2

rising
edge

falling
edge

offset derived
pattern

t1 t2 t3 t4

minimum
base

(b) Rising, falling edges and pulse
deviation.

Fig. 9. Resource demand misalignment.

algorithm refines the generated pattern by varying the shape
of the original pattern until it achieves the highest resource
efficiency. The three algorithms are independent to each other.

A. Elastic Resource Provisioning

In this section, we discuss the feature of resource pro-
visioning for time-sharing resources. This feature lays the
foundation for our proposed pattern refinement algorithms.
The time sharing resources have a feature that they can be
flexibly provided to VMs. Take CPU resource as an example,
VMs take turns to use the physical processing core. Suppose a
VM requires 5 CPU time slots during a 3 seconds time period
to complete its job. The resource provider can either schedule
(1 slot, 2 slots, 2 slots) or (2 slots, 2 slots, 1 slot) for the VM
in the three consecutive seconds. That means the amount of
resource (e.g., CPU time slots) allocated to a VM within a
short time period (e.g., 1 second) can be elastic and will not
obviously affect the job completion time in the VM as long
as the total amount allocated to the VM is the same (e.g., 5
slots) within its required time period (e.g., 3 seconds). The
completion time of a job running in a VM is estimated by
C × T × I , where C is the average number of cycles per
instruction, T is the time per cycle, and I is the number of
instructions per job.

We define the fraction of CPU time (and hence the number
of cycles) that a VM is allowed to use within a unit time
period as its cap. Within a unit time period, as we limit the
cap, the CPU time and hence the number of cycles received
by the VM is decreased, resulting in an increase of the time
per cycle (T ) of the VM. As a result, the limitation of the
cap leads to an elongation of the completion time. On the
other hand, the completion time of a VM’s job is the same
as long as the total amount of time slots allocated to the VM
(i.e., the number of CPU cycles) is no less than the requested
amount during the required time period. These two features
enable us to lower the pulse of the original pattern generated
by Algorithm 1 to reduce the amount of provisioned resource
to improve resource efficiency.

As shown in Figure 9(a), suppose a job requires r amount
of resource that can complete its work using time Thigh (from
t1 to t2). Based on the original pattern of this job, Algorithm 1
suggests providing chigh (chigh > r) resource for Tpro time
(from t1 to t3). Since chigh > r, the job will consume r
amount of resource and complete within time Thigh (from
t1 to t2). In this case, the provisioned resource from t2 to



t3 is wasted. In order to improve resource efficiency, we
can limit the provision resource amount to clow (clow < r)
that makes the job complete using time Tpro (at t3). Since
clow < r, the job is allowed to consume clow amount of
resource. Due to the insufficient resource, the job will prolong
the completion time and complete in time Tlow (from t1 to t3)
when all required amount of resource is received. That is, the
cumulative resource consumption r × Thigh = clow × Tpro or
when the sizes of the two shadow parts in Figure 9(a) equal
to each other, i.e.,
(chigh − clow)× Tpro = (chigh − b)× (Tpro − Thigh), (2)

where b is the base value of the provisioned resource which
is the minimum resource amount provided to the VM.
Then, the resource efficiency is improved from r×Thigh

chigh×Tpro
to

clow×Tpro

clow×Tpro
= 1.

B. Pattern Refinement Methodology

Using the elastic resource provisioning feature, we propose
three pattern refinement algorithms to improve the resource
efficiency of the generated patterns from Algorithm 1. The
algorithms allow the cloud provider to provide resource effi-
ciently and to potentially host more VMs in the datacenter.
We present the details of each algorithm in the following.

1) Lowering Cap: Algorithm 1 generates the pattern for
one VM of a job from historical utilizations of multiple
VMs of the job. Since these VMs have pulse deviations (as
confirmed in Section II), the algorithm will result in a pattern
with an expansion on each pulse width, which is larger than the
width of the actual demand pulse of a single VM. As a result,
the resulting pattern tends to have low resource efficiency since
a VM may not fully use its provided resource based on the
pattern, which leads to resource over-provisioning. Inspired by
the time sharing feature of resource as explained previously,
we propose pattern refinement algorithms to improve resource
efficiency. For every pulse in the generated pattern from
Algorithm 1, we can further lower the cap to a level that saves
the over-provided resource due to trace pulse deviation. The
starting and ending time of the pulses in a pattern can be
detected by finding the time for each pair of rising and falling
edges as we explained previously (Figure 9(b)). The amount
to lower the cap can be calculated based on Equation (2). For
example, as shown in Figure 10(a), suppose traces 1 and 2
have pulse deviation s, the original pattern has width Tpro

and the cap before refinement is chigh, then we can lower the
cap to clow so that

(chigh − clow)× Tpro = s× (chigh − b). (3)
Algorithm 2 shows how to refine demand pattern by reduc-

ing the cap of the original pattern derived from Algorithm 1.
The algorithm first finds the envelop of the time series of
resource utilizations of VMs E(tj) (Line 3) and derives the
resource demand pattern P(t) (Line 4) based on Algorithm
1. Then, it calculates the pulse deviations of each pair of the
VMs based on the first rising edges as discussed in Section
II (Line 5), and then selects the maximum pulse deviation
(Line 7). The algorithm calculates the width of the pulse of
the derived pattern P(t) (Line 8) by measuring the duration

Time

Al
loc

at
ion

 (%
)

0 T

Profile pattern
Refined pattern
Trace 1
Trace 2

b

chigh

clow

Tpro

(a) Pattern refinement by lowering
the cap.

Al
loc

at
ion

 (%
)

0 Time

Profile pattern
Refined pattern
Trace

b1
b2A

A’ B’
B

(b) Pattern refinement by varying the
base provision.

Fig. 10. Pattern refinement.

Algorithm 2: Demand pattern refinement by lowering cap.
1: Input: Di(t) (i = 1, 2, ..., N): Resource demands of a set of VMs
2: Output: P ′(t): Refined resource demand pattern
3: Find the maximum demand at each time E(tj)
4: Derive resource demand pattern P(t) using Algorithm 1
5: Calculate the pulse deviation of the VMs
6: for every pulse in P(t)
7: Calculate maximum pulse deviation s of the edges
8: Measure the width of cap Tpro

9: Determine reduction of cap chigh − clow
10: Update the cap of the current pulse in P ′(t) to clow
11: return P ′(t)

between the time stamps of two consequent rising and falling
edges. The algorithm then determines the amount of reduction
of cap chigh − clow based on Equation (3) (Line 9). Finally,
it derives the refined demand pattern by lowering the value of
the pulse of P(t) by the amount of chigh−clow (Line 10) and
returns the new pattern (Line 11).

2) Reducing Pulse Width: Algorithm 2 requires that the
pulse demand of a VM arrives at the beginning of the refined
pulse (i.e., the rising edge of the pattern). If the pulse demand
of a VM arrives later than the refined pattern from Algorithm
2, then the VM cannot receive all its requested resource
within the provision time, i.e., the length of the pattern. If
the pulse demand of the VM comes after the beginning of
the refined pulse, the resource provisioned at the beginning is
not fully used by the VM, hence the VM cannot receive its
total requested amount of resource by the end of the pulse.
To avoid this problem, we propose another algorithm, which
reduces the duration of each pulse of the pattern to avoid the
over-provisioning.

We use Figure 11 to demonstrate the impact of such
reducing on the extension of job execution time of the VM.
Given a sufficient amount of resource, a VM has a resource
utilization profile as shown in Figure 11(a), where the blue
area indicates the provisioned resource and the curve indicates
the used resource. Suppose from time t1 to t3, we reduce the
amount of provisioned resource from cap value cmax to base
value b as shown in Figure 11(b), which results in an under-
provisioning and hence a prolonged job execution time. By
t3, the provisioned amount of resource can only satisfy the
original demands that arrive between time t1 and time t2. As
a result, the demand profile is postponed by t3−t2. After t3, as
provision increases to cmax, the demand profile E(tj) follows



t1 t2 t3

A C

DB

t1 t2 t3

A
B

(a) (b)
cmax

bE

s

Fig. 11. Postponing the cap provision and reducing the cap width.

the shape of the VM’s original demand profile without an
expansion as shown in Figure 11(b) but with a delay t3 − t2.
Then, the provisioned resource can be fully utilized as the
falling edges of the provisioned resource and used resource are
overlapped. Given enough provisioned resource (i.e., without
this algorithm), the original demand profile was developing
from point B as indicated by the dashed curve. After reducing
the provisioned resource (i.e., with this algorithm), the demand
at point B will not receive its requested amount of resource
until point D. After that, the demand profile follows the shape
of the original profile without any extension or deformation
as indicated by the solid curve. In conclusion, the reduced
provisioning results in a delay of the utilization profile.

Algorithm 3: Demand pattern refinement by reducing cap
width.

1: Input: Di(t) (i = 1, 2, ..., N): Resource demands of a set of VMs
2: Output: P ′(t): Refined resource demand pattern
3: Find the maximum demand at each time E(tj)
4: Derive resource demand pattern P(t) using Algorithm 1
5: for every pulse in P(t)
6: Calculate maximum pulse deviation s of the edges
7: ti ← t1, Sum ← 0
8: while Sum < sb do
9: Sum ← Sum+ (P(ti)− b)

10: ti ← ti + 1
11: d ← ti − t1
12: Update P ′(t) ← b, for t1 ≤ t < t1 + d
13: return P ′(t)

Therefore, we can reduce the provisioned resource of a
pattern by reducing the amount of resource from cmax to b in
the beginning of provisions. A question is how to find the time
latency to change cmax in the original pattern to b (i.e., the
postponing latency). We notice that the area size of t1t2BA
and the area size of t1t3CA are equal to each other:∫ t2

t1

P(t)dt = b(t3 − t1) (4)

where P(t) is the pattern function, and t3 − t2 = s. Suppose
d = t3−t1 is the duration that we want to reduce the resource.
Considering ∫ t1+d−s

t1

P(t)dt = bd (5)

we have d = P−1(b) + s− t1 (6)
As it is not easy to derive P−1(b) in the algorithm, we de-

velop a practical approach (as described below) in Algorithm
3 to find d. Algorithm 3 shows this refinement algorithm to
improve resource efficiency based on the above discussion.
The algorithm first finds the envelop of these series E(tj)
(Line 3) and derives the resource demand pattern P(t) (Line 4)
based on Algorithm 1. Next, it calculates the pulse deviations

of the VMs between each other and then selects the maximum
pulse deviation (Line 6). After that, it determines d based
on the pulse deviation s (Lines 7-10). In the algorithm, we
iteratively increase the value of t2 from 0, and find the value
that makes the area size of t1t2BA equal to the area size of
t1t3CA. Finally, the algorithm modifies P(t) by reducing the
provisioned resource amount between time t1 and t1+d from
cmax to b (Lines 11-12), and returns the new pattern P ′(t)
(Line 13).

3) Varying Base Provision: We refine the original pattern
generated by Algorithm 1 by varying the base value b of
the original pattern until it achieves the highest efficiency.
Different sizes of time windows leads to different base values.
As shown in Figure 10(b), two tentative square curve fittings
with base resource b1 and b2, respectively, are both feasible
solutions for pattern provision. Given a resource utilization
profile, the parameters that maximize the resource efficiency
can be found by searching through different values of b.

Algorithm 4: Demand pattern refinement by varying the
base provision.

1: Input: Di(t): Resource demands of a set of VMs
2: Output: P ′(t): Refined resource demand pattern
3: Find the maximum demand at each time E(tj)
4: Determine P(t) based on Algorithm 1
5: Find maximum demand cmax

6: Find minimum demand b
7: do
8: b ← b+Δ
9: Find P ′

temp(t) based on b
10: Measure resource efficiency using E(tj) and P ′

temp(t)
11: if (efficiency > max)
12: max ← efficiency
13: P ′(t) ← P ′

temp(t)
14: while (b < cmax)
15: return P ′(t)

Algorithm 4 shows the processes to improve the resource
efficiency by varying b of a derived pattern. Given a set
of VM resource demand time series Di(t) as input, the
algorithm first finds the envelop of these series E(tj) (Line
3) and determines the original resource demand pattern P(t)
based on Algorithm 1 (Line 4). Then, it finds the maximum
demand (cmax) of the pattern (Line 5) and the minimum base
value (Line 6). The minimum base can be found by scanning
the pattern P(t) generated by Algorithm 1. The algorithm
calculates P ′

temp(t) based on varying b from the minimum
base value (Line 9). The rationale of varying b from this
value is that it is the minimum value that covers all the base
demands, as indicated by Algorithm 1. P ′

temp(t) is the pattern
after the base value is updated in P(t) and we will explain
how to calculate P ′

temp(t) later. For example, in Figure 10(b),
P(t) represented by the solid line is changed to P ′

temp(t)
represented by the dotted line after base value is changed
from b2 to b1. The algorithm then measures the resulting
efficiency (Line 10). Here, the resource efficiency is calculated
by

∑ E(tj)dt∑P′
temp(t)dt

. Because we do not know the actual resource
consumption, we use E(tj) as the consumed resource to
measure the resource efficiency for comparable comparison



to choose the pattern with the highest resource efficiency.
We vary b by increasing b from initial value to the maximum
demand cmax. The algorithm repeats this process with
increasing b until b ≥ cmax, and finds the b that leads to the
maximum resource efficiency (Lines 8-14). Finally, the pattern
that leads to the maximum efficiency is returned (Line 15).

We describe the process of finding P ′
temp(t) based on b as

follows. For every new value of b, we find out all the time
stamps t′js that have E(t′j) = b (e.g., points A′ and B′ in
Figure 10(b)). From the original P(t), we have a series of
time stamps tjs indicating the rising and falling of the resource
provisioning (e.g., points A and B in Figure 10(b)). The
algorithm orders these time stamps with indices starting from
zero. As a result, a time stamp with an even index indicates
a rising, while a time stamp with an odd index indicates
falling. The new pattern P ′

temp(t) is generated by changing the
provision value from cmax to b in the pattern P(t) for every
time period from tj to t′j (and from t′j to tj for odd indices)
(i.e., from points A to A′, and from B′ to B in Figure 10(b)).

IV. TRACE-DRIVEN SIMULATION

In this section, we conducted the simulation experiments to
evaluate the performance of our proposed pattern refinement
algorithms using the Google Cluster trace and PlanetLab trace.
We implemented the proposed refinement algorithms in the
initial VM allocation mechanism called CompVM [7], denoted
as VaryCap, Postpone and VaryBase (initial VM allocation us-
ing Algorithm 2, Algorithm 3 and Algorithm 4, respectively).
To the best of our knowledge, our work is the first that tries
to improving resource efficiency by using refined utilization
pattern in resource provisioning. Therefore, there are no state-
of-the-art methods for patten refinement for comparison in the
performance evaluation.

We used workload records of three days from the trace
to generate VM resource request patterns and then executed
CompVM for the fourth day’s resource requests. The window
size was set to 15 minutes in the pattern detection in Com-
pVM. We compared VaryCap, Postpone and VaryBase with the
original CompVM (denoted by Baseline). All these methods
conduct initial VM allocation.

We used the CloudSim [6] simulator to conduct the simu-
lation. We configured the PMs in the system with capacities
of 1.5GHz CPU and 1536 MB memory, and configured VMs
with capacities of 0.5GHz CPU and 512 MB memory. With
our experiment settings, the bandwidth consumption did not
overload PMs due to their high network bandwidth capacities,
so we focus on CPU and memory utilization. Unless otherwise
specified, the number of VMs was set to 2000 and each VM’s
workload is twice of its original workload in the trace. In
the simulation, the pattern of each VM is predicted, and the
VMs are allocated to the PMs based on their patterns and
the allocation algorithm in [7]. Note that the VMs are from
different users rather than a single user.
• The number of PMs used. It measures the resource efficiency

of VM allocation mechanisms to host all VMs.

0
200
400
600
800

1000
1200

1000 2000 3000

N
u

m
b

e
r 

o
f 

P
M

s 

Number of VMs 

Baseline
VaryBase
VaryCap
Postpone

(a) Google Cluster trace.

0
200
400
600
800

1000
1200

1000 2000 3000

N
u

m
b

e
r 

o
f 

P
M

s 

Number of VMs 

Baseline
VaryBase
VaryCap
Postpone

(b) PlanetLab trace.
Fig. 12. Performance with varying number of VMs.

• Resource efficiency. It is the ratio between the utilized and
allocated amount of resource during the provision time for
each VM.

• The number of SLO violations. It is the number of occur-
rences that a VM cannot receive the required amount of
resource from its host PM.

A. Performance with Varying Number of VMs

We first study the performance of the three algorithms
when the number of VMs was varied from 1000 to 3000
using the Google Cluster trace. Figure 12(a) shows the total
number of PMs used from the Google Cluster trace, which
follows VaryCap<Postpone≈VaryBase <Baseline. VaryBase,
VaryCap and Postpone reduce the number of PMs of Baseline
(e.g., Baseline−Algorithm

Baseline ) by 43%, 47% and 43% for Google
Cluster trace. VaryBase, VaryCap and Postpone reduce the
number of PMs due to their refined VM patterns, which
require relatively less resource than Baseline. VaryCap further
reduces the number because it reduces the cap value of the
patterns. Postpone is larger than VaryCap due to the reason
that reducing the pulse length is not as efficient as reducing
the cap in providing resource for more VMs, because most
of the VM patterns are characterized by a small cap with
large width rather than a high cap with small width. The result
confirms that the refinement algorithms reduce the amount of
provisioned resource and reduces the number of PMs needed
to host the VMs, hence achieve higher resource efficiency.
Figure 12(b) shows the total number of PMs used from the
PlanetLab trace. It shows similar results as Figure 12(a).
VaryBase, VaryCap and Postpone reduce the number of PMs
of Baseline by 32%, 38% and 32%, which again confirms
that the refinement algorithms reduce the number of PMs.
The numbers from PlanetLab trace are higher than those from
Google Cluster trace because the tasks in Google Cluster trace
have higher correlation coefficient, and hence the predicted
patterns are more accurate.

B. Resource Efficiency

Figure 13 shows the median, the 10th and 90th percentiles
of resource efficiency of each VM when we applied the
algorithms to Google Cluster trace and PlanetLab trace, re-
spectively. The error bars in the figure indicate the 10th and
90th percentiles. We see that the resource efficiency follows
Baseline<VaryBase<VaryCap<Postpone in both traces. Vary-
Base, VaryCap and Postpone improve the resource efficiency
of Baseline (e.g., Algorithm−Baseline

Baseline ) by 10%, 12% and 12%



0

0.5

1

Baseline VaryBase VaryCap PostponeR
e

so
u

rc
e

 e
ff

ic
ie

n
cy

 Google PlanetLab

Fig. 13. Resource efficiency.

0
20
40
60
80

100
120

0 1 2 3

Baseline

VaryBase

VaryCap

Postpone

C
D

F 

Percentage of unsatisfied resource (%) 

Fig. 14. Ability to satisfy SLO.

for Google Cluster trace, and by 73%, 74% and 74% for
PlanetLab trace, respectively. VaryBase, VaryCap and Post-
pone outperform Baseline due to VM pattern refinements.
The refinement algorithms also reduce the variations of the
efficiency as indicated by the error bars. VaryCap and Postpone
outperform VaryBase because they reduce the height or width
of the cap, which makes VMs more likely to be consolidated in
a PM and hence improves resource efficiency, while VaryBase
only tunes the base value which may not greatly improve the
resource efficiency. Postpone has a similar resource efficiency
as VaryCap because both of them reduce VM patterns based
on the trace deviation.

C. Performance in SLO Conformance

In this experiment, we define SLO violation as the failure of
satisfying the resource demand within the time deadline, which
was set to the maximum completion time among the VMs of
a job. We tested 640 VMs and found that Baseline, VaryBase,
VaryCap and Postpone have 12, 15, 74 and 54 violations, and
99%, 98%, 89% and 91% of the VMs satisfy the demands,
respectively. Figure 14 shows the CDF of the percentage of
VMs with the percentage of the amount of demanded resource
that cannot be satisfied by deadline. We see that even though
there is a slight increase in the number of violations with each
pattern refinement algorithm, the percentage of the amount
of unsatisfied resource is very small. It is no more than
0.18%, 0.58%, 3.4% and 0.17% for Baseline, textitVaryBase,
VaryCap and Postpone, respectively. To avoid these violations,
we can easily add more provisioned resource. If we add more
provisioned resources to avoid these violations, the resource
efficiency of VaryBase, VaryCap and Postpone still keep the
same as in Figure 13 (i.e., 10%, 12% and 12% higher than
Baseline for the Google Cluster trace and 73%, 74% and 74%
for PlanetLab trace) because the amount of the additional
provisioned resource is relatively very small. We can use
the method in CloudScale [23] to determine the amount of
additional provisioned resource.

V. SMALL REAL-WORLD CLUSTER EXPERIMENTS

A. Performance of Pattern Refinement

In this experiment, we used workloads from the NAS
Parallel Benchmark (NPB) suite [3] to run in the VMs. The
NPB suite is a small set of programs designed to help evaluate
the performance of parallel supercomputers. We used the pro-
grams to emulate jobs running in the VMs. We first conducted
a profiling run to collect the CPU utilization trace of each NPB

0

5

10

15

20

25

30

35

�������� VaryBase VaryCap Postpone

N
u

m
b

e
r 

o
f 

P
M

s 

Fig. 15. The number of PM used.

0

5

10

15

20

Baseline VaryBase VaryCap Postpone

T
o

ta
l t

im
e

 (
1

0
3
 s

) 

Fig. 16. Total execution time of VMs.

programs. In the profiling run, we executed the programs on
Palmetto [19], a high-performance computing (HPC) cluster
(a 21,546-core 500 tera FLOPS HPC system) and recorded
the CPU utilization every 0.01 seconds for every program in
every machine. In this case, the programs are provisioned with
sufficient CPU resource, and the collected traces are regarded
as original trace. We then used the measured utilization profiles
in the consequent VM placement experiments.

Figure 15 shows the total number of PMs required to
host the VMs. We see that the number of PMs used follows
VaryCap<Postpone<VaryBase<Baseline. VaryBase, VaryCap
and Postpone reduce the PMs due to their refined VM patterns,
which require relative less resource than Baseline. VaryCap
further reduces the number because it reduces the cap value
of the patterns and hence will lead to a relatively flattened
pattern, which makes VMs more likely to be consolidated in
a PM. The results are consistent with the simulation results
in Figure 12. Figure 16 shows the total execution time of all
the VMs. We see that all the algorithms perform similar with
a total time around 18700 seconds. These results confirms
that the pattern refinement algorithms is efficient in saving
resource and hence reducing the number of the PMs while do
not significantly degrade the VM performance in terms of job
completion time.

VI. RELATED WORK

Recently, many VM allocation strategies have been pro-
posed [28]. Some of them [4], [5], [20], [25], [31] allo-
cate physical resources to VMs only once based on static
VM resource demands. For example, Srikantaiah et al. [25]
proposed to use Euclidean distance between VM resource
demands and residual capacity as a metric for consolidation.
Oktopus [4] provides static bandwidth reservations throughout
the network. Yu et al. [33] considered the problem of scaling
up a virtual network abstraction with bandwidth guarantee.
Cui et al. [9] proposed an efficient and synergistic scheme
to jointly consolidate network policies and virtual machines.
However, static provisioning cannot fully utilize resources
because of time-varying resource demands of VMs. To fully
utilize cloud resources, others [1], [14], [24], [26], [27], [29]
first consolidate VMs using a simple bin-packing heuristic
and manage the resource through live VM migrations, which
might result in migration overhead. For example, Sandpiper
[29] uses the product of CPU, network and memory load to
represent the load of a VM and a PM, and migrates the most
loaded VM from an overloaded PM to the least loaded PM. In
order to consider both the current and future state of resource



demand and available capacity in a time period, Chen et al. [7]
proposed an initial VM allocation mechanism that consolidates
complementary VMs with spatial/temporal awareness based
on the predicted lifetime resource utilization patterns of VMs.
However, the pattern prediction algorithm proposed in this
paper generates the pattern for one VM from historical utiliza-
tions of multiple similar VMs, but neglects the fact that these
utilizations have pulse deviations. As a result, consolidating
VMs based on these patterns will result in a waste of resource.
Our work refines the resource utilization patterns in pattern
derivation to avoid resource over-provisioning.

VII. CONCLUSIONS

This paper is the first work that observes the resource
utilization curves of different VMs running the same job ex-
hibit misalignments in time in spite of their similar periodical
patterns. Then, generating resource utilization pattern based
on the traces of different VMs to guide resource provisioning
to each VM will lead to resource over-provisioning and low
resource efficiency. In order to improve resource efficiency,
we proposed three VM resource utilization pattern refinement
algorithms to improve the resource efficiency of the original
generated pattern. Specifically, given a originally generated
resource utilization pattern, the VaryCap algorithm and the
Postpone algorithm refine the pattern by either lowering the
cap of the pattern or reducing the width of the provisioning
pulse; and the VaryBase algorithm refines the pattern by
varying the base value until it achieves the highest efficiency.
We then adopted these refinement algorithms in an initial VM
allocation mechanism that consolidates VMs for cloud data-
centers. The mechanism helps fully utilize the cloud resources,
and reduce the number of PMs needed to host all VMs while
conforming the SLO requirement. These advantages have been
verified by our extensive trace-driven simulation experiments
and real-world testbed experiments. In our future work, we will
study the feasibility of our proposed algorithms to different
types of traces, find the reasons for the misalignments and the
scenarios that our algorithms are most suitable.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
ACI-1661378 and CNS-1254006, and Microsoft Research
Faculty Fellowship 8300751. We would like to thank Dr. John
Wilkes for his valuable discussions.

REFERENCES

[1] E. Arzuaga and D. R. Kaeli. Quantifying load imbalance on virtualized
enterprise servers. In Proc. of WOSP/SIPEW, 2010.

[2] Service Level Agreements. http://azure.microsoft.com/en-
us/support/legal/sla/.

[3] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. The
NAS parallel benchmarks summary and preliminary results. In Proc. of
SC, pages 158–165, 1991.

[4] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards
predictable datacenter networks. In Proc. of SIGCOMM, 2011.

[5] U. Bellur, C. S. Rao, and M. K. SD. Optimal placement algorithms for
virtual machines. CoRR, 2010.

[6] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya.
Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms. Soft-
ware: Practice and Experience, 41(1):23–50, 2011.

[7] L. Chen and H. Shen. Consolidating complementary vms with
spatial/temporal-awareness in cloud datacenters. In Proc. of INFOCOM,
2014.

[8] L. Chen, H. Shen, and S. Platt. Cache contention aware virtual machine
placement and migration in cloud datacenters. In Proc. of ICNP, 2016.

[9] L. Cui, R. Cziva, F. P. Tso, and D. P. Pezaros. Synergistic policy
and virtual machine consolidation in cloud data centers. In Proc. of
INFOCOM, 2016.

[10] Z. Gong, X. Gu, and J. Wilkes. Press: Predictive elastic resource scaling
for cloud systems. In Proc. of CNSM, pages 9–16, 2010.

[11] Google cluster data. https://code.google.com/p/googleclusterdata/.
[12] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,

D. A. Maltz, P. Patel, and S. Sengupta. Vl2: a scalable and flexible data
center network. In Proc. of SIGCOMM, volume 39, pages 51–62, 2009.

[13] V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and M. Cae-
sar. Network-aware scheduling for data-parallel jobs: Plan when you
can. In Proc. of SIGCOMM, 2015.

[14] G. Khanna, K. Beaty, and G. Kar. Application performance management
in virtualized server environments. In Proc. of NOMS, 2009.

[15] K. LaCurts, S. Deng, A. Goyal, and H. Balakrishnan. Choreo: Network-
aware task placement for cloud applications. In Proc. of IMC, 2013.

[16] Z. Li and H. Shen. Designing a hybrid scale-up/out hadoop architecture
based on performance measurements for high application performance.
In Proc. of ICPP, 2015.

[17] Y. Lin, H. Shen, and L. Chen. Ecoflow: An economical and deadline-
driven inter-datacenter video flow scheduling system. In Proc. of
Multimedia, 2015.

[18] B. Palanisamy, A. Singh, L. Liu, and B. Langston. Cura: A cost-
optimized model for mapreduce in a cloud. Proc. of IPDPS, 2013.

[19] Palmetto. https://www.palmetto.clemson.edu/.
[20] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,

and I. Stoica. Faircloud: sharing the network in cloud computing. In
Proc. of SIGCOMM, 2012.

[21] A. Sarker, C. Qiu, and H. Shen. A decentralized network with fast
and lightweight autonomous channel selection in vehicle platoons for
collision avoidance. In Proc. of MASS, 2016.

[22] H. Shen, L. Yu, L. Chen, and Z. Li. Goodbye to fixed bandwidth
reservation: Job scheduling with elastic bandwidth reservation in clouds.
In Proc. of CloudCom, 2016.

[23] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloudscale: Elastic resource
scaling for multi-tenant cloud systems. In Proc. of SOCC, 2011.

[24] A. Singh, M. R. Korupolu, and D. Mohapatra. Server-storage virtual-
ization: integration and load balancing in data centers. In Proc. of SC,
2008.

[25] S. Srikantaiah, A. Kansal, and F. Zhao. Energy aware consolidation for
cloud computing. In Proc. of HotPower, 2008.

[26] M. Tarighi, S. A. Motamedi, and S. Sharifian. A new model for virtual
machine migration in virtualized cluster server based on fuzzy decision
making. CoRR, 2010.

[27] A. Verma, P. Ahuja, and A. Neogi. pmapper: Power and migration
cost aware application placement in virtualized systems. In Proc. of
Middleware, 2008.

[28] H. Viswanathan, E. K. Lee, I. Rodero, D. Pompili, M. Parashar, and
M. Gamell. Energy-aware application-centric vm allocation for hpc
workloads. In Proc. of IPDPS Workshops, 2011.

[29] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif. Sandpiper:
Black-box and gray-box resource management for virtual machines.
Computer Networks, 2009.

[30] D. Xie, N. Ding, Y. C. Hu, and R. R. Kompella. The only constant is
change: incorporating time-varying network reservations in data centers.
In Proc. of SIGCOMM, 2012.

[31] J. Xu and J. A. B. Fortes. Multi-objective virtual machine placement in
virtualized data center environments. In Proc. of CPSCom, 2010.

[32] L. Yan, K. Chen, H. Shen, and G. Liu. MobileCopy: Resisting correlated
node failures to enhance data availability in dtns. In Proc. of SECON,
2015.

[33] L. Yu and Z. Cai. Dynamic scaling of virtual clusters with bandwidth
guarantee in cloud data centers. In Proc. of INFOCOM, 2016.

[34] L. Yu, L. Chen, Z. Cai, H. Shen, Y. Liang, and Y. Pan. Stochastic load
balancing for virtual resource management in datacenters. TCC, 2016.


