
Leveraging Dependency in Scheduling and Preemption
for High Throughput in Data-Parallel Clusters

Jinwei Liu*，Haiying Shen† and Ankur Sarker†

*Dept. of Electrical and Computer Engineering, Clemson University, Clemson, SC, USA
†Dept. of Computer Science, University of Virginia, Charlottesville, VA, USA

2

Introduction

T T T T

T T T T

Job

Job
Scheduler

Scheduler

3

Motivation

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

• Diverse task dependency

4

Motivation (cont.)

• High requirements on completion time

2004 MapReduce
batch job

2009 Hive
query

2010 Dremel
query

2012 In-memory
Spark

10 min

1 min

10 sec
2 sec

5

Motivation (cont.)

• Queue length poor predictor of waiting time

Worker 1

Worker 2

100 ms100 ms

400 ms

200 ms

400 ms

6

Outline

• Introduction

• Overview of Dependency-aware
Scheduling and Preemption system
(DSP)

• Design of DSP

• Performance Evaluation

• Conclusion

7

Proposed Solution

• DSP: Dependency-aware scheduling and preemption system

 Features of DSP

‒ Dependency awareness

‒ High throughput

‒ Low overhead

‒ Satisfy jobs’ demands on completion time

Dependency-

aware

scheduling

Low overhead

preemption

High throughput

Dependency-aware scheduling and

preemption system (DSP)

Framework of DSP

8

Design of DSP

• Dependency-aware scheduling
 Mathematical model for offline scheduling

Derive the target worker and starting time for each task

9

Design of DSP (cont.)
• Dependency-aware task preemption

 Dependency-aware task priority determination

‒ Task dependency: 𝑇2 and 𝑇3 depend on 𝑇1, 𝑇4 and 𝑇5 depend on 𝑇2,
and 𝑇6 and 𝑇7 depend on 𝑇3

10

Design of DSP (cont.)
• Dependency-aware task preemption

 Dependency-aware task priority determination

‒ Task dependency: 𝑇2 and 𝑇3 depend on 𝑇1, 𝑇4 and 𝑇5 depend on 𝑇2,
and 𝑇6 and 𝑇7 depend on 𝑇3

‒ Priorities assigned by other methods W/o considering dependency

• 𝑇1 < 𝑇3 < 𝑇2 < 𝑇7 < 𝑇6 < 𝑇5 < 𝑇4

11

Design of DSP (cont.)
• Dependency-aware task preemption

 Dependency-aware task priority determination

‒ Task dependency: 𝑇2 and 𝑇3 depend on 𝑇1, 𝑇4 and 𝑇5 depend on 𝑇2,
and 𝑇6 and 𝑇7 depend on 𝑇3

‒ Priorities assigned by DSP

• 𝑇7 < 𝑇6 < 𝑇5 < 𝑇4 < 𝑇3 < 𝑇2 < 𝑇1 or 𝑇6 < 𝑇7 < 𝑇5 < 𝑇4 < 𝑇3 < 𝑇2 < 𝑇1

Rationale: Choosing tasks with more dependent tasks to run enables
more runnable tasks; more runnable task options enable to select a
better task that can more increase the throughput

12

Design of DSP (cont.)

• Dependency-aware task preemption
 Dependency-aware task priority determination

‒ Priority of task 𝑇𝑖𝑗 at time 𝑡

𝑠𝑖𝑗 is a set consisting of 𝑇𝑖𝑗’s children, 𝛾 ∈ (0,1) is a coefficient, 𝑡𝑖𝑗
𝑎 is the

allowable waiting time of task 𝑇𝑖𝑗, 𝜔1, 𝜔2, 𝜔3 are the weights for task’s

remaining time, waiting time and allowable time

𝑃𝑖𝑗
𝑡 =෌

𝑇𝑖𝑘∈𝑠𝑖𝑗
(𝛾 + 1)𝑃𝑖𝑘

𝑡 (1)

Recursive computation
of task priority

13

Design of DSP (cont.)

• Dependency-aware task preemption
 Dependency-aware task priority determination

‒ Priority of task 𝑇𝑖𝑗 at time 𝑡

‒ Priority of task 𝑇𝑖𝑗 without dependent tasks at time 𝑡

𝑠𝑖𝑗 is a set consisting of 𝑇𝑖𝑗’s children, 𝛾 ∈ (0,1) is a coefficient, 𝑡𝑖𝑗
𝑎 is the

allowable waiting time of task 𝑇𝑖𝑗, 𝜔1, 𝜔2, 𝜔3 are the weights for task’s

remaining time, waiting time and allowable time

𝑃𝑖𝑗
𝑡 =෌

𝑇𝑖𝑘∈𝑠𝑖𝑗
(𝛾 + 1)𝑃𝑖𝑘

𝑡 (1)

𝑃𝑖𝑗
𝑡=𝜔1 ⋅

1

𝑡𝑖𝑗
𝑟𝑒𝑚 +𝜔2 ⋅ 𝑡𝑖𝑗

𝑤 +𝜔3 ⋅ 𝑡𝑖𝑗
𝑎 (2)

Recursive computation
of task priority

Leaf task

14

Design of DSP (cont.)

• Priority based preemption
 Selective preemption: 𝛿 portion of tasks could be preempted

Advantage: Significantly reduce overhead caused by preemption

Pro

Waiting queue Processor

Worker

Task priorityLow High

Urgent task Running task

Preempting tasks

15

Design of DSP (cont.)

• Priority based preemption
 Preemption for multiple tasks running on multiple processors

‒ Each node has a queue containing tasks that will run on the node

‒ Tasks with the same color belong to the same job

‒ Tasks are in the ascending order of their starting times

16

Design of DSP (cont.)

• Priority based preemption
 Pseudocode for the dependency-aware task preemption algorithm

Step 1: Task preemption
based on two conditions

Step 2: Reduce excessive
preemptions based on
the normalized priority

17

Outline

• Introduction

• Overview of Dependency-aware
Scheduling and Preemption system
(DSP)

• Design of DSP

• Performance Evaluation

• Conclusion

18

Performance Evaluation

• Methods for comparison
 Tetris [1]: Maximize to task throughput and speed up job completion

time by packing tasks to machines
 Aalo [2]: Minimize the average coflow’s completion time
 Amoeba [3]: Checkpointing mechanism in task preemption

 Natjam [4]: Priority based preemption for achieving low completion
time for high priority jobs

 SRPT [5]: Priority based preemption based on waiting time and
remaining time for a task

[1] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella. Multi-resource packing for cluster
schedulers. In Proc. of SIGCOMM, 2014.

[2] M. Chowdhury and I. Stoica. Efficient coflow scheduling without prior knowledge. In SIGCOMM, 2015.
[3] G. Ananthanarayanan, C. Douglas, R. Ramakrishnan, S. Rao, and I. Stoica. True elasticity in multi-tenant

data-intensive compute clusters. In Proc. of SoCC, 2012.
[4] B. Cho, M. Rahman, T. Chajed, I. Gupta, C. Abad, N. Roberts, and P. Lin. Natjam: Design and evaluation of

eviction policies for supporting priorities and deadlines in mapreduce clusters. In Proc. of SoCC, 2013.
[5] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal. Size-based scheduling to improve web

performance. ACM Trans. on Computer Systems, 21(2):207--233, 2003.

19

Experiment Setup

Parameter Meaning Setting

𝑁 # of servers 30-50

ℎ # of jobs 150-2500

𝑚 # of tasks of a job 100-2000

𝛿 Minimum required ratio 0.35

𝜏 Threshold of tasks’ waiting time for execution 0.05

𝜃1 Weight for CPU size 0.5

𝜃2 Weight for Mem size 0.5

𝛼 Weight for waiting time for SRPT 0.5

𝛽 Weight for remaining time for SRPT 1

𝛾 Weight for waiting time 0.5

𝜔1 Weight for task's remaining time 0.5

𝜔2 Weight for task's waiting time 0.3

𝜔3 Weight for task's allowable waiting time 0.2

20

Evaluation of DSP

• Makespan

(a) On the real cluster (b) On Amazon EC2

Result: Makespan increases as the number of nodes increases; makespans
follow DSP < Aalo < TetrisW/SimDep < TetrisW/oDep

21

Evaluation of DSP (cont.)

• Number of disorders and throughput

(a) The number of disorders (b) Throughput

Result: # of disorders follows DSP < Natjam ≈ Amoeba < SRPT; throughput
follows SRPT < Amoeba ≈ Natjam < DSPW/oPP < DSP

22

Evaluation of DSP (cont.)

• Waiting time and overhead

(a) Jobs’ average waiting time (b) Overhead

Result: Ave. waiting time of jobs approximately follows DSP < DSPW/oPP <
Natjam ≈ SRPT < Amoeba; overhead follows DSP < DSPW/oPP < Natjam <
Amoeba < SRPT

23

Evaluation of DSP (cont.)

• Number of disorders and throughput on EC2

(a) The number of disorders (b) Throughput

Result: # of disorders follows DSP < Natjam ≈ Amoeba < SRPT; throughput
follows SRPT < Amoeba ≈ Natjam < DSPW/oPP < DSP

24

Evaluation of DSP (cont.)

• Waiting time and overhead on EC2

(a) Jobs’ average waiting time (b) Overhead

Result: Ave. waiting time of jobs approximately follows DSP < DSPW/oPP <
Natjam ≈ SRPT < Amoeba; overhead follows DSP < DSPW/oPP < Natjam <
Amoeba < SRPT

25

Evaluation of DSP (cont.)

• Scalability

(a) Makespan (b) Throughput

Result: Makespan increases as the number of nodes increases; throughput
decreases as the number of jobs increases

26

Outline

• Introduction

• Overview of Dependency-aware
Scheduling and Preemption system
(DSP)

• Design of DSP

• Performance Evaluation

• Conclusion

27

Conclusion

• Our contributions

 Propose a dependency-aware scheduling and preemption
system

 Build a mathematical model to minimize makespan and
derive target server for each task with the consideration of
task dependency

 Utilize task dependency to determine task priority

 Propose a priority based preemption to reduce the overhead

• Future work

 Study the sensitivity of the parameters

 Consider data locality, fairness and cross-job dependency

 Consider fault tolerance in designing a dependency-aware
scheduling and preemption system

Jinwei Liu (jinweil@clemson.edu)

Haiying Shen (hs6ms@virginia.edu)

Ankur Sarker (as4mz@virginia.edu)

28

Thank you!

Questions & Comments?

