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Abstract—Task scheduling and preemption are two important
functions in data-parallel clusters. Though directed acyclic graph
task dependencies are common in data-parallel clusters, previous
task scheduling and preemption methods do not fully utilize
such task dependency to increase throughput since they simply
schedule precedent tasks prior to their dependent tasks or
neglect the dependency. We notice that in both scheduling and
preemption, choosing a task with more dependent tasks to run
allows more tasks to be runnable next, which facilitates to
select a task that can more increase throughput. Accordingly,
in this paper, we propose a Dependency-aware Scheduling and
Preemption system (DSP) to achieve high throughput. First, we
build an integer linear programming model to minimize the
makespan (i.e., the time when all jobs finish execution) with the
consideration of task dependency and deadline, and derive the
target server and start time for each task, which can minimize
the makespan. Second, we utilize task dependency to determine
tasks’ priorities for preemption. Finally, we propose a method
to reduce the number of unnecessary preemptions that cause
more overhead than the throughput gain. Extensive experimental
results based on a real cluster and Amazon EC2 cloud service
show that DSP achieves much higher throughput compared to
existing strategies.

Index Terms—scheduling, task dependency, preemption, pri-
ority

I. INTRODUCTION

An increasing number of large scale analytic frameworks [1]
move towards high degree of parallelism to provide high
throughput. For example, MapReduce, Cosmos and Spark are
frameworks designed to process a large amount of data in
parallel on a cluster of computing nodes. In such a data-
parallel cluster, each job is partitioned to tasks and run on the
cluster servers in parallel. Task scheduling and preemption are
two important functions for high job performance.

Job scheduling is the process of assigning jobs to nodes
(i.e., processors) in a manner to optimize the job performance.
Usually, a user or a system submits jobs to the scheduler,
which divides each job into tasks and forwards tasks to
nodes for processing. A job usually consists of hundreds or
thousands of concurrent tasks [2]. A job’s completion time is
determined by the completion time of the tail task. Placing
a task on a contended node extends the completion time of
the task. Therefore, the tasks of each job should be scheduled
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Fig. 1: Diverse dependency relations among tasks [6].

to appropriate nodes so that the job completion time can be
reduced. Each node has a waiting queue which is used for
queuing tasks when a node is allocated with more tasks than
it can run concurrently [1, 3, 4]. In a preemption method,
the priorities of tasks are determined, and each node chooses
a high-priority task in its waiting queue to preempt its low-
priority running task. The priorities are determined based on
factors such as task’s remaining time and waiting time to serve
different performance objectives (e.g., high throughput, short
job completion times).

Dependency usually exists among tasks of a job. A task
cannot start running until its precedent tasks complete. The
big data problems such as machine learning and data mining
in different areas (e.g., bioinformatics) involve complex com-
putational dependencies [5]. Heterogeneous Directed Acyclic
Graph (DAG) structured large and complex dependencies are
increasingly common in data-parallel clusters, and the median
DAG in such a cluster can have a depth of five and thousands
of tasks [6]. Many previous methods have been proposed
to detect the dependency between tasks [7–10, 4]. However,
previous scheduling algorithms and preemption algorithms
simply schedule precedent tasks prior to their dependent tasks
or neglect the dependency.

The work in [7] indicates that task dependency needs to
be considered in task scheduling for high throughput. Some
schedulers [11–14, 6, 15–18] consider dependency. The sched-
ulers first schedule runnable tasks, and leave the dependent
tasks to the next scheduling. However, the runnable precedent
tasks may complete a certain time period before the next
scheduling, and then the server resources during this time



period cannot be fully utilized. Also, if at next scheduling
time t1, there will be three idle slots, then assigning a task
with three dependent tasks rather than a task with zero or
four dependent tasks at scheduling time t0 can more fully
utilize resources. Only considering currently runnable tasks
in scheduling without considering the dependent tasks in a
global view may not be able to fully increase the throughput.
Further, we need to consider the complex DAG structure.
For example, in Figure 1, task T6 has more dependent tasks
than tasks T1 and T15. Executing T6 at first can enable more
dependent tasks to start executing after the precedent task T6
completes, which helps increase the throughput. Though the
works in [6, 19] consider the DAG dependencies, they do
not handle the above issues. Therefore, we should judiciously
determine tasks’ execution order so that more tasks can start
executing after a selected task completes and then the tasks
that can more increase throughput can be selected to run.

Among the previous preemption methods [20–23], the
works in [20, 21] choose the tasks that have the shortest
remaining time to preempt, and the work in [22] further
considers the waiting time to prevent task starvation, in which
the task with the lowest priority may wait for a very long
time (i.e., starvation). However, none of the works consider
utilizing task dependency to increase the throughput. Also,
when the priority is too fine-grained in the priority value space,
there may be many preemptions. This leads to many context
switchings and may reduce throughput. However, this issue
was not handled in previous works.

In this paper, we explore how to fully utilize the DAG task
dependency to increase throughput. It sheds light on another
aspect that can be leveraged for performance improvement on
data-parallel clusters. Specifically, we propose a Dependency-
aware Scheduling and Preemption system (DSP), which is
composed by an offline phase (scheduling) plus an online
phase (preemption management). We summarize the contri-
butions of this work below.
• DSP considers task dependency and assigns tasks to

nodes so that independent tasks can run in parallel to
minimize the makespan (i.e., the time when all jobs finish
execution). We formulate an integer linear programming
(ILP) problem to derive the target nodes and starting
times for all tasks.

• DSP considers task dependency (along with remaining
time, waiting time and deadline) to determine task
priority for preemption. Specifically, DSP considers
the number of dependent tasks in each level in DAG;
more dependent tasks on higher levels lead to higher
priority. Ultimately, this approach increases throughput
by increasing the chance that more tasks can start
executing after the selected task finishes execution.

• In DSP task preemption, a waiting task preempts a
running task that has a lower priority than it, while
avoiding unnecessary preemption that causes more
overhead (due to context switch) than the throughput
gain. In addition, all tasks are guaranteed to complete
by their deadlines by preemption.

Extensive experiments on both real cluster and commercial
cloud EC2 have been carried out to show DSP’s advantages
of improving throughput while satisfying the jobs’ demands
on completion time.

The remainder of this paper is organized as follows.
Section III briefly introduces the background and concepts,
and describes the throughput maximization model with the
consideration of task dependency. Section IV-A illustrates
how to determine task priority with the consideration of task
dependency. Section IV-B describes the probabilistic based
preemption. Section V presents the performance evaluation for
DSP. Section II reviews the related work. Section VI concludes
this paper with remarks on our future work.

II. RELATED WORK

Many methods [2, 7, 24–27] have been proposed for job
scheduling or task scheduling with the objective of maximizing
throughput. However, all of these works for task or job
scheduling neglect utilizing task dependency in scheduling
to increase throughput. The work in [7] aims to maximize
the throughput by fully utilizing the server resources when
packing tasks to machines, and indicates that task dependency
needs to be considered in task scheduling for high throughput.

Some works [6, 11–13, 19, 28] consider dependency in
task or job scheduling. Grandl et al. [6] indicated that the
long-running tasks and those with tough-to-pack resource
demands should be focused on to decrease job completion
time. Accordingly, they proposed GRAPHANE that consists
of an offline and a a reconciliation heuristic online sched-
uler. Chowdhury and Stoic [11] proposed Aalo that strikes
a balance and efficiently schedules coflows without prior
knowledge. Ren et al. [12] designed Hopper, the first de-
centralized speculation-aware job scheduler that is provably
optimal. Jalaparti et al. [13] developed Corral, a scheduling
framework that uses characteristics of future workloads to
determine an offline schedule. Su et al. [19] introduced
a DAG-based non-preemptive task scheduling framework to
dynamically map tasks to the most monetary cost efficient
virtual machines based on the Pareto dominance solution (e.g.,
best possible task assignments) in order to reduce execution
time and monetary cost. Unlike previous works, our work
fully leverages task dependency to increase throughput in
scheduling by prioritizing tasks that will subsequently enable
the execution of more dependent tasks.

There is a large body of preemption work [14, 20–22]
aiming at reducing the waiting time of high priority tasks.
Chen et al. [14] developed preemption mechanisms to ensure
low-latency and high resource utilization: an immediate pre-
emption technique for short tasks without saving any states
and a gradual preemption for long tasks to save their states.
Ananthanarayanan et al. [20] proposed Amoeba which chooses
the tasks that consume the most resources to be preempted.
Cho et al. [21] proposed Natjam which uses an on-demand
checkpointing technique that saves the state of a task when
it is preempted, so that it can resume where it left off when



resources become available. However, all of these works suffer
from the overhead of context switching, which decreases the
throughput.

Unlike previous works that neglect the dependency in mak-
ing preemption decision, DSP considers dependency and the
combination of different factors (e.g., the number of dependent
tasks, task’s remaining time, task’s waiting time) to determine
task priority, which increases throughput and also avoids the
long waiting time of low priority tasks. DSP further considers
reducing the overhead of extensive number of preemptions for
high throughput.

III. DEPENDENCY-AWARE SCHEDULING

In a distributed parallel computing system, there are nodes
and schedulers. A job is split into m tasks, and the tasks are
allocated to nodes. As in [6, 13, 3], our methods are applied
to the scenario in which the jobs, task execution time and
task dependencies of many tasks can be predicted a priori.
Using DSP for the scheduling and preemption on this part of
tasks still can improve the performance of the entire system.
Throughput is the total number of jobs that complete their
executions within their job deadlines during a unit of time.

We consider a scheduling problem with the objective of
scheduling a group of jobs onto multiple nodes to maximize
the throughput. Task dependency determines tasks’ execution
order. The dependency-aware scheduling is periodically exe-
cuted offline after each unit of time period.

Suppose h jobs (J = {J1, ..., Jh}) are submitted in a unit of
time period. Denote LMS as the makespan of these jobs. The
deadlines on the completion time of the h jobs are represented
by td1, ..., t

d
h, respectively. We use Tij to denote the jth task of

Ji. Denote tsij as the starting time of task Tij , and teij as the
completion time of task Tij . Let Cq

i = {Tij(1), ..., Tij(|Cq
i |)}

(Cq
i ∈ Ci, q ∈ {1, ..., |Ci|}) be an arbitrary chain of tasks

belonging to job Ji, representing the dependency of the tasks,
where |Cq

i | represents the length of the chain Cq
i , and Ci

is the set of chains of tasks belonging to job Ji. All tasks
Tij ∈ Cq

i (i ∈ {1, ..., h}, j ∈ {1, ...,m}) must be processed
sequentially one after another. Denote Tij(k) as the kth task
on the chain Cq

i belonging to job Ji, and Tij(k − 1) as the
(k−1)th task (precedent task of Tij(k)) on the chain Cq

i . Task
Tij(k) cannot start executing until task Tij(k − 1) finishes
execution, where k ∈ {1, ..., |Cq

i |}. Denote tsij(k) and teij(k)
as the starting time and completion time of the kth task on
the chain Cq

i belonging to job Ji running on a node. For easy
reference, Table I shows the main notations used in this paper.

Denote xij,k = {0, 1} as an indicator variable; xij,k = 1
if task Tij is assigned to node k, otherwise xij,k = 0. Define
g(k) (k ∈ {1, ..., n}) as a function of processing rate of the
kth node, which is the million instructions per second (MIPS)
speed, and g(k) is related to the CPU size skcpu and memory
size skmem of the node k. Specifically, g(k) is expressed as
follows

g(k) = θ1s
k
cpu + θ2s

k
mem (1)

TABLE I: Notations.

J A set of jobs Cq
i A chain of tasks belonging to Ji

h # of jobs in J |Cq
i | The length of chain Cq

i
Ji The ith job in J g(k) Proc. rate func. of node k
tdi Job Ji’s deadline lij Task Tij ’s size
Tij The jth task of Ji Ti Task i
tsij Tij ’s starting time M A set of target nodes
teij Tij ’s ending time tij,k Tij ’s Exec. time on node k
trij Tij ’s rec. time / preemption n Total # of nodes
skmem Mem. size of node k m # of tasks of a job
skcpu CPU size of node k Np

ij # of preemptions for Tij
tremij Tij ’s remaining time P t

ij Tij ’s priority at time t

where θ1 and θ2 are the weights for CPU size and memory
size, respectively. Denote tij,k as the time period for executing
task Tij on node k without being preempted. Thus, we have

tij,k = lij/g(k) (2)

where lij is the size of task Tij in terms of Millions of
Instructions (MI). Suspending a running task and putting a
waiting task to running state consumes a certain amount of
time (called recovery time) due to the context switching. Let
trij be the recovery time of a preemption for task Tij , and
Np

ij,k be the number of preemptions for task Tij at node k.
Np

ij,k of a task can be estimated based on its size, dependency,
and deadline using the method introduced in [29]. Denote
σ as the threshold for the time (i.e., 0.05s) that an evicted
task should wait for starting its execution after it has been
selected for the execution. Let yij,uv,k = 1 if task Tij precedes
task Tuv on node k, otherwise yij,uv,k = 0. Since linear
programming (LP) is considered more efficient in solving
scheduling problems [30], we formalize our problem as the
following ILP problem:

Min{LMS} (3)

s.t. max
(
tsij + tij,k · xij,k +Np

ij,k(t
r
ij + σ)xij,k

)
−min tsij ≤ LMS

(∀i ∈ {1, ..., h}, j ∈ {1, ...,m}, k ∈ {1, ..., n})
(4)

(tsij + tij,k) · xij,k ≤ (tsuv + (1− yij,uv,k) · tuv,k) · xuv,k
(∀i, u ∈ {1, ..., h}, j, v ∈ {1, ...,m}, k ∈ {1, ..., n}) (5)

max
(
tsij + tij,k · xij,k +Np

ij,k(t
r
ij + σ)xij,k

)
≤ tdi

(∀j ∈ {1, ...,m}, k ∈ {1, ..., n}, Tij ∈ Cq
i , C

q
i ∈ Ci) (6)

max
(
tsij + tij,l · xij,l +Np

ij,l · (t
r
ij + σ) · xij,l

)
≤ tsiq

(k ∈ {1, ...,m}, l ∈ {1, ..., n}, Tij ∈ Cq
i , C

q
i ∈ Ci)

(7)

yij,uv,k + yuv,ij,k = 1 (xij,k = 1, xuv,k = 1) (8)

yij,uv,k ∈ {0, 1} (9)

xij,k ∈ {0, 1} (10)

tsij ≥ 0 (11)

Constraint (4) is to ensure the time consumed by the job
completing at last is no longer than the makespan. Constraint
(5) is to ensure the execution order between Tij and Tuv



on node k when Tij is already running and Tuv is a newly
assigned task on node k. Constraint (6) is to ensure jobs can
finish execution within their specified deadlines, where Ci is
the set of chains of tasks belonging to job Ji. Constraint (7) is
to ensure the dependency relation between Tij and Tiq , that is,
task Tij precedes task Tiq on node k. In addition, we adopt a
checkpoint-restart mechanism [29], in which preempted tasks
are restarted from their most recent checkpoints.

The target node k|xij,k=1 (k|xij,k=1 represents the node
who will be assigned the task Tij , where xij,k = 1 if Tij is
assigned to node k) for task Tij must be an integer in practice.
To make our formulated optimization problem more tractable,
we can first relax the problem to a real-number optimization
problem in which k|xij,k=1 can be a real number, and derive
the solution for the real-number optimization problem. Then,
we can use integer rounding to get the solution for practical
use. Considering the task scheduling problem in general is NP-
complete [10], we use the CPLEX linear program solver [31]
to solve this ILP problem.

Given a set of jobs consisting of tasks, constraints of jobs
and tasks (i.e., task dependency constraints, job completion
time constraints), and a number of nodes, the output of the
problem solution provides the task schedule [tsij , k|xij,k=1]
(∀i ∈ {1, ..., h}, j ∈ {1, ...,m}, k ∈ {1, ..., n}), that is,
the target node (denoted by k|xij,k=1) and the starting time
(denoted by tsij) for each task. Then, the minimized makespan
(denoted by LMS ) can be obtained from the ILP model. Based
on the output of the ILP model [tsij , k|xij,k=1], the schedulers
assign tasks to their target nodes by following the order of
their starting times.

Dependency-aware scheduling in DSP is an offline ap-
proach. It runs periodically for all the jobs submitted during
a unit period of time. Since the jobs, task dependency, task
execution time, task completion time and the number of
preemptions of a task are estimated, and also a node sometimes
may not provide sufficient resources for task running, the
actual dependency and task completion time may not be
the same as the estimated. We propose an adaptive online
scheduling procedure, i.e., dependency-aware preemption, to
adjust the schedule dynamically based on the evaluation of
task priority. Specifically, we partition a unit period of time to
several smaller time periods (called epochs). In each epoch,
DSP evaluates the task priority and conducts preemptions.
Note that the dependency-aware scheduling has a relatively
high time overhead, but since it is offline, it will not affect
the system job running performance. However, if the high
time overhead of the offline method is a concern for a data-
parallel cluster, then it can only run the online dependency-
aware preemption method to achieve high throughput.

IV. DEPENDENCY-AWARE TASK PREEMPTION

A. Dependency-aware Task Priority Determination

It has been shown that assigning higher priority to tasks
with shorter remaining time increases the throughput [32].
However, this also increases the waiting time of large-size
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Fig. 2: Determining task priority by considering task dependency.

tasks. To avoid starvation of large-size tasks and reduce the
waiting time for each task, previous preemption methods
define task priority based on task remaining time and (or)
waiting time. However, they neglect dependency in the priority
determination in preemption, which is an important factor to
consider in preemption to maximize the throughput. Choosing
a task with more dependent tasks to run enables more tasks
to be runnable next, and more runnable task options enable
to select a better task that can more increase the throughput.
In this section, we propose task priority that considers task
dependency to improve throughput.

Figure 2 shows an example illustrating the importance of
considering dependency in preemption. There are 7 tasks
T1, ..., T7. T2-T3, T4-T5 and T6-T7 depend on T1, T2 and
T3, respectively. Without considering task dependency, oth-
er methods may assign priorities to tasks by following:
T1<T3<T2<T7<T6<T5<T4. In this case, T1 has the lowest
chance to be executed. But all the other tasks cannot start
execution if T1 does not finish execution, and even worse,
deadlock may occur due to the dependency constraints, which
can increase tasks’ waiting time and decrease the through-
put. By considering dependency, task remaining time and
waiting time in priority determination, DSP assigns priori-
ties to tasks by following: T7<T6<T5<T4<T3<T2<T1 or
T6<T7<T5<T4<T3<T2<T1, etc. Thus, DSP helps increase
throughput.

Below, we first show an example to indicate the importance
of considering different aspects in dependency DAG in pre-
emption, and then propose a method to determine task priority
in order to increase the throughput while reducing the average
waiting time for each task. Assigning higher priority to the
task that has more dependent tasks can increase the chance that
more tasks depending on it can start executing after the task
finishes execution. As shown in Figure 3, there are different
kinds of dependencies [24]. Although T1 and T6 have the same
number of dependent tasks, T6 has higher priority than T1 for
execution because more tasks can be executed soon after T6
finishes execution and a better option can be chosen from the
candidates. Similarly, T11 should have a higher priority than
T6. Task T11 has more dependent tasks compared with the
other tasks (e.g., T1, T6). Although T11 and T6 have the same
number of dependent tasks in the first level which is more
than T1, T11 has more dependent tasks in the second level
than T6. In this case, executing T11 at first helps increase
the throughput. Thus T11 has higher priority than other tasks
considering dependency.
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Based on the queuing theory, choosing a task with shortest
remaining time to preempt the running task can increase the
throughput [32]. Therefore, we also consider assigning higher
priority to a task with less remaining time. Since shortest
remaining first can easily incur the starvation of tasks with
longer remaining time, we also consider task waiting time to
determine task priority to avoid starvation in order to increase
the throughput.

Denote tremij as the remaining time of task Tij , and twij as
the waiting time of task Tij . To determine the priority of a task
Tij , we consider it as a function of its remaining time tremij

and its waiting time twij based on the dependency relations
among Tij and its children (i.e., the tasks depending on Tij)
considering the above indicated aspects.

Given a particular and arbitrary task Tij , the priority of task
Tij at time t is recursively computed as follows:

P t
ij =

∑
Tik∈Sij

(γ + 1)P t
ik (12)

where Sij represents a set consisting of Tij’s children, and
γ ∈ (0, 1) is a coefficient that is used to give higher priority to
higher levels. For a given task (e.g., Tij) that has no dependent
tasks, its priority at time t is computed in below:

P t
ij = ω1 ·

1

tremij

+ ω2 · twij + ω3 · taij (13)

where taij is the allowable waiting time of task Tij , ω1, ω2

and ω3 are the weights for the task’s remaining time, waiting
time and allowable waiting time, respectively, and ω1 + ω2 +
ω3 = 1. The priority of task Tij at time t1 (P t1

ij ) can be
obtained based on Formulas (12) and (13). Our task priority
determination method utilizes task dependency to recursively
calculate a task’s priority based on its children’s priorities.

B. Task Preemption Procedure

Recall that the offline dependency-aware scheduling of DSP
in Section III outputs the target node and the starting time for
each task. As a result, as shown in Figure 4, each node has a
queue containing the tasks that will run on this node. In the
figure, the tasks with the same color belong to the same job.
The tasks in a queue are in the ascending order of their starting
times; a task with an earlier starting time will run earlier.
The online task preemption is executed after each epoch in
a unit of time period. Recall that the online preemption is
used to adjust the schedule dynamically due to insufficiently
accurate estimation of some parameters in scheduling and
dynamically changing job running environment. Since the
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…
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...

…Tasks

…Tasks
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Fig. 4: Preemption for multiple tasks running on multiple processors.

output is approximately close to the optimal solution, we only
need to consider the first a few waiting tasks (say δ percent
of all tasks) (called preempting tasks) rather than all tasks in
a queue in order to save overhead. The value of δ can be
dynamically adjusted based on the percent of the considered
waiting tasks that preempt the running tasks. A larger percent
means that more adjustments need to be made on the offline
schedule and we then can increase δ, and vice versa. We need
to ensure that each task completes by its deadline. Therefore,
among the waiting tasks in a queue, we also find the tasks that
have allowable waiting time before their deadlines no larger
than ε (a very small number) to preempt running tasks. We call
these waiting tasks urgent tasks that need to run immediately.

Next, we introduce how to calculate a task’s allowable
waiting time. Recall that we aim to complete each job Ji by
its deadline. Then, each of its task Tij has a deadline. Only
when all of its tasks meet their deadlines, the job can meet its
deadline. The dependency DAG of a job has different levels as
shown in Figure 3 and we use L to denote the total number of
levels in the DAG. We use tij to denote the execution time of
task Tij , use tijk to denote the execution time of task j at the
kth level, and use tdij to denote the deadline of task j of job Ji.
The deadline of the tasks in the last level is the job’s deadline,
i.e., tdijL = tdi . Then, the deadline of the tasks in the lth level is
the job’s deadline subtracted by the maximum execution time
of the tasks in each level from the last level to the (l + 1)th

level, i.e., tdij = tdi −
∑L

k=l+1 maxj{tijk}. Then, a task’s
allowable waiting time (denoted by taij) is taij = tdij − tremij .
This means as long as the task’s subsequent waiting time is
no greater than taij , it can complete by its deadline.

Below, we introduce how to conduct preemption between
the urgent tasks and preempting tasks, and the running tasks.
Among the running tasks, those tasks that have allowable
waiting time larger than epoch time are preemptable running
tasks. This is to make sure that tasks will not miss their
deadlines caused by being preempted. The preempted tasks
are inserted to the queue based on their starting time that
keeps all queueing tasks in the ascending order of starting
time. In the preemption procedure, for each queue, we first find
the urgent tasks. Each urgent task preempts the running task
with the lowest priority (that the urgent task does not depend
on) among the preemptable running tasks in sequence. Among
the δ percent of all tasks at the beginning of the queue (i.e.,
preempting tasks), for each task, we check if it can preempt
a running task based on the priority.

We sort the preemptable running tasks in the ascending
order of priority. We pick the first running task from the sorted



list Tj . Then, waiting task Ti can preempt running task Tj if
the following conditions are satisfied.
• Condition C1: The priority of the waiting task is higher than
that of the running task.
• Condition C2: The waiting task does not depend on the
running task.
If these two conditions are not satisfied, the algorithm chooses
the second lowest priority running task and determines if the
running task can be preempted by waiting task Ti, and so
on. However, if the waiting time of a task is longer than
the threshold τ (e.g., 0.05s), it preempts the running task
no matter conditions C1 is satisfied or not. This process
repeats until Ti preempts a running task, Condition C1 is
not satisfied (i.e., the remaining preemptable running tasks
cannot be preempted by Ti) or all preemptable running tasks
are checked. Then, the algorithm chooses the next preempting
task and repeats the above process to preempt a running task.
When all preempting tasks are checked or all preemptable
running tasks are preempted, this process stops.

In the above algorithm, as in previous preemption methods,
it simply compares the priorities of a waiting task and a
running task, and the preemption occurs if the waiting task’s
priority is higher than the running task. Consider a case that
preemptions occur frequently but the priority of the preempt-
ing task is only slightly higher than that of the preempted task.
This generates much time overhead for context switching and
may increase job completion time and decrease the throughput.
We use an example to illustrate this case. Suppose the priority
of the current running task T1 is 1.1, when a task (T2)
with priority 1.7 is considered in the waiting queue, then T2
preempts T1. Soon after T2 starts running, another task T3
with priority 2 is considered in the waiting queue, then T3
preempts T2. Such frequent preemptions lead to many context
switches, which extends job completion time and possibly
reduces throughput. Since T2 and T3 have close priority, the
throughput loss caused by preemption may offset or may be
even higher than the throughput increase caused by running
T3 first. In this case, the preemption is not necessary. Next, we
propose a normalized priority method to avoid such unneces-
sary preemption that causes more overhead (due to context
switch) than the throughput gain. Instead of checking the
absolute value of the priority difference between a preempting
task and a preemptable task (denoted by P̂ ), we check its
normalized value (denoted by P̃ ) by the average difference
between neighboring tasks among all tasks sorted based on
priority. First, we order all the tasks in ascending order of their
priorities. Then, we calculate the priority difference between
each pair of neighboring tasks and finally calculate the average
difference (denoted by P̄ ). The normalized value is calculated
by P̃ = P̂ /P̄ , which represents the scale of the priority
difference globally. We specify that only when P̃ > ρP̂/P̄
(ρ > 1), the preempting task can preempt the preemptable
task, where the ρP̂ increase of the priority of a running task
leads to throughput increase comparable to the overhead of
the context switch of the preemption. The value of ρ is set
empirically. We ensure that the priority difference between

a preempting task and a preemptable task must be larger
than the global average difference for premption. This way,
each preemption brings about considerably more throughput
than the overhead cause by the context switch. Algorithm
1 shows the pseudocode for the dependency-considered task
preemption algorithm.

Algorithm 1: Pseudocode for DSP task preemption
Input: A is the set of waiting tasks and B is the set of running tasks

1 Compute the priorities of all waiting and running tasks
2 Sort B in ascending order based on their priority values
3 for each i = 1, ..., |A| do
4 if ta[i] ≤ ε OR tw[i] ≥ τ then
5 for each j = 1, ..., |B| do
6 if A[i] does not depend on B[j] then
7 Suspend task B[j] and run task A[i]
8 break

9 else
10 j ← j + 1
11 continue

12 for each i = 1, ..., |δ|A|| do
13 for each j = 1, ..., |B| do
14 if A[i] depends on B[j] then
15 j ← j + 1
16 continue

17 Compute priority difference P̂i and normalized priority P̃i of
A[i]

18 if P̂i > 0 && P̃i > ρP̂/P̄ then
19 Suspend task B[j] and run task A[i]
20 break

Complexity of DSP: DSP system consists of two parts:
the ILP model for deriving the target nodes for tasks and the
priority based preemption (PP) for preemption. Based on [33],
systems of linear inequalities with at most two variables per
inequality can be decided in strongly polynomial time. For
PP, the time complexity is O(kf).

V. PERFORMANCE EVALUATION

In this section, we introduce our experimental results on
a large-scale real cluster Palmetto [34], which is Clemson
University’s primary high-performance computing (HPC) re-
source, and Amazon EC2 [35], respectively.

We use TetrisW/SimDep to denote the Simple Dependency-
aware scheduling method introduced in Tetris [7], in which
precedent tasks complete before their dependent tasks start to
run. To test DSP’s performance on dependency-aware schedul-
ing, we compared DSP with TetrisW/SimDep, Tetris [7] with-
out any dependency consideration (denoted by TetrisW/oDep)
and Aalo [11]. To test DSP’s performance on preemption,
we compared DSP with three other methods, Amoeba [20],
Natjam [21] and SRPT [22]. We choose these three methods
because like DSP, they also aim at increasing the throughput.

Tetris [7]. Tetris aims to maximize task throughput and
speed up job completion by packing tasks to machines
based on their resource requirements [36]. Specifically, when



TABLE II: Parameter settings.

Parameter Meaning Setting
n # of servers 30-50
h # of jobs 150-2500
m # of tasks of a job 100-2000
δ Minimum required ratio 0.35
τ Threshold of tasks’ waiting time for execution 0.05
θ1 Weight for CPU size 0.5
θ2 Weight for Mem size 0.5
α Weight for waiting time for SRPT 0.5
β Weight for remaining time for SRPT 1
γ A certain coefficient ∈ (0, 1) 0.5
ω1 Weight for task’s remaining time 0.5
ω2 Weight for task’s waiting time 0.3
ω3 Weight for task’s allowable waiting time 0.2

resources on a machine become available, it first selects
the set of tasks whose peak usage of each resource can
be accommodated on that machine. It then computes an
alignment score (i.e., a weighted dot product between the
vector of the machine’s available resources and the task’s
peak usage of resources) on which the set of tasks whose
peak usage of each resource can be accommodated. The task
with the highest alignment score (i.e., priority) is scheduled
to the machine and allocated with its peak resource demands.

Aalo [11]. Aalo aims to minimize the average coflow’s
completion time without prior knowledge of coflow charac-
teristics. Coflow means a collection of network data flows
that share a common performance goal, e.g., minimizing the
completion time of coflow. Aalo puts all flows of a coflow in
the same queue to satisfy the dependency constraint, and all
coflows are distributed to several queues. The flows in each
queue are sent out in the First-In-First-Out (FIFO) order. The
global coordination for the scheduling order among different
queues is conducted using the method in [37] to achieve
fairness among coflows. Aalo does not consider the deadlines
of coflows. In our implementation, we consider a job as a
coflow and the task as the flows in the coflow.

Amoeba [20]. The task that needs the most resources (i.e.,
longest remaining time [21]) has the lowest priority and vice
versa in preemption to increase the overall throughput. Amoe-
ba uses a checkpointing mechanism in task preemption, in
which tasks are restarted from their most recent checkpoints.

Natjam [21]. Natjam assigns higher priority to production
jobs and lower priority to research jobs in scheduling. It
uses production jobs to preempt research jobs. For an arrival
production job, Natjam selects a research job for eviction that
uses the most resources firstly, that has the maximum deadline
secondly, and that has the shortest remaining time thirdly.
Also, it uses a checkpointing mechanism.

SRPT [22]. SRPT prioritizes jobs and we used it for
prioritizing tasks. It uses the linear combination of waiting
time and the remaining time for a task (i.e., estimated time
for completing the remaining part of the task) to determine the
priority of a task. SRPT does not use a checkpoint mechanism.
As in [22], we set the weight of waiting time α to 0.5 and the
weight of remaining time β to 1 to calculate job priority.
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Fig. 5: Performance of various methods on makespan vs. the number of jobs.

We first deployed our testbed on 50 servers in a large-
scale real cluster located in our university. The servers in the
real cluster are from Sun X2200 servers (AMD Opteron 2356
CPU, 16GB memory). We then conducted experiments on 30
instances in the real-world Amazon EC2 and the instances
in EC2 are from commercial product HP ProLiant ML110 G5
servers (2660 MIPS CPU, 4GB memory). We considered each
instances as a server. Each server (instance) was set to have
1GB/s bandwidth and 720GB disk storage capacity in both
real cluster and EC2 experiments.

In each experiment, we varied the number of jobs from 150
to 750 with step size of 150. The job arrival rate was set to x
jobs per minute and x was randomly chosen from [2,5] [38].
We defined three categories of jobs based on the number of
tasks of a job. A large job has 2000 tasks, a medium job has
1000 tasks and a small job has several hundreds of tasks [7].
All jobs in an experiment consist of the equal number of small,
medium, and large jobs. The Google Cluster trace [38] records
resource usage on a cluster of about 11000 machines from May
2011 for 29 days. We randomly chose tasks from the jobs in
the period between May 1 to May 7. The CPU and memory
consumption, and execution time for each task were set based
on the Google cluster trace, and the disk and bandwidth
consumption for each task was set to 0.02MB [39] and 0.02
MB/s [40, 41], respectively. In the experiment, we created the
dependency relationship among tasks based on their starting
time and ending time from the trace. When there is no overlap
between the execution times of two tasks of a job, we can
create a dependency relationship between the two tasks. We
constrained the number of levels in a created dependency
DAG within five and the number of dependent tasks on a task
within fifteen [6]. In the experiment, we ran the scheduling
periodically every 5mins. If the resources of a server were
not enough to run waiting tasks, we conducted preemption.
Table II shows the parameter settings in our experiment unless
otherwise specified.

A. Performance Comparison with Scheduling Methods

Figure 5(a) and Figure 5(b) show the relationship be-
tween the makespan and the number of jobs on the re-
al cluster and Amazon EC2, respectively. In both figures,



 

-50000

0

50000

100000

150000

200000

250000

300000

350000

150 300 450 600 750

N
u

m
b

e
r 

o
f 

d
is

o
rd

e
rs

 

Number of jobs 

DSP Amoeba

Natjam SRPT

(a) The number of disorders
 

0

0.5

1

1.5

2

150 300 450 600 750

T
h

ro
u

g
h

p
u

t 
(#

 o
f 

ta
sk

s/
m

s)
  

Number of jobs 

DSP Amoeba

Natjam SRPT

DSPW/oPP

(b) Throughput
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

150 300 450 600 750

A
v

e
ra

g
e

 w
a

ti
ti

n
g

 t
im

e
 o

f 
jo

b
s 

(s
e

co
n

d
s)

  

Number of jobs 

DSP Amoeba

Natjam SRPT

DSPW/oPP

(c) Jobs’ average waiting time

 

 

 

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

150 300 450 600 750

N
u

m
b

e
r 

o
f 

p
re

e
m

p
ti

o
n

s 

Number of jobs 

DSP Amoeba
Natjam SRPT
DSPW/oPP

(d) Overhead

Fig. 6: Performance of different evaluation metrics versus the number of jobs of different methods on the real cluster.

we see that the makespan increases as the number of jobs
increases. This is because with a fixed number of nodes,
the more jobs submitted, the more time the nodes need to
finish executing all jobs. Moreover, the makespans follow
DSP<Aalo<TetrisW/SimDep<TetrisW/oDep.

TetrisW/oDep does not consider dependency in schedul-
ing. TetrisW/SimDep simply schedules precedent tasks before
scheduling their dependent tasks. Aalo considers dependencies
between tasks, but it does not consider deadline constraints of
tasks. DSP uses an ILP model to minimize the makespan by
fully utilizing task dependency information. The ILP problem
solution assigns tasks that are independent of each other to
different nodes so that the tasks can run in parallel, and thus
increases the throughput and decreases the makespan. The
solution gives priority to the tasks that have more dependent
tasks in scheduling, which makes more tasks runnable next in
scheduling. As a result, DSP generates the least makespan and
high throughput.

B. Performance Comparison with Preemption Methods

This section measures the performance of the preemption
methods. We use our initial schedule for all preemption
methods. Figure 6(a) shows the relationship between the
number of disorders (execution order is inconsistent with
task dependency relation) and the number of jobs. We see
that the number of disorders for DSP is always 0 and the
result follows DSP<Natjam≈Amoeba<SRPT. The reason is
that DSP considers the dependencies among tasks when it
preempts tasks, however the other methods do not consider
the dependencies among tasks when they schedule tasks.

To show the advantages of normalized priority based pre-
emption (PP), we evaluated the performance of DSPW/oPP,
a variant of DSP in which the PP is not used. DSPW/oPP
conducts preemption based on absolute value of task pri-
ority like the compared methods. Figure 6(b) shows the
relationship between the throughput measured by tasks/ms
and the number of jobs. We see the throughput follows
SRPT<Amoeba≈Natjam<DSPW/oPP<DSP. This is because
(1) DSP utilizes task dependency information to determine
task priority, and assigns higher priority to tasks that have
more dependent tasks in higher levels, so running higher
priority tasks enables more runnable tasks to run sooner, which

helps increase the throughput. (2) DSP considers deadline
constraints for job completion time. (3) DSP considers the
dependencies among tasks in preemption. (4) DSP uses PP to
reduce the time overhead caused by preemption and there-
by increase the throughput. Without using PP, DSPW/oPP
produces less throughput than DSP. However, all three other
methods schedule the tasks based on their priorities and do
not consider dependency in preemption. Then, some tasks that
depend on other tasks need to wait for other tasks to finish, so
the methods produce lower throughput than DSP. Throughput
is affected by the remaining time. Amoeba only considers the
remaining time to choose tasks, so it has relatively higher
throughput. Natjam also considers task remaining time to
choose task for eviction. Moreover, it takes into account job
deadlines for scheduling tasks. Thus it has relatively higher
throughput. In addition to considering remaining time like
other methods to increase throughput, SRPT also considers
task waiting time to avoid task starvation. Since SRPT does
not use the checkpoint mechanism, a preempted task must be
restarted from the scratch rather than from its most recent
checkpoint, thus reducing throughput.

Figure 6(c) reveals the relationship between the aver-
age waiting time of jobs and the number of jobs. We
see the average waiting time of jobs approximately follows
DSP<DSPW/oPP<Natjam≈SRPT<Amoeba. This is because
DSP utilizes the task dependency information to determine
task priority for execution. Also, DSP considers task waiting
time for determining task priority, which reduces the waiting
time of low priority tasks and also can avoid starvation.
In addition, DSP uses a probabilistic based approach for
preemption (ignored in DSPW/oPP), which can reduce the
time overhead caused by preemption and thus reduce the
waiting time of tasks. Therefore DSP has the shortest average
waiting time, followed by DSPW/oPP. The average waiting
times of jobs of Natjam and SRPT are nearly the same, but
relatively shorter than that of Amoeba. This is because Natjam
considers job deadlines and SRPT considers task waiting time
to determine task priority for preemption, which can reduce
the average waiting time of jobs. However, Amoeba neither
considers task waiting time for determining task priority nor
has deadline constraints for jobs, thus it has relative longer
average waiting time of jobs.
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Fig. 7: Performance of different evaluation metrics versus the number of jobs of different methods on Amazon EC2.

Figure 6(d) shows the relationship between the number of
preemptions and the number of jobs for scheduling. We can
measure the execution time overhead due to context switching
based on the number of preemptions as in [42]. From the
figure, we observe that the number of preemptions follows
DSP<DSPW/oPP<Natjam<Amoeba<SRPT. This is because
(1) In DSP, a running task could be preempted only if the
waiting task does not depend on the running task. (2) DSP
allows preemptions only for a part of waiting tasks while
Natjam, Amoeba and SRPT allow preemptions for all tasks in
the waiting queue, which increases the number of preemptions.
As a result, Natjam, Amoeba and SRPT have relatively more
preemptions than DSP and DSPW/oPP. Since PP reduces the
number of unnecessary preemptions that generate overhead
higher than the throughput gain, DSP produces fewer pre-
emptions than DSPW/oPP. Also, Natjam supports preemption
for only research jobs rather than production jobs. Thus it
generates fewer preemptions than Amoeba and SRPT. Unlike
all the other methods, SRPT does not use a checkpoint mech-
anism, so that preempted tasks must start from the beginning
and experience preemption more often, which increases the
number of preemptions of these tasks.

To further verify the performance of DSP, we also conducted
experiments on Amazon EC2. The experimental results are
shown in Figure 7(a), 7(b), 7(c) and 7(d), which mirror Figure
6(a), 6(b), 6(c) and 6(d), respectively, due to the same reasons
explained previously.

Comparing Figure 7(c) with Figure 6(c), we find the
average waiting time of jobs in Figure 7(c) is longer than
that in Figure 6(c). The reason is that the number of nodes
in the real cluster environment is larger than that in Amazon
EC2, and tasks have more chances to find idle nodes.
Comparing Figure 7(d) to Figure 6(d), we find the number
of preemptions in Figure 7(d) is relatively higher than that
in Figure 6(d). This is because the average number of tasks
assigned to a node in the real cluster environment is less than
that of Amazon EC2 due to less nodes in Amazon EC2, and
preemption is more likely to occur for nodes with more tasks.

C. Evaluation of Scalability

To test the scalability of our DSP system, we varied the
number of jobs from 500 to 2500 with step size 500, and
measured its makespan and throughput in the real cluster and
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Fig. 8: Performance on scalability of DSP.

Amazon EC2. Figure 8(a) shows the makespan and Figure 8(b)
shows the throughput on the real cluster and Amazon EC2. we
see that the makespan gradually increases and the throughput
gradually decreases as the number of jobs increases. Both do
not change dramatically when the number of jobs becomes
very large. Therefore, the DSP system is scalable.

VI. CONCLUSION

DAG structured large and complex task dependencies are
increasingly common in data-parallel clusters. However, pre-
vious scheduling methods and preemption methods do not
fully leverage the complex dependencies to improve system
throughput; previous scheduling methods simply schedule the
precedent tasks before their dependent tasks, while previ-
ous preemption methods neglect dependency. In this paper,
we propose Dependency-aware Scheduling and Preemption
system (DSP), which is the first work that fully leverages
the dependency in scheduling and preemption to improve
throughput. DSP prioritizes tasks that will subsequently enable
the execution of more dependent tasks and hence the selection
of tasks that more increase throughput. DSP judiciously uti-
lizes task dependency information and jointly considers task
remaining time and waiting time for determining task priority.
In preemption, DSP preempts lower priority tasks with higher
priority tasks and also ensures that tasks complete by their
deadlines. It further has a normalized priority method to avoid
unnecessary preemption that causes more overhead (due to
context switch) than the throughput gain. We compare DSP



with other existing methods using a real cluster and Amazon
EC2 cloud service, and demonstrate that DSP outperforms the
existing methods in terms of throughput, preemption overhead,
job waiting time and following task dependency relationship.
In our future work, we will consider data locality, fairness,
cross-job dependency, and the scenario that new tasks are
dynamically added which extends the task-dependency graph.
We will also study the sensitivity of the parameters. Further,
we will consider fault tolerance in designing a dependency-
aware scheduling and preemption system [43] so that the
system can handle node failures/crashes or straggler.
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