

Quick and Autonomous Platoon Maintenance in Vehicle Dynamics For Distributed Vehicle Platoon Networks

Ankur Sarker[†], Chenxi Qiu[‡], and Haiying Shen[†]

[†]Department of Computer Science, University of Virginia [‡]Information Science & Technology, Pennsylvania State University

Outline

- Introduction
- System Design
- Performance Evaluation
- Conclusion

Introduction Platoon system

In a platoon, one leader vehicle and several follower vehicles drive in a single lane, maintaining a safety inter-vehicle distance

- 1. Vehicles have short range communication devices
- 2. Guarantee vehicles' safety
- 3. Increase the number of vehicles
- 4. Dynamic formation of platoon

- 1. Vehicles have short range communication devices
- 2. Guarantee vehicles' safety
- 3. Increase the number of vehicles
- 4. Dynamic formation of platoon

- 1. Vehicles have short range communication devices
- 2. Guarantee vehicles' safety
- 3. Increase the number of vehicles
- 4. Dynamic formation of platoon

- 1. Vehicles have short range communication devices
- 2. Guarantee vehicles' safety
- 3. Increase the number of vehicles
- 4. Dynamic formation of platoon

Introduction Challenge of distributed platoon system

- □ Platoon maintenance in dynamic environment
- □ Without any communication
- □ without any accurate distance information

Introduction Challenge of distributed platoon system

- Platoon maintenance in dynamic environment
- □ Without any communication
- □ without any accurate distance information

Our method: Autonomous platoon maintenance

- 1. Study velocity profiles
 - Analyze velocity profiles for different scenarios
- 2. Stored velocity profiles
 - Based on different inter-mediate distances and velocities, stored different profiles
- 3. Adaptive platoon maintence
 - Use mainly two set of profiles for creating or recovering holes inside platoon

System Design Velocity profiling

Study velocity profiles for two cases:

Vehicle leaving: Following vehicles must accelerate gradually maintaining safety and comfort.

Vehicle leaving

System Design Velocity profiling

Study velocity profiles for two cases:

Vehicle leaving: Following vehicles must accelerate gradually maintaining safety and comfort.

Vehicle entering: Following vehicles must deaccelerate gradually maintaining safety and comfort.

System Design Velocity profiling

Then, study velocity profiles wrt distances and velocities:

- Initial velocity changes are similar due to deceleration/acceleration limits.
- Thus, store mainly two different velocity profiles considering different scenarios.

Changes of velocity wrt different distances

System Design Overview

VACP: <u>Vehicle AC</u>celerating <u>P</u>rofile VADP: <u>Vehicle AD</u>justing <u>P</u>rofile v: velocity t: time

Experiment Simulation settings

- 1. One leader vehicle and thirty follower vehicles
 - □ Velocities are changed from 8m/s to 30m/s
 - □ The vehicular inter-mediate distance varies from 47.5m to 80m
 - □ Velocities are changed at every 0.1 second (if necessary)
- 2. 3 scenarios-
 - Platoon maintenance
 - Vehicle joining
 - Vehicle leaving

Compared methods

1. Kyongsu Yi and Young Do Kwon. 2001. Vehicle-to-vehicle distance and speed control using an electronic-vacuum booster. JSAE review 22, 4 (2001), 403–412

Experiment Platoon maintenance

Metric: Safety violation (intervehicular distance< safety distance)

Observation: Safety violations of two methods are almost similar

Reason: The stored velocity profiles are very similar to the optimal velocity profile

Safety violations

Experiment Platoon maintenance

Metric: Recovering hole (distance information is unavailable)

Observation: Optimal method causes more unrecovered holes

Reason: Optimal method needs neighbor vehicles' information

Recovering hole

Conclusions

- 1. We proposed a decentralized platoon maintenance mechanism
- 2. We conducted velocity profiling study
- 3. We devised autonomous vehicular control strategy

Future work

- 1. Consider complex road structures
- 2. More practical experiments in different traffic conditions

Thank you! Questions & Comments?

Ankur Sarker

as4mz@Virginia.edu

Ph.D. Candidate

Pervasive Communication Laboratory

University of Virginia