

Prediction-based Redundant Data Elimination with Content Overhearing in Wireless Networks

Haiying Shen[†], Shenghua He^{*}, Lei Yu[‡] and **Ankur Sarker**[†]

[†]Department of Computer Science, University of Virginia ^{*}Department of Computer Science and Engineering, Washington University in St. Louis [‡]College of Computing, Georgia Institute of Technology

Outline

- Introduction
- System Design
- Performance Evaluation
- Conclusion

Outline

Introduction

- System Design
- Performance Evaluation
- Conclusion

Introduction Internet Traffic

- How Netflix, YouTube, Hulu, and Amazon became the Internet.
- File sharing is another major source.
- 30% of the Internet is just a Copy of itself.

WWW. PHDCOMICS. COM

Redundancy

Introduction Redundant data elimination

Suppressing duplicated data transmission using Redundancy Elimination techniques:

- 1. Packet-based RE
- 2. Content-based RE

Redundancy Elimination

Related work

Wired network

- 1. WAN optimization
 - □ [Riverbed Networks 2013] [Juniper Network 2014]
- 2. Server to client RE
 - □ [Agarwal et al., NSDI 2010] [Hua et al., Infocom 2014]
- 3. Prediction-based RE
 - □ [Zohar et al., Sigcomm 2011] [Yu et al., ICNP 2012]

Wireless network

- 1. Packet-based RE
 - □ [Hua et al., Infocom 2015] [Sanadhya et al., Mobicom 2012]
- 2. Content-based RE
 - Dogar et al., Mobicom 2008] [Afanasyev et al., NSDI 2008]

Introduction Problems in previous methods

- 1. Caches at sender and receiver would be outdated
 - Disrupts RE's correctness and degrade its performance
- 2. Overhearing probability estimation is difficult
 - **C**onsequently degrades the performance of RE
 - Causes significant communication cost and complex coordination among nodes

Solution: Prediction-based Redundancy Elimination

- 1. The receiver stores the received and overheard data stream in a chain of chunks.
- 2. It compares the chunks of the incoming packet with the stored chunk chains in the cache.
- 3. The receiver sends to the sender future data predictions that include the hashes of chunks on the chain.

Introduction Challenges of RE

- 1. Identifying duplicate chunks of hundreds of bytes at sub-packet level and work on lower-bandwidth wireless links.
- 2. Transmission cost of predictions has to be considered.
- 3. There are possibilities of missing data.

Our method: PRECO

- 1. Redundancy elimination technique
 - An effective, efficient and scalable solution for contentoverhearing based IP-layer RE over wireless links.
- 2. Chunking and caching
 - **D** To divide the payload into evenly distributed chain of chunks.
- 3. Adaptive prediction algorithm
 - To improve prediction accuracy and reduce the prediction overhead.

Outline

- Introduction
- System Design
- Performance Evaluation
- Conclusion

System Design **Overview** d f a b c a b c d f $I_{c,}H_{c}$ ((**q**)) ((**q**)) ((**q**)) ((**q**)) AP1 AP2 AP1 $I_{d,}H_{d}$ AP2 $I_{e,}H_{e}$ data a a b c d e $b_{l_c} I_d f$ a cde data C2 C1 C2 C1 $a, H_a \rightarrow c, H_c \rightarrow d, H_d \rightarrow e, H_e$ $a, H_a \rightarrow c, H_c \rightarrow d, H_d \rightarrow e, H_e$ Prediction and RE Overhearing and caching

System Design Chunking and caching

The overall procedures divide into two steps:

Chunking algorithm: PRECO divides the payload of a packet into several chunks. MAXP [1], a content-based chunking algorithm is used to define chunk boundary.

Chunk Doundary Chunk Doundary Chunk Doundary Chunk Chunk3 Chunk4 Chunk5 (chunk, hash, sequence number) Chunk chain

Caching received and overheard ^{(ct} chunks: Nodes overheard TCP streams and stored as chunks based on stream IDs (src, dst, src port, dst port).

[1] Anand, Ashok, et al. "Redundancy in network traffic: findings and implications." *ACM SIGMETRICS Performance Evaluation Review* 37.1 (2009).

System Design Prediction-based RE

Prediction of receive packets works as follow:

- **D** PRECO determines one matching chunk as a prediction anchor.
- Chooses a chain of chunks for prediction based on highest matching length.
- □ Prediction chunk is chosen based on the matching degree.
- □ Virtual chunk is created based on matching degree.
- For a received packet, one chain of chunks is selected as prediction based on virtual chunk.

Prediction transmission and shim decoding:

- □ A prediction windows is used to increase the efficiency.
- **D** Receiver sends the chunk prediction in a prediction message.
- □ Upon receiving, the sender stores the prediction in cache.
- For an outgoing packet, the sender performs chunking using same algorithm and insert shim into the packet.
- Once receiving a packet containing shim, receiver finds the shim from sender.

System Design Adaptive prediction algorithm

Size of the prediction window, W

$$W = \begin{cases} (1 + R(P_A))W_o, & \text{if } N_B - (N_A + |P_A|) < d_T \\ W_o, & \text{if } N_B - (N_A + |P_A|) \ge d_T \end{cases}$$

where

P_A is prediction chunk chain based on Anchor A

 $R(P_A)$ is hit ratio of prediction PA

W₀ is initial prediction window size

 N_{A} is the next expected byte sequence number based on A

 $N_{\rm B}$ is the next expected byte sequence number based on B $d_{\rm T}$ prediction distance threshold

System Design Adaptive prediction algorithm

Size of the prediction window, W

$$W = \begin{cases} (1 + R(P_A))W_o, & \text{if } N_B - (N_A + |P_A|) < d_T \\ W_o, & \text{if } N_B - (N_A + |P_A|) \ge d_T \end{cases}$$

When making predictions with a new prediction anchor:

the algorithm first computes the hit ratio of previous prediction, and then

□ accordingly adjusts the prediction window.

System Design Redundancy-aware source routing

ETT Estimation:

- Using "A1-A3-A5": 3+3+16 = 23
- Using "A2-A4-A5": 8+12+12 = 32

System Design Redundancy-aware source routing

- Apply Dijkstra's shortest path algorithm to find path route with lowest RETT
- Without any overhearing consideration

[1] De Couto, Douglas SJ, et al. "A high-throughput path metric for multi-hop wireless routing." *Wireless Networks* 11.4 (2005).

Outline

- Introduction
- System Design

Performance Evaluation

Conclusion

Experiment Simulation settings

- 1. Real trace collected using YouTube app over 3.5 GB data
 - Two smartphones (Iphone 6 and Xiao Mi 3) connected with one laptop (Lenovo T420 Windows 10 machine)
 - **2** different videos with similar contents, watched twice
 - □ 60 minutes a day for 7 day
 - □ Captured packets using Wireshark
- 2. 2 scenarios-
 - One AP and one client without content overhearing
 - □ Two Aps and two clients, with content overhearing

Compared methods

- 1. EndRE: new finger print technique for end users
- 2. Asymmetric Caching (AC): RE operations based on feedback cache
- 3. REfactor: finer-granularity redundancy at the sub-packet level with content overhearing

Experiment RE efficiency

(a) Different receiver's cache size

(b) Different overhearing probability

Observation: RE efficiency follows PRECO>REfactor>EndRE>AC **Reason**: EndRE and AC do not support overhearing; REfactor uses overhearing probability estimation.

Experiment Content overhearing

(a) Different receiver's cache size

(b) Different overhearing probability

Observation: PRECO>REfactor>EndRE>AC **Reason**: The bandwidth saving is mainly caused by RE efficiency

Experiment Network overhead

(a) Different receiver's cache size

(b) Different overhearing probability

Observation: REfactor has the highest network overhead among all these RE methods **Reason**: The overhearing probability estimation results larger amount of network overhead

Experiment Simulation settings

- 1. we deployed a mesh network with 5 rows and 5 columns in total
 - 1. First node is the gateway
 - 2. Three clients associated in three distinct nodes
 - 3. the overhearing coverage to 1
 - 4. The average date rate for each link varies from 800Kps to 1200Kps
- 2. The gateway send traces to two different clients

Compared methods

- 1. ETT-based routing: The gateway determines the optimal route to a receiver using ETT metric, and no network-wide PRECO deployment to perform RE.
- 2. Redundancy-aware routing without content overhearing: network-wide PRECO is deployed without content overhearing.
- 3. Redundancy-aware routing with content overhearing: network-wide PRECO with content overhearing.

Experiment Redundancy-aware routing

(a) Different overhearing probability

(b) Different overhearing probability

Observation: Redundancy-aware routing with content overhearing produces more throughput **Reason**: The gateway steers the traffic through the nodes with high redundancy

Outline

- Introduction
- System Design
- Performance Evaluation
- Conclusion

Conclusions

- 1. we propose a prediction-based IP-layer RE method with content overhearing named PRECO for wireless networks.
- 2. We propose novel prediction algorithms that allow PRECO to effectively improve prediction accuracy and overall bandwidth saving.
- 3. Trace-driven simulation results show that PRECO provides significant performance benefits in comparison with other RE methods.

Future work

Further take into account efficiently learn the overhead data streams of all nodes for route determination in mesh networks.

Thank you! Questions & Comments?

Ankur Sarker

as4mz@Virginia.edu

Ph.D. Candidate

Pervasive Communication Laboratory

University of Virginia