
Swarm-based Incast Congestion Control in datacenter
Serving Web Applications

Haoyu Wang
University of Virginia

Department of Computer Science
Charlottesville, Virginia 22904, USA

hw8c@virginia.edu

Haiying Shen
University of Virginia

Department of Computer Science
Charlottesville, Virginia 22904, USA

hs6ms@virginia.edu

Guoxin Liu
Clemson University
Department of ECE

Clemson, South Carolina 29604, USA
guoxinl@clemson.edu

ABSTRACT
In Web applications served by datacenter nowadays, the incast con-
gestion at the front-end server seriously degrades the data request
latency performance due to the vast data transmissions from a large
number data servers for a data request in a short time. Previous
incast congestion control methods usually consider the direct data
transmissions from data servers to the front-end server, which makes
it difficult to control the sending speed or adjust workloads due to
the transient transmission of only a few data objects from each data
server. In this paper, we propose a Swarm-based Incast Congestion
Control (SICC) system. SICC forms all target data servers of one
request in the same rack into a swarm. In each swarm, a data server
(called hub) is selected to forward all data objects to the front-end
server, so that the number of data servers concurrently connected to
the front-end server is reduced, which avoids the incast congestion.
Also, the continuous data transmission from hubs to the front-end
server facilitates the development of other strategies to further con-
trol the incast congestion. To fully utilize the bandwidth, SICC uses
a two-level data transmission speed control method to adjust the data
transmission speeds of hubs. A query redirection method further
reduces the request latency by balancing the transmission remaining
times between hubs. Our experiments in simulation and on a real
cluster demonstrate that SICC outperforms other incast control meth-
ods in improving throughput and reducing the data request latency.

KEYWORDS
Incast congestion, Congestion Control, Data Center

ACM Reference format:
Haoyu Wang, Haiying Shen, and Guoxin Liu. 2017. Swarm-based Incast
Congestion Control in datacenter Serving Web Applications. In Proceedings
of SPAA ’17, Washington DC, USA, July 24-26, 2017, 10 pages.
DOI: http://dx.doi.org/10.1145/3087556.3087559

1 INTRODUCTION

Web applications, such as online social networks (e.g., Facebook),
Web search systems (e.g., Google) and online content publishers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPAA ’17, Washington DC, USA
© 2017 ACM. 978-1-4503-4593-4/17/07. . . $15.00
DOI: http://dx.doi.org/10.1145/3087556.3087559

(e.g., Youtube), become the top sources of Internet traffic today [1].
The datacenter serving these applications usually support tremen-
dous workloads. For example, Facebook serves a billion reads per
second [2]. It is important to guarantee that the data requests from
users are served successfully with low latency because it affects the
quality of experience of users and also is negatively proportional
to the incomes of the Web application providers. Take Amazon for
example, its sale degrades by one percent if the latency of its Web
presentation increases as small as 100ms [3]. The typical data request
latency inside a storage system of Yahoo is on larger than 100ms [4]
to meet the user satisfaction. However, the packet loss always occurs
during data requesting due to traffic congestion and the bandwidth
usually becomes the bottleneck of the performance [5–7]. The traffic
congestion also greatly increase the data request latency due to the
retransmissions of dropped packets. Therefore, it is important to
avoid congestion caused by data requests.

. . .

Data request

Data response

Front-end server

Si Sj Sk

Incast
congestion

Figure 1: An example of incast congestion.

In Web applications, a data request for a Web page presentation
needs to retrieve thousands of data objects currently [2, 8]. As shown
in the Figure 1, for a data request, the front-end server sends out
data queries concurrently to all targeted data servers, and receives
hundreds or thousands of data responses simultaneously. The heavy
network traffic in a short time may not reach the front-end server in
time due to the bandwidth limitation. The traffic then overflows the
switch buffer capacity and causes packet loss, which introduces an
extra delay due to retransmissions. This kind of congestion is named
as incast congestion, which is a major cause of the delay of data
requests in datacenter [2, 9?].

The root cause of incast congestion is the many-to-one commu-
nication pattern between a front-end server and many data servers.
Therefore, many previous methods have been proposed to handle the
incast congestion problem by reducing the number of data servers
concurrently connected to the front-end server. We classify these

methods to three groups. The first group [10–17] improves the slid-
ing window protocol. This approach measures the actual packet
throughput variation to decide the size of the sliding window at the
front-end server. When the sliding window has an available slot of
download link bandwidth, the front-end server sends a query to a
data server. However, there is a delay between the new query send-
ing and the response receiving so that the download link bandwidth
cannot be fully utilized. Therefore, this approach cannot meet the
stringent low service latency requirement of the current Web appli-
cations. The second group [18–20] uses data reallocation that tries
to reallocate or replicate the data objects of a request to a small
number of servers. However, the data reallocation method requires
that many requests share concurrently requested data objects (e.g.,
user data in online social networks) and the data replication method
generates a high overhead due to data replication and consistency
maintenance [21]. The third group [22–24] pre-determines a certain
time interval between any two consecutive responses in order to
limit the number of responses during a short time arriving at the
front-end server. However, the network status varies over time and
between different data servers, so it is difficult to pre-determine the
interresponse interval to fully utilize the bandwidth while avoiding
congestion. If we improve this approach to dynamically determine
the interresponse interval based on current network status of individ-
ual data servers, it is not applicable to the current Web applications
which needs hundreds or thousands of responses for one data request
because of the high overhead for the front-end server to keep track
of the network status of such a large number of data servers.

More importantly, all of these previous approaches usually con-
sider the direct data transmissions from data servers to the front-
end server for a request, which leads to very fast (178µs seconds)
transmission of only a few (1 or 2) data objects from each data
server [2, 25, 26] for current Web applications. The transient trans-
mission makes it difficult to timely control the sending speed or to
adjust the workloads on different data servers without knowing their
current transmission speeds to reduce latency. A very large number
of data servers for one data request make these tasks even more
formidable.

To handle the aforementioned problems, in this paper, we propose
a Swarm-based Incast Congestion Control method (SICC). It also
makes data transmission long-lasting to effectively control data
transmission speeds and adjust workloads on different data servers
to fully utilize bandwidth to reduce service latency. SICC forms all
target data servers of one request in the same rack into a swarm.
In each swarm, a data server (called hub) is selected to forward
all data objects to the front-end server, so that the number of data
servers concurrently connected to the front-end server is reduced.
Also, instead of sending out data object queries sequentially, the
front-end server sends out data queries simultaneously, so that it
can receive the responses continuously without the delay on the
data servers for waiting for the data queries. The long-lasting data
transmission from hubs to the front-end server allows it to adjust the
hubs’ transmission speeds and redirect the requests to balance the
workloads among them according to their current data transmission
speeds. Also, each hub can receive many packets for compression in
order to save bandwidth consumption for transmitting many packets.

SICC consists of the following methods.

Proximity-aware swarm based data transmission. The front-end
server dynamically clusters all target data servers of a request in the
same rack into a swarm. The hub in each swarm is responsible for
collecting all data responses from its swarm and sends the responses
continually to the front-end server. Hubs can form a multi-level tree
to further reduce the number of concurrently connected servers to
avoid incast congestion.

Two-level data transmission speed control. Each front-end server
adjusts the data transmission speed of each hub based on its net-
work status in order to fully utilize its bandwidth while avoiding
congestion. It also adjusts its received data response traffic to its
edge switch to avoid congestion at the aggregation router to avoid
packet loss.

Packet compression and object query redirection. Each hub com-
bines several data objects together to one packet to reduce the number
of packets in transmission to reduce traffic. Also, the front-end server
redirects data queries from an overloaded hub to an underloaded
hub to reduce the longest data transmission latency in all hubs for a
request.

The rest of this paper is organized as follows. Section 2 presents
the related work. Section 3 presents the design of SICC in detail.
Sections 4 and 5 present the performance evaluation of SICC in com-
parison with other methods a model on a simulator and a prototype
on a real cluster, respectively. Section 6 concludes this paper with
remarks on our future work.

2 RELATED WORK
There are many works focusing on the incast congestion control
problem. We classify the previously proposed methods to three
groups: improved sliding window protocols, data server reduction
and transmission delay control.

Many works improve the sliding window protocol [27] to solve
the incast congestion problem by limiting the number of concurrently
connected data servers in order to reduce the number of concurrent
responses. ICTCP [10] adjusts the receive window according to the
ratio of the actual throughput over the expected throughput. When
the ratio decreases, the window size is increased to use more avail-
able bandwidth and vice verse. It divides the slot into two sub-slots
and then uses all the traffic received in the first sub-slot to calculate
the available bandwidth as quota for window increase on the second
sub-slot. Zhang et al. [14] modeled the TCP incast congestion prob-
lem based on their observation that the TCP throughput is affected
by two kinds of timeouts, which are for waiting all other senders to
finish and for the retransmission caused by incast congestion. To im-
prove the downlink bandwidth utilization, DCTCP [12, 13] reduces
the window size by a flexible ratio according to current network
status, such as the round trip delay (RTD) and package loss rate.

Although all of the above methods can control the incast conges-
tion by adjusting the size of the sliding window, they introduce extra
round trip delay when the front-end server waits for response of new
requests while the window is moving.

The methods in [18–20] use data reallocation or data replication to
increase the number of data objects queried from each server, so that
the number of concurrently requested servers is reduced. However,
it needs data reallocation to store simultaneously requested data
together in the same server. In [18, 20], concurrently requested data

objects are replicated to several servers close to each other, so that
a request can target a small number of servers nearby. In [19], all
servers are divided into several RAID groups, and all concurrently
requested data objects are put into one of the groups, so that each
data request only communicates with data servers in one RAID
group. The above methods can avoid the incast congestion to a
certain extent by reducing the number of concurrently connected
servers. However, they need data reallocation or replication, which
introduce extra network loads.

In [22–24], a short delay is introduced between two consecu-
tive requests by manually scheduling the second response in an
extra short delay. Therefore, the concurrent number of connected
data servers is reduced to avoid incast congestion. In [22], the au-
thors insert one unit time delay between two consecutive requests.
The methods in [23, 24] asks the target server to wait for a certain
time before transmitting the requested data, so that the number of
concurrently connected data servers is reduced. However, one pre-
determined delay for all data queries in a data request cannot adapt
to the network status varying over time and between different data
servers. This delay adaptation is a non-trivial task for current Web
applications because they have thousands of data objects for a re-
quest and it is difficult to profile the network status for the thousands
of data servers and decide the delay individually.

Previous methods use the direct connection between data servers
to the front-end server. The transient data transmission from each
data server to the front-end server for a request makes it difficult to
control the sending speed or adjust workloads between data servers.
To overcome this problem, we solve the incast congestion problem
using a completely different approach. We set one of the local servers
as a hub to collect all the requested data objects nearby, so that the
number of concurrently connected data servers of the front-end
server is reduced to avoid the incast congestion. The long-lasting
data transmission between hubs and the front-end server enables data
response speed control, package compression, and query redirection
among data replicas to further reduce the request latency.

3 SWARM BASED INCAST CONGESTION
CONTROL

In this section, we present the details of Swarm based Incast Con-
gestion Control (SICC). A swarm is formed by all data servers of a
request in the same rack. In SICC, the front-end server dynamically
forms a proximity-aware swarm structure with all data servers for a
request, and selects one data server from each swarm as the hub to
connect to it in order to reduce the number of concurrently connected
data servers to avoid the incast congestion. By monitoring the actual
packet transmission speed of each hub and the traffic in the uplink
of edge switch, each front-end server controls the data transmission
speed of hub servers to fully utilize its bandwidth without causing
congestion in its edge switch and aggregation router. SICC has two
enhancements, a packet compression method and object query redi-
rection method, to further reduce the network overhead and data
request latency.

3.1 Proximity-aware Swarm based Data
Transmission

To avoid incast congestion, SICC also reduces the number of concur-
rently connected data servers to the front-end server. For this purpose,
rather than relying on sliding window protocol (that causes an extra
delay) or data reallocation (that generates extra overhead), SICC in-
troduces another layer between the requester (front-end server) and
the responsers (data servers) of a request (Figure 2), which consists
of several data servers called hubs. Hubs are responsible for data
transmission between the front-end server and the data servers. We
use hi to denote the hub of the ith swarm, and H to denote the set
of all hubs.

. . .
hj

hj
hk

hl hm hn

Front-end server

Multi-level tree formed by hubs Proximity-aware swarm

Edge
switch

hk

Aggregation
router

Core router

Datacenter topology

hi

Figure 2: The multilevel tree with proximity-aware swarms.

For a data request, SICC forms the target data servers to swarms
with each swarm consisting of data servers in the same rack. The
server with the largest spare capacity to handle I/O among each rack
is selected as the hub of each rack. In order to maintain the multi-
level structure, we also select another server in the rack with larger
spare capacity as the backup for the hub. When the current hub fails,
the backup server will serve as the hub. A hub forwards data object
queries from the front-end server to the target data servers, and then
forwards the data responses from the data servers to the front-end
server. Each hub continuously sends all queried data objects to the
front-end server, starting from the data objects stored inside it and
then the received data objects from other data servers inside its
swarm sequentially. Since the number of data servers in a swarm
is limited and also the number of hub servers, this one-to-many
communication pattern is unlikely to cause incast congestion. Also,
because data servers and the hub are in the same rack, the data
transmission efficiency will be enough.

Note this structure is dynamically created for each request rather
than fixed and it does not need to be maintained. The front-end
server sends its data object queries to each hub along with its swarm
information. Then, each hub knows the data servers to forward the
queries. After receiving queries from a hub, the data servers know
the hub to send their data responses. Finally, the hub forwards the
data responses to the front-end server. If the hub layer has too many
hubs that will generate incast congestion, we transform the hub layer
to a tree structure. We will explain the tree creation later on.

We create the transient swarm structure from the data servers of
a request to be used specifically for the request rather than creating
a global tree from all data servers in the datacenter for all requests
because of three reasons. First, the transient structure does not need

to be maintained by periodical probing between connected servers,
which avoids generating more network load. Second, transmitting
data through a much smaller structure greatly reduces the latency.
Third, the data servers without the requested data objects do not need
to involve in the data transmission for the request, which saves data
transmission time since the establishment of the data transmission
connection takes a certain time. Though the front-end server needs
to create a swarm structure for each request, this computing latency
is negligible as is shown in Section 4.6.

Next, we discuss how to determine a suitable number of hubs. If
there are too many hubs in the system, the number of concurrently
received packets in a short time can still cause incast congestion.
Generally, Assume the bandwidth of downlink is Bd Gbps, the
bandwidth of uplink is Bu Gbps, the average size of a packet as s,
and the buffer size of the edge switch is Se MB. In the case that all
hubs’ packets arrive at the edge switch of the front-end server in a
short time, the largest number of hubs (denoted by M) connecting
front-end server at a time without causing the increment of the queue
size in the edge switch is

M =
Se
Bd

∗ Bu
s

. (1)

Assume that there are m requests sent from the front-end server
at a time on average, then the number of hubs for one request is
N = M/m.

In a large-scale datacenter with a lot of racks, we also need to
constrain the number of hubs directly connecting to the front-end
server to be less than N . To achieve this, as shown in Figure 2, all
hubs need to form a multi-level tree structure with the front-end
server as the root. Each child hub transmits all its requested data
objects to its parent hub continuously, which transmits the data
further to its parent. In order to reduce the network load, we try to
reduce the transmission switches and data size in data transmission.
Then, we follow two rules when building the tree.

Rule 1: We form the tree with proximity-awareness to reduce the
number of transmission switches. That is, two hubs (including their
children) under the same aggregation router are linked together in
the tree.

Rule 2: We ensure that a hub’s child always has a smaller number
of requested data objects (including the data objects inside its child
hub) than its parent in the tree structure.

Algorithm 1 shows the procedure to build the multi-level tree
from the target data servers of a request. Based on Rule 1, SICC
clusters target data servers inside the same rack into a proximity-
aware swarm (Line 1). Inside a swarm, based on Rule 2, the data
server storing the largest number of queried data objects is selected to
be the hub by the front-end server, and the hub enqueues into queue
Qh (Lines 2-4). Thus, the hub can communicate with its proximity
close data servers directly through the edge switch with minimized
path length as 1. Due to the clustering of data servers, the number
of hubs is much smaller than the number of target data servers, so
that the total number of concurrently connected data servers to the
front-end server is reduced to avoid the incast congestion.

When the number of hubs connecting the front-end servers is
larger than N , which tends to generate incast congestion, a multi-
level tree is formed from the hubs to limit the number of concurrent
connections to the front-end server no larger than N . By following

Algorithm 1: Building a multi-level tree from hubs.

1 Cluster target data servers in each rack into a swarm;
2 /*Selecting a hub from each swarm*/
3 for each swarm do
4 Select the data server with the largest number of requested

data objects as the hub; Enqueue the hub in to queue Qh ;
5 Sort the hubs in Qh in an ascending order of the number of

stored requested data objects;
6 /*Creating multi-level tree from the hubs*/
7 while |Qh | > N do
8 Dequeue a hub hi from Qh ;
9 Select a

hub hj with the smallest number of data objects and under
the same aggregation router as hi ; Link hi as a child to hj ;

10 while hj has less than N children and hi has children do
11 Transmit the last child from hi to be a child of hj ;

12 Update hj ’s number of requested data objects by add hi ’s;
13 Update hj ’s position at Qh accordingly;

Rule 1, we first sort all hubs in an ascending order of the number
of their stored requested data objects Qh (Line 5). Qh contains
hubs in an ascending order of the number of requested data objects
contained in the subtree with the root of each hub. While the number
of hubs connecting the front-end servers is larger than N (Line 7),
starting from the first hub hi (Line 8), we try to form a subtree to
connect it (as the child) and a hub nearby (as the parent) (Lines
9-13). According to Rule 1 and Rule 2, we try to link a hub to the
hub with the smallest number of data objects among the hubs under
the same aggregate router (Lines 9-10). Also, in order to balance the
workloads among hubs and reduce the number of levels of the tree to
reduce the network load of data transmission, if hi is a parent hub of
other hubs, it transfers each of its child from the one with the largest
number of requested data objects to be a child of hj until all hi ’s
children are transferred or hj has N children (Lines 10-11). After
that, the number of requested data objects reported by hj is updated
by adding the number of data objects reported by hi (Line 12), and
hj ’s position in the queue should be updated accordingly based on
the number of requested data objects contained in its subtree (Line
13).

3.2 Two-Level Data Transmission Speed Control

3.2.1 Congestion Avoidance at the Front-End Server. For
a data request, the front-end server sends out the data queries con-
currently to all hubs in the swarm structure. While collecting all data
responses from target data servers inside the same swarm, a hub
continuously sends out all data responses to the front-end server. The
sum of the bandwidths of the hubs’ upload links may still be larger
than the bandwidth of the download link of the front-end server,
which may cause incast congestion.

To avoid the incast congestion caused by the hubs, we control
the data transmission speed of each hub in each short time period
(denoted by ti (i ∈ N+)) in order to fully utilize the bandwidth of

the front-end server while avoiding overflows. Fortunately, the long-
lasting data transmissions from hubs to the front-end servers enable
to learn the transmission speeds of hubs in time ti−1 to adjust their
assigned bandwidth in time ti . We use bahi to denote the assigned
data transmission speed of hub hi , and use brhi to denote the real data
transmission speed from hub hi to the front-end server measured
during the last short time period. We use Bp to denote the downlink
bandwidth that the front-end server plans or is assigned to use for
the next time period. At initial, Bp is set to (Bd − Ba), where Bd
denotes its bandwidth capacity, and Ba denotes its actual received
total size of packets during time ti−1. We will explain how to update
Bp later on.

At the initial time of each short time period, without considering
the different network status of each hub, the front-end server can
allocate its bandwidth evenly to each hub as:

bahi
=

Bp

|H | . (2)

However, the network status of each hub varies over time and the
loads on different hubs are different, so some hubs may not fully
utilize their assigned transmission speed bahi

while others need a
transmission speed higher than bahi . In order to fully utilize the band-
width of the front-end server without causing congestion, we reassign
the over-assigned bandwidth to other hubs that need more bandwidth.
We use Ho and Hu to denote the set of hubs with bahi

< brhi
(over-

utilized hubs) and the set of hubs with bahi
> brhi

(under-utilized
hubs), respectively. Therefore, we reassign the data transmission
speed of hubs in Ho to:

bahi
= bahi

+

∑
hj ∈Hu (bahj − brhj

)

|Ho | , (3)

and the data transmission speed of hubs in Hu to:

bahi = b
r
hi
. (4)

The front-end server periodically adjusts the assigned bandwidth to
each hub after each short time period. Since the expected and upper
bound of data transmission speed is always

∑
hi ∈H bahi

which equals
Bp , the front-end server overflow of the download link is avoided
and the bandwidth is fully utilized.

3.2.2 Congestion Avoidance at the Aggregation Router.
Considering a number of front-end servers in the same rack, due
to their sharing of the uplink of the edge-switch (Figure 2), the
incast congestion may occur at the uplink of the edge-switch (i.e.,
downlink of the aggregation router) if all front-end servers in the
same rack receive many data responses at the same time. To avoid
the overflow at the uplink of edge-switches, the front-end servers
need to cooperatively adjust the data transmission speeds for data
responses in their downlinks on the edge-switch. That is, Bp used in
Equation (2) for the next time period is proactively adjusted.

At the beginning of each period ti , each front-end server asks the
total size of all queueing packets (denoted by qti) in the aggregation
router’s port, which is connected to the uplink of its edge switch. We
use Sa to denote the size of the buffer in the aggregation router for
package queueing and useT to denote a threshold to judge a possible
incoming congestion at the uplink of the edge switch. If

qti
Sa ≥ T ,

each front-end server cuts down its Bp to avoid the congestion:

Bp = Bp ∗ (1 − β ∗
qti
Sa

), (5)

where β is the upper bound of the decrement of the bandwidth.
We used a sliding window [27] like congestion control strategy by
reducing the planned bandwidth by a certain percentage. Largely
reducing the planned bandwidth leads to low bandwidth utilization.
Therefore, SICC adjusts the planned bandwidth according to the
congestion conditions measured by

qti
Sa . A larger qti compared to

the buffer size Sa indicates a more serious congestion in the edge
bandwidth uplink, which needs a larger decrement on Bp . After
updating Bp , all the data transmission speeds of hubs are updated
by keeping the same portion of their sharing of the Bp in last period
based on Equation (2).

To fully utilize the bandwidth of the uplink, we need to enlarge
Bp when there is no predicted congestion. Then, we set

Bp = min{Bd ,Bp ∗ (1 + α ∗ Ba
Bp

)}, (6)

where α is the upper bound of the increment of the bandwidth. In-
stead of using a slow increase as in the sliding window protocol,
SICC increases the planned bandwidth by a certain percentage ac-
cording to the network status. A larger Ba means that the hub fully
utilized its planed bandwidth in current period, which indicates a
better network status during packet routing. Thus, we increased Bp

faster with a larger Ba
Bp . On the other hand, a smaller Ba indicates a

busy network during data transmission. Therefore, Bp is increased
more slowly with a smaller Ba

Bp .

3.3 Packet Compression and Object Query
Redirection

3.3.1 Packet Compression. The data object is usually very
small and no larger than 1KB [2], such as the text content of one
friend post and status in online social networks. To put each data
object in one packet, a large amount of the bandwidth along the path
from a hub to the front-end server is consumed by transferring the
packet headers compared to its small payload. Thus, the network
resource utilization is reduced.

Actually, the maximum payload of a packet can be much larger
than the size of a data object. For example, the packet in Ethernet is
1, 500 bytes. Therefore, a hub can combine several data objects into
the same packet until the maximum allowed payload is reached. It
reduces the total number of packets needed to be sent to the front-end
server through inter-rack communication and saves the bandwidth
otherwise needed to transmit a large number of packet heads. As
a result, the network resource utilization is increased. The packet
compression is more effective for a data request with many requested
data objects. This is because more requested data objects lead to
more queries inside the same rack, which enables a large packet to be
more likely to find small packets in the same rack to be transmitted
together in order to reduce the number of transmitted packets.

3.3.2 Query Redirection. The data request response latency
depends on the hub that is the last one finishing the data transmission
to the front-end server regardless of the transmission speeds of the
other hubs. Therefore, an incast congestion control method needs to

hi

…

hj

…

hk

…

di

. . .
Requested

data

Other
stored data

Object query redirection

1Mb/s

1Mb/s

2Mb/s

di dm

dm di

d2 dn d1 dk

100 150 50

Figure 3: An example of query redirection.

reduce the longest data transmission latency in all hubs. To achieve
this, SICC needs to balance the number of data objects transmitted
from different hubs according to their data transmission speeds to
minimize the data response latency. We define the data transmission
progress rate of hub hi (denoted by phi) as:

phi =
|Dhi | ∗ s
brhi

, (7)

where Dhi denotes the set of all data objects stored in the data
servers in the subtree of hi that have not been transmitted yet. The
data transmission progress rate phi actually denotes the expected
remaining time to finish the data transmission. In order to reduce the
longest data request latency among all hubs, we need to balance the
data transmission progress rate among them.

For each data object, there are usually several data replicas stored
by different data servers over the datacenter in order to achieve
high data availability [28, 29]. Therefore, if a hub has a long data
remaining transmission time, the front-end server can redirect some
of the hub’s queries to another hub whose subtree has data servers
hosting replicas of the data objects of the queries. As shown in
Figure 3, hi has a higher remaining time than hj and hk . The request
of di and dj are redirected from hi to hj and hk , respectively. To do
this, we define the average transmission remaining time as

p̄ =

∑
hi ∈H phi
|H | . (8)

For any hub with phi > p̄, we define it as a low-progress hub, and
use Dl to denote the set of all low-progress hubs; for any hub with
phi < p̄, we define it as a high-progress hub, and use Dh to denote
the set of all high-progress hubs.

We aim to redirect some queries from each hub hi in Dl to the
hubs in Dh to make hi a non-less-progress hub. We loop all data
objects dk ∈ Dhi until hi is not a low-progress hub. Specifically, for
each data object dk ∈ Dhi , if there exists a data replica inside the
swarm of a high-progress hub hj in Dh , we redirect the data query
of dk from hi to hj . We then update Dhi and Dhj , and recalculate
phi and phj accordingly. By comparing with p̄, if the hub hi (hj) is
no longer a low (high) progress hub, it is removed from Dl (Dh).
In this way, all hubs for a request are expected to have a similar
data transmission progress rate, and the longest data request latency
among all the hubs is reduced.

4 PERFORMANCE EVALUATION
We simulated 3000 data servers [30] in a datacenter, which forms a
typical three-layer fat-tree [5] with 60 data servers inside a rack [31].

Front-end servers were randomly selected from servers. The capacity
of downlink, uplink and buffer size of each edge-switch were set
to 1Gbps, 1Gbps [32] and 100KB, respectively. We assume a 1:4
over-subscription ratio at the ToR tier.We set the default number
of requested data objects of a data request to 1000 [2]. Each data
object has three replicas [29] randomly distributed among all data
servers [33]. We set the size of each packet to a value randomly
chosen from [20, 1000]B [2]. The timeout of TCP packet retrans-
mission was set to 10 ms [34]. As [10, 35, 36], we first simulated
the incast congestion scenario with one front-end server requesting
data objects from multiple data servers. For each experiment, the
front-end server continuously initiates 10,000 data requests one after
each other, and we measure the average performance per request
after the front-end server receives all queried data objects. Later on,
we test the scenario of multiple front-end servers. We assume that
there is no any physical failure in the simulation.

We compared SICC with previous incast congestion control meth-
ods: One-all, the sliding window protocol (SW) [2], and ICTCP [10].
One-all We use One-all as a baseline. In this method, the front-end
server simultaneously sends out queries to all target data servers,
which start the data transmission to the front-end server right after
receiving the queries.
SW The sliding window protocol (SW) [2] reduces the concurrently
connected data servers to the front-end server using the typical
sliding window protocol, which increases the window size till the
occurrence of incast congestion and then decreases the size.
ICTCP [10] improves the sliding window protocol by adjusting the
receiving window according to the ratio of the actual throughput
over the expected throughput. It divides the slot into two sub-slots
and then uses all the traffic received in the first sub-slot to calculate
the available bandwidth as quota for window increase on the second
sub-slot. In the following sections, we first measure the performance
of SICC without enhancements, and then measure the effectiveness
of each enhancement method.

4.1 Performance of Data Request Latency
A data request consists of many data queries for different data ob-
jects. The latency of a query is defined as the time elapsed from
the time when the front-end server initiates the query to the time
when it receives the data object. The longest query latency among
the queries of a request is the request’s latency. Figure 4(a) shows
the data request latency of different methods versus the number
of data queries. Figure 4(b) shows the CDF of data queries over
time of one data request. From both figures, we see that the data
request latency follows SICC<ICTCP<SW<One-all. In One-all, all
target data servers send data packets to the front-end server during a
short time, which causes incast congestion and retransmissions for
dropped packets, thus leading to the highest latency. SW reduces
the concurrently connected data servers through the sliding window
protocol. Thus, it generates a shorter data request latency than One-
all due to lighter incast congestion. SW generates a longer service
latency than ICTCP, which improves the sliding window protocol
to avoid increasing the window size beyond the bandwidth of the
uplink. However, the sliding window cannot fully utilize the band-
width while moving the window forwards, and a delay is generated

0

1000

2000

3000

4000

5000

1000 2000 3000 4000 5000

D
a

ta
 r

e
q

u
e

st
 l
a

te
n

cy
 (

m
s)

Num. of data queries

One-all SW ICTCP SICC

(a) Data request latency

0%

20%

40%

60%

80%

100%

0 500 1000

C
D

F
 o

f
q

u
e

ri
e

s

Time (ms)

One-all SW ICTCP SICC

(b) CDF of queries

Figure 4: Performance of response latency.

1E+0

1E+1

1E+2

1E+3

1E+4

600 500 400 300 200

N
u

m
b

e
r

o
f

in
te

r-
ra

c
k

p

a
c
k
e

ts

Downlink bandwidth (Mbps)

One-all SW ICTCP SICC SICC-NPS

Figure 5: Inter-rack traffic cost
reduction

0%

20%

40%

60%

80%

100%

1 10 100 1000

C
D

F
 o

f
q

u
e

ri
e

s

Time (ms)

SICC(1000) SICC-NMT(1000)

SICC(100) SICC-NMT(100)

Figure 6: Effectiveness of
swarm-based multi-level tree.

between querying sending and response receiving for a new avail-
able slot. SICC generates a shorter latency than ICTCP since SICC
receives all data responses continuously by fully utilizing the band-
width of the downlink. Figure 4(a) also shows that the data request
latency of all methods increases proportional to the number of data
queries of a request. More queries mean that more data objects need
to be transmitted to each hub, leading to a longer data transmission
time. The figures indicate that SICC generates the shortest data re-
quest latency among all methods by avoiding congestion and fully
utilizing the downlink bandwidth.

4.2 Performance in Reducing Inter-Rack Traffic
Inter-rack communication usually has a higher latency than intra-
rack communication. Also, the network resources of inter-rack com-
munication are highly required since the resources are shared by
many servers under different racks. The bandwidth of links of an
aggregation router is much smaller than the total downlink band-
width of all data servers connecting to this router. Therefore, it is
necessary to reduce the number of inter-rack packets. Figure 5 shows
the number of inter-rack packets (including retransmitted packets)
on a logarithmic scale generated by different methods while the
downlink bandwidth decreases from 600Mbps to 200Mbps. We use
SICC-NPS to denote SICC without the Proximity-aware Swarm
method (PS), in which each hub randomly selects the same amount
of target data servers as in SICC-NPS among all data servers as its
swarm children. From the figure, we see that the result follows One-
all>SICC-NPS>SW>ICTCP>SICC. One-all generates the largest
number of inter-rack packets since the packet retransmissions caused
by the incast congestion generate extra inter-rack packets. SICC-NPS
can mitigate incast congestion so that it generates a smaller number
of inter-rack packets than One-all. SICC-NPS generates a larger
number of inter-rack packets than SW. This is because in SICC-NPS,
most packets between hubs and data servers in their swarms are
transmitted between racks due to the proximity-unaware clustering.
In SW, all data servers transmit the packets directly to the front-end
server without another forwarding layer between hubs and the front-
end server as in SICC-NPS. ICTCP also has direct transmission
without an additional forwarding layer. Since ICTCP avoids more
incast congestion and hence reduces more packet retransmissions
than SW, it generates a smaller number of inter-rack packets than
SW. SICC generates the smallest number of inter-rack packets due to
its proximity-aware swarm creation, packet compression method to
send several data packets together, and the incast congestion control

that avoids packet retransmission. This figure indicates that SICC is
the most effective in reducing the number of inter-rack packets to
reduce request latency and save the inter-rack network resources.

4.3 Performance of Swarm based Multi-Level
Tree

We then measure the effectiveness of the swarm based multi-level
tree to reduce the data request latency by avoiding the incast con-
gestion. We use SICC-NMT to denote SICC without the Multi-level
Tree (MT), so that all hubs directly connect to the front-end server.
Figure 6 shows the CDF of the queries over time of different methods
versus downlink bandwidth capacity and (x) in the figure means that
the downlink is xMbps. It shows that SICC-NMT generates a longer
data request latency than SICC due to the incast congestion caused
by packets concurrently sent from all hubs. The figure also shows
that a larger downlink bandwidth leads to a smaller response latency.
By fully utilizing the bandwidth, SICC(1000) generates approximate
one-tenth of the data request latency of SICC(100) even though it
has a higher depth of multi-level tree. Since each hub starts trans-
mitting data objects continuously from currently stored and received
requested data objects, it does not need to wait for receiving all data
objects from its children. Therefore, by sending and receiving data
objects continuously, the hub can fully utilize its assigned bandwidth.
Therefore, a tree with a large depth does not increase the data re-
quest latency. The figure further shows that with a smaller downlink
bandwidth, SICC-NMT generates much longer latency than SICC.
This is because, with a smaller downlink bandwidth, there should
be fewer hubs directly connect to the front-end server. Therefore,
SICC-NMT generates more serious incast congestion because it has
more hubs connecting to the front-end server. In summary, the figure
indicates that the multi-level tree can avoid incast congestion caused
by many hubs directly connecting the front-end server, and its depth
hardly affects the data request latency.

4.4 Two-level Data Transmission Speed Control
In this section, we measure the performance of our two-level data
transmission Speed Control method (SSC). We use SICC-NSSC to
denote SICC without this method. We adjust the assigned downlink
bandwidth to each hub in every 10ms. We first present the perfor-
mance of congestion control at the front-end server side and then at
the aggregation router. For each experiment, we set the probability
of each hub becoming overloaded to 50%, and the overloaded hub
has an actual data transmission speed as 10% of its initially assigned

0%

20%

40%

60%

80%

100%

0 50 100 150 200

C
D

F
 o

f
q

u
e

ri
e

s

Time (ms)

SICC SICC-NSSC

(a) CDF of queries of a single front-end
server

0E+0

1E+3

2E+3

3E+3

4E+3

5E+3

6E+3

1000 2000 3000 4000 5000

D
a

ta
 r

e
q

u
e

st
 l
a

te
n

cy
 (

m
s)

Num. of data queries

SICC SICC-NSSC

(b) Data request latency with multi-front-
end servers

Figure 7: Effectiveness of two-level speed control.

0

4

8

12

16

20

200 400 600 800 1000
Max. size of data object (Byte)

Compression ratio
Saved data request latency

C
o

m
p

re
ss

io
n

 r
a

ti
o

 /
 s

a
v
e

d

d
a

ta
 r

e
q

u
e

t
la

te
n

cy
 (

%
)

(a) Packet compression.

0E+0

2E+3

4E+3

6E+3

8E+3

1E+4

3000 6000 12000D
a

ta
 r

e
q

u
e

st
 l
a

te
n

cy
 (

m
s)

Num. of queries

Random SW ICTCP SICC SICC-NQR

(b) Query redirection

Figure 8: Effectiveness of the enhancement methods

0E+0

1E+4

2E+4

3E+4

4E+4

5E+4

10000 20000 30000 40000 50000

D
a

ta
 r

e
q

u
e

st
 l
a

te
n

c
y

 (
m

s)

Num. of queries

One-all SW ICTCP SICC

Figure 9: Performance of scal-
ability.

0

1

2

3

4

5

10000 20000 30000 40000 50000
Num. of target data servers

T
im

e
 t

o
 f

o
rm

 t
h

e
 m

u
lt

i-
le

v
e

l
tr

e
e

 i
n

 t
h

e
 f

o
rn

t-
e

n
d

 s
e

rv
e

r
(m

s)

Figure 10: Computing time for
tree creation.

data transmission speed. Figure 7(a) shows the CDF of queries over
time of SICC and SICC-NSSC. It shows that SICC has a much
smaller data request latency than SICC-NSSC. This is because SICC
reassigns the data transmission speeds of hubs according to their
actual data transmission speeds. Together with the query redirection
method, SICC can fully utilize the bandwidth of downlink to reduce
the query latency. SICC-NSSC also leverages query redirection to
balance the progress, but without speed control, it cannot fully utilize
the bandwidth, leading to a longer data request latency. The figure
indicates that the data transmission speed control can effectively
reduce the data query latency when the hubs are overloaded by fully
utilizing the bandwidth of the edge switch downlink.

We then present the performance of congestion avoidance at the
aggregation router. We set all data servers inside a rack as front-end
servers, each of which conducts a request concurrently. We set α =
β = 20%, T = 10% and Ba = 200KB. Figure 7(b) shows the average
data request latency of SICC and SICC-NSSC versus the number
of queries per request. It shows that SICC-NSSC generates a much
longer data request latency than SICC. This is because, without the
speed control method, all front-end servers aim to receive the packets
at the speed of their downlink bandwidth. It causes incast congestion
at the aggregation router. Then, a timeout delay is introduced to
all front-end servers due to packet loss. The figure indicates that
the speed control can effectively reduce the data request latency by
avoiding the incast congestion at the aggregation router side.

4.5 Performance of Enhancement Methods
We first measure the effectiveness of the packet compression method
in reducing the number of inter-rack packets and data request la-
tency. In order not to count the inter-rack packets between hubs in

the multi-level tree to show packet compression’s sole effectiveness
in reducing the number of inter-rack packets, we connected all hubs
directly to the front-end server. We measure the compression ratio by
n/n′, where n and n′ represent the number of inter-rack packets gen-
erated by SICC without and with packet compression, respectively.
Recall that the size of a data object was randomly chosen from [20,
1000]B. In this test, the size of a data object was randomly chosen
from [20, x]B, where the maximum size of a data object x was varied
from 200B to 1000B with a step size as 200B. Figure 8(a) shows the
compression ratio, which is always much larger than 1. It implies
that the packet compression effectively reduces the number of pack-
ets transmitted from hubs. We also see that the compression ratio
decreases as the size of the data objects increases. This is because
a large maximum size of a data object leads to a lower probability
to fit two packets into the same Ethernet packet with the maximum
payload limitation. Besides, the figure shows the saved data request
latency calculated by (l ′ − l)/l ′, where l and l ′ are the data request
latency of SICC with and without packet compression, respectively.
It shows that the packet compression can reduce the data request
latency. This is because a larger payload in packets leads to higher
bandwidth utilization and then a shorter data request latency while
transmitting the same amount of data. It indicates that the packet
compression method is effective in reducing the data request latency
of SICC.

We then measure the effectiveness of the query redirection in
reducing the data request latency. We use the same scenario as in
Section 4.4. We use SICC-NQR to denote SICC without the Query
Redirection method (QR). Figure 8(b) shows the data request latency
of different methods with different number of queries. It shows
the same order among all methods as shown in Figure 4(a) due
to the same reasons. SICC-NQR generates a longer data request
latency than SICC because of the longer latency to transmit requested
data from overloaded hubs while SICC can redirect the requests to
balance the data transmission progress rate. The figure indicates that
the query redirection method effectively reduces data request latency
by balancing the data transmission progress ratees among hubs.

4.6 Performance of Scalability
In this section, we measure the data request latency of different
methods in a large-scale datacenter. We enlarge the number of data
servers by 50 times. We varied the number of queries of a request
from 10,000 to 50,000 with a step size as 10,000 to measure the
performance. Figure 9 shows the data request latency of all different

0.0

50.0

100.0

150.0

200.0

250.0

30 60 90 120 150D
a

ta
 r

e
q

u
e

st
 l
a

te
n

cy
 (

m
s)

Num. of data queries

One-All SW ICTCP SICC

(a) Data request latency

0%

20%

40%

60%

80%

100%

0 100 200 300

C
D

F
 o

f
q

u
re

ie
s

Time (ms)

One-All SW ICTCP SICC

(b) CDF of queries

0

3

6

9

12

15

18

21

200 400 600 800 1000
Max. size of data object (Byte)

Compression ratio
Saved data request latency

C
o

m
p

re
ss

io
n

 r
a

ti
o

 /
 s

a
v
e

d

d
a

ta
 r

e
q

u
e

st
 l
a

te
n

cy
 (

%
)

(c) Effectiveness of packet compression

0.0

20.0

40.0

60.0

80.0

100.0

120.0

30 60 90 120 150

D
a

ta
 r

e
q

u
e

st
 l
a

te
n

cy
 (

m
s)

Num. of data queries

SICC SICC-NSSC SICC-NQR

(d) Effectiveness of speed control and query
redirection

Figure 11: Performance on a real cluster.

methods. We see that SICC always generates the shortest data request
latency among all methods. Also, as the number of queries increases,
its data request latency slowly increases proportionally while those
of other methods increase rapidly. This is because SICC effectively
controls all hubs data transmission progress rate and speed and the
number of hubs connecting to it to avoid the incast congestion and
fully utilize the bandwidth. The figure also shows the same order
among all other methods as shown in Figure 4(a) due to the same
reasons. The figure indicates that SICC generates the shortest request
latency, and its performance is more scalable than other methods in
a large-scale datacenter.

We also measure the time to create the multi-level tree with
proximity-aware swarms in a front-end server. We measured the
computing time in a laptop with 4GB memory and Dual-core 2.5GHz
CPU. The computing time in a powerful front-end server in practice
will be much smaller. Figure 10 shows the computing time to create
the multi-level tree versus the number of target data servers. We set
the number of requested data objects in each target data server to
a value randomly chosen from [1, .., 10]. It shows that more target
data servers lead to a higher computing time. This is because more
data servers from more swarms, and there are more hubs to form
the multi-level tree, increasing the computing workload. However,
the computing time is around 4ms to computing a multi-level tree
with 50,000 data servers, and less than 1ms for 10,000 data servers.
Therefore, the latency to form the tree introduces a small delay,
which is much smaller than 100ms as the typical budget for a data
request in a datacenter serving Web applications [4].

5 EVALUATION ON A REAL TESTBED

We implemented SICC and other comparison methods on the Pal-
metto cluster [37], a high-performance supercomputer in Clemson
University. The servers are with 2.4G Intel Xeon CPUs E5-2665 (16
cores), 64GB RAM, 240GB hard disk and 10G NICs. The OS of
each server is Linux 64-bit version. The switchs are Brocade MLX-
eâĂŘ32 switchsWe which can provide 40Gbps. The CPU, Memory
and hard disk are never a bottleneck in any of our experiments. We
randomly selected 150 servers from all servers and one front-end
server in them, each of which has the downlink and uplink as 10Gbps.
We randomly distributed 150 data objects into the data servers, the
size and the number of replicas of each data object follow the same
distribution as in Section 4. We use a batch-processing application,

the Apache Hadoop mapreduce framework [33] to simulate the
web application workload. The workload consists of WordCount
(counting unique words in text) and PageRank (Implementation of
PageRank algorithm) [38]. All other settings are the same as in
Section 4.

Figure 11(a) shows the data request latency of all methods versus
the number of queries. Figure 11(b) shows the CDF of queries over
time of all incast control methods. They exhibit the same order and
trends as in Figure 4(a) and Figure 4(b) due to the same reasons. The
figure indicates that SICC generates the shortest data request latency
of all methods on the testbed.

Figure 11(c) shows the compression ratio and the saved data
request latency of the packet compression method. It shows the same
trends as in Figure 8(a) due to the same reasons. It indicates that
the packet compression method is effective in reducing data request
latency by reducing the number of packets.

Figure 11(d) shows the data request latency of SICC without data
transmission speed control or query redirection. It shows that SICC-
NSSC and SICC-NQR generate longer data request latency than
SICC due to the same reasons as in Figures 7(a) and 8(b), respec-
tively. The figure shows that the data transmission speed control and
query redirection reduce the data request latency of SICC without
each of them by 40.3% and 107%, respectively when there are 1500
requested data objects. The figure indicates that the two methods
can effectively improve the request latency of SICC.

0

50

100

150

200

250

300

30 60 90 120 150

D
a

ta
 r

e
q

u
e

st
 l
a

te
n

cy
 (

m
s)

Num. of data queries

SICC SICC-NSSC

Figure 12: Data request latency with multi-front-end servers.

We then measure the performance of data transmission speed
control method in avoiding the incast congestion at the aggregation
router side. Due to the small scale and lack of control of the aggre-
gation router in the real computing cluster, we use one data server to
function as an aggregation router with 100Mbps downlink capacity.

We randomly selected 20 servers as front-end servers. Other settings
are the same as in Figure 7(b).

Figure 12 shows the average data request latency per front-end
server of SICC with or without the speed control method versus the
number of data queries. It shows that the SICC generates a much
lower data request latency than SICC-NSSC as shown in Figure 7(b)
due to the same reasons. It indicates that the data transmission
speed control can reduce the data request latency by avoiding incast
congestion at the aggregation router.

6 CONCLUSION

Previous incast congestion control methods are not applicable to
datacenter serving current Web applications because of their strin-
gent low delay requirements and typical data access features (i.e., a
very large number of responses and very fast transmission for each
response). To solve this problem, we proposed a Swarm-based Incast
Congestion Control method (SICC). SICC clusters the proximity-
close data servers in the same rack into swarms, selects a data server
as a hub to collect all transmitted data inside its swarm and con-
tinuously forwards it to the front-end server, so that the number
of concurrently connected data servers to the front-end server is
reduced, which avoids the incast congestion. Also, the long-lasting
transmission by transmitting data together from a hub enables SICC
to sophisticatedly control the data transmission speed to avoid con-
gestion while fully utilizing the bandwidth. This feature also enables
SICC to have two enhancement methods: packet compression and
query redirection. The packet compression method combines dif-
ferent packets to one packet to increase the payload of a packet to
improve the bandwidth utilization. The query redirection method
transmits the data queries from swarms with long remaining data
transmission latency to swarms with short remaining data trans-
mission latency in order to reduce the data request latency. The
experiments in simulation and on a real cluster show that SICC
achieves the shortest data request latency compared with other incast
control methods.

In the future, we will further consider how to make data transmis-
sion bypass congestion during the routing in order to further reduce
the data request latency.

7 ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants ACI-1719397,
CNS-1733596 and Microsoft Research Faculty Fellowship 8300751.

REFERENCES
[1] Facebook Passes Google In Time Spent On Site For First Time

Ever. http://www.businessinsider.com/chart-of-the-day-time-facebook-google-
yahoo-2010-9, [accessed in July 2015].

[2] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy,
M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and V. Venkataramani. Scaling
Memcache at Facebook. In Proc. of NSDI, 2013.

[3] R. Kohavl and R. Longbotham. Online Experiments: Lessons Learned, 2007.
http://exp-platform.com/Documents/IEEEComputer2007Online
Experiments.pdf, [accessed in July 2015].

[4] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannona, H.-A.
Jacobsen, N. Puz, D. Weaver, and R. Yerneni. PNUTS: Yahoo!s Hosted Data
Serving Platform. In Proc. of VLDB, 2008.

[5] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity Data Center
Network Architecture. In Proc. of SIGCOMM, 2008.

[6] L. Yan, K. Chen, H. Shen, and G. Liu. Mobilecopy: Resisting correlated node
failures to enhance data availability in dtns. In Proc. of SECON, 2015.

[7] R. Mittal, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi, A. Vahdat, Y. Wang,
D. Wetherall, and D. Zats. Timely: Rtt-based congestion control for the datacenter.
In Proc. of SIGCOMM, 2015.

[8] Z. Li, H. Shen, J. Denton, and W. Ligon. Comparing application performance on
hpc-based hadoop platforms with local storage and dedicated storage. In Proc. of
Big Data, 2016.

[9] G. Liu, H. Shen, and H. Wang. Computing load aware and long-view load
balancing for cluster storage systems. In Proc. of Big Data, 2015.

[10] H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP: Incast Congestion Control for
TCP in Data-Center Networks. TON, 2013.

[11] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design, Implementation
and Evaluation of Congestion Control for Multipath TCP. In Proc. of NSDI, 2011.

[12] M. Alizadeh, A. G. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan. Data center TCP (DCTCP). In Proc. of SIGCOMM,
2010.

[13] B. Vamanan, J. Hasan, and T. N. Vijaykumar. Deadline-Aware Datacenter TCP
(D2TCP). In Proc. of SIGCOMM, 2012.

[14] J. Zhang, F. Ren, and C. Lin. Modeling and Understanding TCP Incast in Data
Center Networks. In Proc. of INFOCOM, 2011.

[15] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley.
Improving Datacenter Performance and Robustness with Multipath TCP. ACM
SIGCOMM Comput. Commun. Rev., 2011.

[16] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul. SPAIN: COTS
Data-Center Ethernet for Multipathing over Arbitrary Topologies. In Proc. of
NSDI, 2010.

[17] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G Andersen, G. R Ganger,
G. A Gibson, and B. Mueller. Safe and effective fine-grained tcp retransmissions
for datacenter communication. In Proc. of SIGCOM, 2009.

[18] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R. Ganger, G. A
Gibson, and S. Seshan. Measurement and Analysis of TCP Throughput Collapse
in Cluster-based Storage Systems. In Proc. of FAST, 2008.

[19] E. Krevat, V. Vasudevan, A. Phanishayee, D. G. Andersen, G. R. Ganger, G. A.
Gibson, and S. Seshan. On Application-Level Approaches to Avoiding TCP
Throughput Collapse in Cluster-based Storage Systems. In Proc. of PDSW, 2007.

[20] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra, and
P. Rodriguez. The Little Engine(s) that Could: Scaling Online Social Networks.
In Proc. of SIGCOMM, 2010.

[21] G. Liu, H. Shen, and H. Chandler. Selective Data replication for Online Social
Networks with Distributed Datacenters. In Proc. of ICNP, 2013.

[22] Y. Yang, H. Abe, K. Baba, and S. Shimojo. A Scalable Approach to Avoid Incast
Problem from Application Layer. In Proc. of COMPSACW, 2013.

[23] M. Podlesny and C. Williamson. An Application-Level Solution for the TCP-
Incast Problem in Data Center Networks. In Proc. of IWQoS, 2011.

[24] M. Podlesny and C. Williamson. Solving the TCP-Incast Problem with
Application-Level Scheduling. In Proc. of MASCOTS, 2012.

[25] H. Shen, A. Sarker, L. Yu, and F. Deng. Probabilistic network-aware task place-
ment for mapreduce scheduling. In Proc. of Cluster, 2016.

[26] G. Liu, H. Shen, and H. Wang. Deadline guaranteed service for multi-tenant cloud
storage. Trans. on Parallel and Distributed Systems, TPDS, 2016.

[27] L. L. Peterson and B. S. Davie. Computer Networks: A Systems Approach.
Elsevier, 2007.

[28] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop Distributed File
System. In Proc. of MSST, 2010.

[29] Amazon DynnamoDB. http://aws.amazon.com/dynamodb/, [accessed in July
2015].

[30] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The Case for Evaluating MapRe-
duce Performance Using Workload Suites. In Proc. of MASCOTS, 2011.

[31] T. Benson, A. Akella, and D. A. Maltz. Network Traffic Characteristics of Data
Centers in the Wild. In Proc. of IMC, 2010.

[32] Cisco Nexus 3064 Switch. http://www.cisco.com/c/en/us/products/
switches/nexus-3064-switch/, [accessed in July 2015].

[33] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop Distributed File
System. In Proc. of MSST, 2010.

[34] V. Paxson, M. Allman, J. Chu, and M. Sargent. Computing TCP’s Retransmission
Timer. Technical report, 2011.

[35] J. Zhang, F. Ren, L. Tang, and C. Lin. Taming TCP Incast Throughput Collapse
in Data Center Networks. In Proc. of ICNP, 2013.

[36] G. Liu, H. Shen, and H. Wang. Towards long-view computing load balancing in
cluster storage systems. Trans. on Parallel and Distributed Systems, TPDS, 2016.

[37] Palmetto Cluster. http://citi.clemson.edu/palmetto/.
[38] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The hibench benchmark suite:

Characterization of the mapreduce-based data analysis. In ICDE Workshops.
2011.

	Abstract
	1 Introduction
	2 Related Work
	3 Swarm based Incast Congestion Control
	3.1 Proximity-aware Swarm based Data Transmission
	3.2 Two-Level Data Transmission Speed Control
	3.3 Packet Compression and Object Query Redirection

	4 Performance Evaluation
	4.1 Performance of Data Request Latency
	4.2 Performance in Reducing Inter-Rack Traffic
	4.3 Performance of Swarm based Multi-Level Tree
	4.4 Two-level Data Transmission Speed Control
	4.5 Performance of Enhancement Methods
	4.6 Performance of Scalability

	5 Evaluation on a Real Testbed
	6 Conclusion
	7 Acknowledgements
	References

