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Motivation
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Motivation (cont.) 

• High requirements on completion time
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Motivation (cont.) 

• Queue length poor predictor of waiting time 
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Outline

• Introduction

• Overview of Dependency-aware 
Scheduling and Preemption system 
(DSP)

• Design of DSP

• Performance Evaluation

• Conclusion
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Proposed Solution 

• DSP: Dependency-aware scheduling and preemption system

 Features of DSP

‒ Dependency awareness 

‒ High throughput

‒ Low overhead

‒ Satisfy jobs’ demands on completion time

Dependency-

aware 

scheduling

Low overhead 

preemption

High throughput

Dependency-aware scheduling and 

preemption system (DSP)

Framework of DSP 
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Design of DSP 

• Dependency-aware scheduling
 Mathematical model for offline scheduling

Derive the target worker and starting time for each task
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Design of DSP (cont.) 
• Dependency-aware task preemption

 Dependency-aware task priority determination

‒ Task dependency: 𝑇2 and 𝑇3 depend on 𝑇1, 𝑇4 and 𝑇5 depend on 𝑇2, 
and 𝑇6 and 𝑇7 depend on 𝑇3



10

Design of DSP (cont.) 
• Dependency-aware task preemption

 Dependency-aware task priority determination

‒ Task dependency: 𝑇2 and 𝑇3 depend on 𝑇1, 𝑇4 and 𝑇5 depend on 𝑇2, 
and 𝑇6 and 𝑇7 depend on 𝑇3

‒ Priorities assigned by other methods W/o considering dependency

• 𝑇1 < 𝑇3 < 𝑇2 < 𝑇7 < 𝑇6 < 𝑇5 < 𝑇4
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Design of DSP (cont.) 
• Dependency-aware task preemption

 Dependency-aware task priority determination

‒ Task dependency: 𝑇2 and 𝑇3 depend on 𝑇1, 𝑇4 and 𝑇5 depend on 𝑇2, 
and 𝑇6 and 𝑇7 depend on 𝑇3

‒ Priorities assigned by DSP

• 𝑇7 < 𝑇6 < 𝑇5 < 𝑇4 < 𝑇3 < 𝑇2 < 𝑇1 or 𝑇6 < 𝑇7 < 𝑇5 < 𝑇4 < 𝑇3 < 𝑇2 < 𝑇1

Rationale: Choosing tasks with more dependent tasks to run enables 
more runnable tasks; more runnable task options enable to select a 
better task that can more increase the throughput
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Design of DSP (cont.) 

• Dependency-aware task preemption
 Dependency-aware task priority determination

‒ Priority of task 𝑇𝑖𝑗 at time 𝑡

𝑠𝑖𝑗 is a set consisting of 𝑇𝑖𝑗’s children, 𝛾 ∈ (0,1) is a coefficient, 𝑡𝑖𝑗
𝑎 is the 

allowable waiting time of task 𝑇𝑖𝑗, 𝜔1, 𝜔2, 𝜔3 are the weights for task’s 

remaining time, waiting time and allowable time  

𝑃𝑖𝑗
𝑡 =෌

𝑇𝑖𝑘∈𝑠𝑖𝑗
(𝛾 + 1)𝑃𝑖𝑘

𝑡 (1)

Recursive computation 
of task priority



13

Design of DSP (cont.) 

• Dependency-aware task preemption
 Dependency-aware task priority determination

‒ Priority of task 𝑇𝑖𝑗 at time 𝑡

‒ Priority of task 𝑇𝑖𝑗 without dependent tasks at time 𝑡

𝑠𝑖𝑗 is a set consisting of 𝑇𝑖𝑗’s children, 𝛾 ∈ (0,1) is a coefficient, 𝑡𝑖𝑗
𝑎 is the 

allowable waiting time of task 𝑇𝑖𝑗, 𝜔1, 𝜔2, 𝜔3 are the weights for task’s 

remaining time, waiting time and allowable time  

𝑃𝑖𝑗
𝑡 =෌

𝑇𝑖𝑘∈𝑠𝑖𝑗
(𝛾 + 1)𝑃𝑖𝑘

𝑡 (1)

𝑃𝑖𝑗
𝑡=𝜔1 ⋅

1

𝑡𝑖𝑗
𝑟𝑒𝑚 +𝜔2 ⋅ 𝑡𝑖𝑗

𝑤 +𝜔3 ⋅ 𝑡𝑖𝑗
𝑎 (2)

Recursive computation 
of task priority

Leaf task
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Design of DSP (cont.) 

• Priority based preemption
 Selective preemption: 𝛿 portion of tasks could be preempted

Advantage: Significantly reduce overhead caused by preemption

Pro

Waiting queue Processor

Worker

Task priorityLow High

Urgent task Running task

Preempting tasks
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Design of DSP (cont.) 

• Priority based preemption
 Preemption for multiple tasks running on multiple processors

‒ Each node has a queue containing tasks that will run on the node

‒ Tasks with the same color belong to the same job

‒ Tasks are in the ascending order of their starting times
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Design of DSP (cont.) 

• Priority based preemption
 Pseudocode for the dependency-aware task preemption algorithm

Step 1: Task preemption 
based on two conditions

Step 2: Reduce excessive 
preemptions based on 
the normalized priority
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Outline

• Introduction

• Overview of Dependency-aware 
Scheduling and Preemption system 
(DSP)

• Design of DSP

• Performance Evaluation

• Conclusion
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Performance Evaluation 

• Methods for comparison
 Tetris [1]: Maximize to task throughput and speed up job completion 

time by packing tasks to machines
 Aalo [2]: Minimize the average coflow’s completion time
 Amoeba [3]: Checkpointing mechanism in task preemption

 Natjam [4]: Priority based preemption for achieving low completion 
time for high priority jobs

 SRPT [5]: Priority based preemption based on waiting time and 
remaining time for a task

[1] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella. Multi-resource packing for cluster 
schedulers. In Proc. of SIGCOMM, 2014.

[2] M. Chowdhury and I. Stoica. Efficient coflow scheduling without prior knowledge. In SIGCOMM, 2015.
[3] G. Ananthanarayanan, C. Douglas, R. Ramakrishnan, S. Rao, and I. Stoica. True elasticity in multi-tenant 

data-intensive compute clusters. In Proc. of SoCC, 2012.
[4] B. Cho, M. Rahman, T. Chajed, I. Gupta, C. Abad, N. Roberts, and P. Lin. Natjam: Design and evaluation of 

eviction policies for supporting priorities and deadlines in mapreduce clusters. In Proc. of SoCC, 2013.
[5] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal. Size-based scheduling to improve web 

performance. ACM Trans. on Computer Systems, 21(2):207--233, 2003.
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Experiment Setup 

Parameter Meaning Setting

𝑁 # of servers 30-50

ℎ # of jobs 150-2500

𝑚 # of tasks of a job 100-2000

𝛿 Minimum required ratio 0.35

𝜏 Threshold of tasks’ waiting time for execution 0.05

𝜃1 Weight for CPU size 0.5

𝜃2 Weight for Mem size 0.5

𝛼 Weight for waiting time for SRPT 0.5

𝛽 Weight for remaining time for SRPT 1

𝛾 Weight for waiting time 0.5

𝜔1 Weight for task's remaining time 0.5

𝜔2 Weight for task's waiting time 0.3

𝜔3 Weight for task's allowable waiting time 0.2
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Evaluation of DSP 

• Makespan

(a) On the real cluster (b) On Amazon EC2

Result: Makespan increases as the number of nodes increases; makespans
follow DSP < Aalo < TetrisW/SimDep < TetrisW/oDep
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Evaluation of DSP (cont.) 

• Number of disorders and throughput 

(a) The number of disorders (b) Throughput

Result: # of disorders follows DSP < Natjam ≈ Amoeba < SRPT; throughput 
follows SRPT < Amoeba ≈ Natjam < DSPW/oPP < DSP
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Evaluation of DSP (cont.) 

• Waiting time and overhead 

(a) Jobs’ average waiting time (b) Overhead

Result: Ave. waiting time of jobs approximately follows DSP < DSPW/oPP < 
Natjam ≈ SRPT < Amoeba; overhead follows DSP < DSPW/oPP < Natjam < 
Amoeba < SRPT
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Evaluation of DSP (cont.) 

• Number of disorders and throughput on EC2 

(a) The number of disorders (b) Throughput

Result: # of disorders follows DSP < Natjam ≈ Amoeba < SRPT; throughput 
follows SRPT < Amoeba ≈ Natjam < DSPW/oPP < DSP
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Evaluation of DSP (cont.) 

• Waiting time and overhead on EC2 

(a) Jobs’ average waiting time (b) Overhead

Result: Ave. waiting time of jobs approximately follows DSP < DSPW/oPP < 
Natjam ≈ SRPT < Amoeba; overhead follows DSP < DSPW/oPP < Natjam < 
Amoeba < SRPT
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Evaluation of DSP (cont.) 

• Scalability 

(a) Makespan (b) Throughput

Result: Makespan increases as the number of nodes increases; throughput 
decreases as the number of jobs increases
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Outline

• Introduction
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Conclusion 

• Our contributions

 Propose a dependency-aware scheduling and preemption 
system

 Build a mathematical model to minimize makespan and 
derive target server for each task with the consideration of 
task dependency 

 Utilize task dependency to determine task priority 

 Propose a priority based preemption to reduce the overhead

• Future work

 Study the sensitivity of the parameters

 Consider data locality, fairness and cross-job dependency

 Consider fault tolerance in designing a dependency-aware 
scheduling and preemption system
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Thank you!

Questions & Comments?


