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Abstract—In a modern cloud datacenter, a cascading failure
will cause many Service Level Objective (SLO) violations. In
a cascading failure, when a set of physical machines (PMs) in
a failure domain are failed, their workloads are transferred
to the PMs in another failure domain to continue. However,
the new domain receiving additional workloads may become
overloaded due to the resource oversubscription feature in the
cloud, which easily leads to domain failures and subsequent
workload transfer to other domains. This process repeats and
a cascading failure is created finally. However, few previous
methods can effectively handle the cascading failures. To handle
this problem, we propose a Cascading Failure Resilience System
(CFRS), which incorporates three methods: Overload-Avoidance
VM Reassignment (OAVR), VM backup set placement (VMset) and
Dynamic Oversubscription Ratio Adjustment (DOA). The experi-
ments in trace-driven simulation show that CFRS outperforms
other comparison methods in terms of the number of domain
failures, the number of failed PMs and the number of SLO
violations.

I. INTRODUCTION

A modern cloud datacenter, with thousands of servers and
switches, hosts countless virtual machines (VMs) [1, 2]. Since
the VMs are generally not fully utilized, the cloud providers
often oversubscribe their datacenters to increase resource uti-
lization and to maximize their profits. Oversubscription means
that the total resource capacities (e.g., CPU and memory)
of the VMs placed on a physical machine (PM) are often
greater than the resource capacity of the PM. When a PM is
oversubscribed, it is more likely to be overloaded (the resource
utilization exceeds its capacity), which makes it tend to fail.
For example, long-term higher CPU utilization can increase
the CPU failure rate [3], and overwhelmed network traffic may
lead to failure [4, 5].

In addition to resource oversubscription, there are other
common causes for datacenter failures [6] including cluster
power outages, workload-triggered software bug manifesta-
tions, Denial-of-Service attacks. For example, in power out-
ages, a non-negligible percentage (0.5%-1%) of nodes do not
come back to life after power is restored [7]. Cluster failures
have been documented by Yahoo! [8], LinkedIn [9] and Face-
book [10]. All of these failures may cause cascading failures.

A failure domain is a set of machines affected by a failure
such as that from power nodes or network components [11].
When a failure domain fails, its VMs will be assigned to
another failure domain (say domain B). Due to resource

oversubscription, domain B may end up accepting more VMs
than what its physical capacity can handle and fails, so its VMs
must be reassigned to another failure domain, say domain C.
Then, domain C fails and the same process repeats. As a result,
VMs are pouring from a domain to another domain, pushing
resource utilization to the limits and causing many domain
failures and SLO violations. Finally, a cascading failure is
created, adversely affecting the entire cloud system. To avoid
such a cascading failure, we must avoid domain overloads
(hence failures) while maximizing resource utilization in the
workload transfers [12–16].

Previous works for handling the overload or failures in the
cloud can be classified into three categories: VM migration,
VM backup and failure mitigation (i.e., taking actions that
alleviate the symptoms of a failure). In the VM migration
methods [17–21], when a PM is overloaded in CPU, memory,
or bandwidth, it migrates a set of VMs to other underloaded
PMs. Many of these methods aim to eliminate overloaded PMs
at a time point rather than a time period. It can avoid over-
loading PMs to a certain extent, but oversubscription and time-
varying VM resource demands would still lead to overloaded
PMs. The proposed VM backup methods [22, 11, 23, 24] are
mainly about determining the number of backups and (or) the
VM backup placement according to the different failure prob-
abilities of failure domains or PMs to increase the reliability.
These methods can mitigate the adverse influence from a fail-
ure but cannot handle concurrent failures [25] or the cascading
failures described above, in which the VM backups may also
fail. For failure mitigation, previous studies [26–28] generally
follow the three-step procedure: 1) detection, 2) diagnosis,
and 3) repair. Both the diagnosis and repair actions often take
time, since the sources of failures vary widely. For instance, in
February 2017, a failure in Amazon’s AWS service impaired
the operations of many cloud services for almost 5 hours [29].
Diagnosis and repair may require the system operators’ assis-
tance, further lengthening the failure recovery time. The worst
0.09% of failures can take more than 10 days to resolve since
this kind of failures cannot be solved with simple actions (e.g.,
restart PM or router) [30], and 5% failures cannot be fixed
within one day [31]. Therefore, for failures especially cascad-
ing failures, avoiding failures in advance is very important.

To handle cascading failure while addressing the afore-
mentioned problems, in this paper, we propose a Cascading
Failure Resilience System (CFRS) for cloud datacenters.



CFRS incorporates three methods:
1. Overload-Avoidance VM Reassignment (OAVR). To
avoid PM overload and hence possible resultant failure,
OAVR tries to maintain the load balanced state (i.e., neither
overloaded nor underloaded) of each PM in a long term.
When a PM is predicted to be overloaded, it migrates out
VMs that contribute more workload when it is overloaded and
contribute less workload when it is underloaded in different
epochs during a time period. When choosing a destination
PM to host a migration VM from a failed or an overloaded
PM, OAVR chooses the PM so that the VM contributes less
workload when the PM is more overloaded and contributes
more workload when the PM is more underloaded in different
epochs during a time period. As a result, OAVR helps maintain
the load balanced state of the PM in a long term, which
avoids the possible overload caused by VM migration after
failures hence avoids causing cascading failures.
2. VM backup set placement (VMset). VMset increases
the VM backup reliability by limiting the number of PMs
that store the backups of all the VMs running on the same
PM. We define a vmset as a set of PMs that store all the
backups of one VM. VMset places all VM backups on a much
smaller size of vmset group compared with previous VM
backup methods [32–34]. It can highly reduce the probability
that a VM’s backups are stored on concurrent or cascading
failed PMs and then make the VM backups survive during
concurrent and cascading failures.
3. Dynamic Oversubscription Ratio Adjustment (DOA).
Rather than using a fixed oversubscription ratio [35] that
easily generates PM overload due to time-varying resource
demand, DOA dynamically adjusts the oversubscription ratio
of a PM based on the resource utilization of the PM. The
adjusted oversubscription ratio can reduce the probability of
PM overload and then failure.

This paper is organized as follow. Section II introduces
the previous work about failure avoidance and mitigation. In
Section III, we present CFRS containing OAVR, VMset, and
DOA in detail. In Section IV, we evaluate the performance
of our methods using trace-driven simulation. Finally, in
Section V, we conclude our paper with remarks on future
work.

II. RELATED WORK

We classify all the previous works into three parts: VM
migration, VM backup and failure mitigation.

VM migration Some previous methods [17–21] aim to
prevent the resource utilization of each PM from exceeding
its capacity. For instance, Zhang et al. [17] proposed a VM
allocation framework called Venice for high VM reliability.
It assigns high availability scores to the VMs with high
availability requirement and lower resource requirement set
by users and assigns high availability scores to the PMs with
lower real-time resource utilization and lower hardware failure
rate. When assigning a VM to a PM, it randomly selects
one PM from the PMs that have greater availability scores
than the availability score of the VM. Bodik et al. [18]

proposed a VM allocation scheme that spreads out VMs
across multiple failure-domains while minimizing the total
bandwidth consumption in order to improve VM survivability.
Bila et al. [19] proposed a partial VM migration technique,
which only migrates a part of a VM to save the network
load while the VM is idle. Zhang et al. [20] proposed a
VM migration technique, in which when a PM is overloaded,
only the VMs’ footprints (containing the information in main
memory that a VM uses or references while running) on this
PM need to be transferred in order to improve the efficiency
of VM migration. Sandpiper et al. [21] carries out dynamic
monitoring the workload on PMs and identifies overloaded
PMs. The VM with a larger volume-to-size ratio (VSR) has
a higher priority to be migrated out, where the size is the
size of the memory footprint of the VM and the volume is
the product of VM’s resource utilizations (i.e., cpu ×mem).
However, these methods try to eliminate the overloaded PMs
at a time point rather than a time period. Meanwhile, VM
migration can avoid failures caused by overload but cannot
recover VMs after they fail (e.g., using VM backups).

VM backup The VM backup method is widely used to
provide reliability. Several previous works [22, 11, 23, 24] pro-
posed methods to determine the number of backups and (or)
the VM backup placement according to the different failure
probabilities of PMs in different domains to increase the relia-
bility and reduce the possibility of backup loss. Xu et al. [22]
proposed a polynomial-time algorithm for the placement of
VMs and their backups. For each possible mapping decision of
all the VMs and backups, this algorithm selects the placement
schedule subject to the constraints that each VM’s resource re-
quirements are satisfied before and after any single PM failure.
DieHard [11] targets on increasing the VM backups reliability
during failures and also trying to minimize the number of
backups required to maintain the VM running during failures
by mapping most of the backups in more reliable domains.
Cirne et al. [23] proposed a method that attempts to place the
VMs and their backups on different racks to enhance reliability
with the assumption that the failure probability of each rack
is independent. Yeow et al. [24] provided a technique for
estimating the number of VM backups required to achieve the
desired reliability objectives. However, these methods cannot
handle the concurrent failures or cascading failures, in which
a VM’s backups may also be lost along with the VM itself.

Failure mitigation Previous methods [26–28] aim to mit-
igate the effect of failures by finding the failure reasons
and then repair the failures after many diagnostic trials.
Isard et al. [26] proposed an automated server management
system called Autopilot based on the concept of recovery
oriented computing. When Autopilot detects that a server is
misbehaving (e.g., no response or wrong feedback), it either
restarts or sends all data to other PMs. To mitigate the cloud
network failures, Netpilot [27] first identifies several failure
reasons that are likely to cause the occurred failure and
iteratively takes mitigation actions for each reason until the
problem is alleviated. R3 [28] is a recovery service that can
quickly mitigate the influence of link failures. It pre-computes



forwarding table which stores all the information (e.g., the
start and destination of the link) of each link, so that once a
link fails, a link can be recreated with the same source and
destination according to the table. However, since the cost of
failure repair is very high, a better way to handle failures is
avoiding the failure occurrence rather than repairing it after it
happens.

III. DESIGN OF THE CASCADING FAILURE RESILIENCE
SYSTEM (CFRS)

In the following, we introduce each component of CFRS
which aims to avoid the probability of cascading failure
occurrence in cloud datacenters. Table I shows the meanings
of major notations used in this paper.

A. Overload-Avoidance VM Reassignment (OAVR)

1) Overview of OAVR: In a cascading failure, when a fail-
ure domain is overloaded, to reallocate the VMs hosted in the
domain, the master machine can check the available resources
of other failure domains to make sure that the selected destina-
tion domain won’t be overloaded. For fast VM reallocation, the
master machine does not have to check the available resources
of other failure domains, and can just randomly select a
destination domain, which however increases the probability
that the selected domain becomes overloaded and fails. For the
former approach, we need to make sure that the destination
domain will not be overloaded not only at the current time
but also in long term. For the latter approach, we let each
PM periodically check its load status and migrate out VMs
once it is overloaded with the objective of achieving long-
term load balance. Both are for potentially avoiding cascading
failures. Accordingly, we propose OAVR that selects VMs from
an overloaded PM to achieve long-term load balance in the PM
and selects destination PMs to allocate the selected VMs to
achieve long-term load balance in the destination PMs.

Many previous studies [36–38] show that the VM workload
often has predictable resource utilization (e.g., CPU and mem-
ory) based on historical logs. OAVR leverages this property
to decide the VM placement. For the VMs that have been
run previously or periodically, the hosting PMs are notified
about the workloads of the VMs according to the historical
logs. For the VMs that have not run previously, the maximum
(marked) resource capacities of the VMs are notified to the
PMs. A time period T consists of several epochs (denoted
by e1, e2, ..., ek, ..., en). We suppose there are Q types of
resources. If a PM is overloaded on at least one resource type
and in at least an epoch within time period T , we consider it
overloaded during T and then its excess workload needs to be
released to make this PM underloaded. Each PM periodically
checks if it will become overloaded in the next time period
T based on the workload information of the VMs placed on
the PM. If so, the PM migrates out the VMs contributing
more workloads in epochs when it is overloaded and less
workloads in epochs when it is unloaded to release its extra
workload. When determining the destination PM that each
selected VM migrates to, OAVR selects the PM that is more

TABLE I: Notations.

Pi the ith PM vj the jth VM

VPi
the set of VMs C

Pi
q Pi’s capacity of

running on Pi the qth resource
U

Pi
q,ek Pi’s unbalanced workload S

vj
Pi

priority score
of the qth resource in ek between vj and Pi

l
vj
q,ek vj ’s workload of the L

Pi
q,ek Pi’s workload of the

qth resource in ek qth resource in ek

underloaded when the VM introduces more workload and is
more overloaded when the VM introduces less workload in
different epochs. Finally, the long-term load balance state in
the source PM and the destination PM can be achieved; that is,
each PM is less likely to be overloaded or underloaded during
time period T .

2) VM Reallocation: In order to achieve the long-term load
balance, in OAVR, each PM aims to balance the workload
at each epoch in the next period T . Since there are many
resources involved in VM running, a PM needs to evaluate
the workload of itself and each of its VMs on each resource
type.

We normalize the workload of VMs of a PM and the PM
on the qth resource by the PM’s capacity on the qth resource
(denoted by CPi

q ). That is, CPi
q always equals to 1. The

workload of VM vj (hosted in PM Pi) on the qth resource
in the kth epoch, denoted by l

vj
q,ek , is represented by the ratio

between the vj’s demand in the kth epoch and the capacity of
PM Pi on the qth resource (e.g., VM vj’s occupied memory
size over the total memory size of PM Pi). We use VPi

to
denote the set of VMs running in PM Pi. Then, PM Pi’s
workload on the qth resource in epoch ek equals the sum of
all the workloads of VMs vj ∈ VPi

:

LPi
q,ek

=
∑

vj∈VPi

lvjq,ek (1)

For PM Pi, among all types of resources, if one
resource type satisfies LPi

q,ek
> CPi

q at an epoch ek ∈ T , Pi is
overloaded on the qth resource type at epoch ek and we regard
Pi as an overloaded PM in T . If all types of resources satisfy
LPi
q,ek

< CPi
q , we regard Pi as an underloaded PM at epoch

ek. For the master machine to schedule VM reallocation, each
PM Pi reports its workload to the master machine at each
epoch as {LPi

q,e1 , L
Pi
q,e2 , ..., L

Pi
q,en} and its capacity in each

resource type CPi
q (q = 1, 2, ...Q). Also, each overloaded PM

needs to select migration VM vj (details are in next section)
to release its excess workload and report the workload of the
VM at each epoch as {lvjq,e1 , l

vj
q,e2 , ..., l

vj
q,en}. We present how

an overloaded PM selects migration VMs below.
For each resource type, during a time period T , a PM may

be overloaded on certain types of resources in some epochs
while be underloaded on certain types of resources in other
epochs. Therefore, when an overloaded PM in T determines
which VMs to migrate out, it should give priority to the
VMs that contribute more workloads on those resources when
the PM is overloaded on the resources and contribute less



workloads on those resources when the PM is underloaded on
the resources. This way, the extra workload on an overloaded
PM can be reallocated faster and more efficiently, and also
the resources on the PM can be more fully utilized. Below,
we introduce how to calculate such priority of VMs in an
overloaded PM in T .

For the qth resource type on an overloaded PM Pi at epoch
ek, we define its unbalanced workload UPi

q,ek
as the workload

on the qth resource at epoch ek (LPi
q,ek

) minus Pi’s resource
capacity on the qth resource (CPi

q ):

UPi
q,ek

=


LPi
q,ek
− CPi

q if LPi
q,ek
6= CPi

q

−c otherwise
(2)

where c is a constant. We set it to−c instead of 0 in order to set
a lower priority for fully utilized resources since OAVR selects
VMs from overloaded PMs to migrate out. When unbalanced
workload UPi

q,ek
> 0, it means that Pi is overloaded at epoch

ek for the qth resource type. A higher UPi
q,ek

means a higher
overloaded degree. In this case, a VM that has a higher l

vj
q,ek

should have a higher priority to migrate out. On the other
hand, when unbalanced workload UPi

q,ek
< 0, it means that Pi

is underloaded at epoch ek for the qth resource type. A lower
UPi
q,ek

means a higher underloaded degree. In this case, a VM
that has a lower lvjq,ek should have a higher priority to migrate
out. Combining the two cases, for the qth resource type, in
order not to over-utilize or under-utilize the resource capacity
of a PM during T , if a VM has a higher

∑
ek∈T UPi

q,ek
· lvjq,ek

value, it should have a higher priority to migrate out.
In the following, we introduce how to calculate the priority

considering all types of resources. Recall that there are Q types
of resources that need to consider. We use a Q−dimensional
vector ~lvjek =< l

vj
1,ek

, ...l
vj
q,ek , ...l

vj
Q,ek

> to represent the work-
load of VM vj at epoch ek for all the types of resources,
and use ~UPi

ek
=< UPi

1,ek
, ...UPi

q,ek
, ...uPi

Q,ek
> to represent the

unbalanced workload of PM Pi at epoch ek for all the types
of resources. For an overloaded PM (with any UPi

q,ek
> 0), we

tend to migrate the VMs which contribute more workloads
on the overloaded resources and contribute less workloads on
the underloaded resources. Thus, we define the VM migration
priority score of VM vj on PM Pi in the period T (denoted
by S

vj
Pi

) as the dot product of ~UPi
ek

and ~l
vj
ek :

S
vj
Pi

=
∑
ek∈T

~UPi
ek
•~lvj

ek
. (3)

According to this equation, the VM with a larger S
vj
Pi

has
a higher priority to be reallocated. That is, the VMs that
contribute more workload for the overloaded resource types
and contribute less workloads on the underloaded resource
types on an overloaded PM in different epochs during T have
higher priorities to be selected and then reallocated. PM Pi

sorts its VMs in the descending order of their priority scores.
It then selects the VMs from the top of the list one by one and
removes these selected VMs from the list until Pi becomes
non-overloaded in each epoch within the time period T for
each resource type. Next, PM Pi reports all the selected VMs

to the master machine. The master machine will send the VM
reallocation schedule to PM Pi and then Pi migrates the VMs
accordingly. As a result, the long-term load balanced state of
different types of resources on the PMs can be maintained.

3) Destination PM Selection: Next, we introduce how the
master machine determines the destination PM for each VM
that needs to be reassigned from its host PM or failed PM.
When the master machine checks the resource utilization of the
destination PMs, in VM reassignment scheduling, a number of
rules need to follow. First, in order to increase the possibility
of achieving the load balanced state for each PM in the system,
VMs with higher workloads should be scheduled first. Second,
in order to avoid overloading the destination PMs and then
avoid the cascading failure as much as possible, we should
migrate VMs with the highest workload on some resource
types to the most underloaded PMs on the resource types.
Third, a VM should be migrated to its best-fit PM; that is, the
priority score between the VM and the PM is the lowest among
all PM candidates (since a higher priority score between a VM
and a PM means a higher degree of dismatch between them
and vice versa) or the VM contributes more workloads on
some resource types when the PM is underloaded on these
resource types and less workloads on some resource types
when the PM is overloaded on these resource types at different
epochs during T .

To follow the first rule above, after all the overloaded PMs
report their selected VMs to the master machine, the master
machine calculates the modulus of each VM workload vector
as a measure of its overall workload combining all resource
types during T . That is:

Lvj =
∑
ek∈T

|~lvjek |. (4)

The master machine sorts these VMs in the descending order
of their overall workloads Lvj during T . Then, the master
machine selects the VMs from the top of the sorted VM list
one by one and finds a destination PM for each VM. CFRS
employs the VM backup strategy [36]. For a selected VM
vj , to reduce the interruption to the VM running from VM
migration, the master machine first finds the PMs that store
the backups of VM vj . If one of these PMs, say Pk, has enough
available resources for VM vj , the master machine notifies vj’s
host PM Pi to transfer the current footprint of vj to Pk so that
VM vj’s backup can continue to run on Pk directly without
the need of re-launching a new VM. The master machine then
updates the workload of Pk at each epoch ek during T by
LPk
q,ek
← LPk

q,ek
+ l

vj
q,ek and updates the workload of Pi at each

epoch ek during T by LPi
q,ek
← LPi

q,ek
− l

vj
q,ek .

If all the PMs with the backups of vj cannot provide enough
resources for vj , to follow the third rule above, the master
machine then calculates the priority scores of vj with regard
to every other PM that has enough resource for vj in the next
period T according to Formula (3) and selects the PM with
the lowest priority score. Specifically, the master machine sorts
the PMs in ascending order of priority scores, and checks the
PM from the top of list one by one until it finds a PM that has



enough available capacity to host the VM. Note that a lower
resource utilization of a PM decreases the value of the priority
score. Thus, the selected PM also has relatively low resource
utilization and the second rule in the above is followed. For
the picked PM Pi, the master machine checks whether Pi

has enough resources for vj in each epoch. If yes, the master
machine reallocates vj to Pi and updates the workload of Pi

as described above. Once the VM vj is migrated, the master
machine removes vj from the VM list and repeats the above
process until all the VMs in the list are reallocated.

As a result, through the VM migrations from overloaded
PMs to underloaded PMs introduced above, long-term load
balanced state of PMs over the time period T can be achieved.

B. VM Backup Set Placement (VMset)

In a datacenter, for a VM hosted in a PM, creating several
VM backups in other PMs can increase the resilience to
PM failures [23, 11]. A VM’s backups periodically receive
footprints from the running VM [39, 40]. When a VM’s host
PM fails, its VM backup can continue running without the
need of launching and restarting a new VM. Thus, the VM
backup method reduces the interruption to the VM running
caused by PM failures.

Correlated machine failures often occur in large-scale sys-
tems [41–43] due to common failure causes (e.g., cluster
power outages, workload-triggered software bug manifesta-
tions, Denial-of-Service attacks). In the cascading failure, the
failures of PMs are correlated (i.e., concurrent or fast sequen-
tial) since subsequent failures are caused by overload due to
the transferred load from previous failures. Then, when a VM
fails, all of its backups may also fail almost concurrently. It
decreases the performance of the application of the VM, since
a new VM needs to be submitted, allocated, and started over
again. It may also exacerbate the cascading failure since many
VMs need to be reallocated to the remaining alive PMs, which
may make them overloaded and possibly cause subsequent PM
failures. To avoid the concurrent (or fast sequential) failures of
a VM and its backups, we propose VMset that determines the
locations of VM backups to increase their reliability during
concurrent failures and cascading failures. VMset makes it
more likely to recover a failed running VM by its backups,
thus enhances the performance of OAVR in avoiding cascad-
ing failures or mitigating the adverse influence of cascading
failures. It can achieve higher VM backup reliability than
previous VM backup methods such as the random backup
algorithms [32, 33, 8, 44].

We use R (e.g., 3) to denote the number of backups of each
VM, N to denote the total number of PMs in the datacenter
and W to denote the VM backup spread width, which means
that all the backups of the VMs running on the same PM can
only be stored in a group of W PMs. We define a vmset as
a set of W PMs that store all the backups of one VM. In the
random backup algorithm, the primary or first VM backup is
placed on a randomly selected PM from the entire datacenter.
Assuming the first backup is placed on PM Pi, the remaining
R− 1 = 2 backups are placed in PMs randomly chosen from

the PMs {i + 1, i + 2, ... , i +W − 1}. If W = N − 1, the
second backup’s PMs are chosen randomly from all the PMs
in the datacenter.

If we consider that each PM is independent to other PMs,
the random backup algorithm can provide high durability. For
example, considering only one VM and its three backups, if a
concurrent failure leads to 1% of the PMs in the datacenter to
fail, the probability that the failure causes the exact three PMs
which store the VM backups to fail is only (1%)3 = 0.0001%.
In another word, the probability that these VM backups survive
during the failure is 1 − 0.001% = 99.9999%. However,
the system replicates millions of VMs and needs to ensure
that every single VM should survive during the failures even
though each VM backup may be very safe. Considering a large
number (e.g., 5000000) of VMs and their backups storing in
the datacenter, when 1% of the PMs in the datacenter fail, the
loss probability of all the backups for any one VM will be
1 − (99.999%)

5000000
= 99.99% rather than 0.0001% [7].

Therefore, the random backup algorithm cannot effectively
handle the cascading failures or concurrent failures.

For instance, assume the datacenter has the following pa-
rameters: R = 3, N = 12, and W = N − 1 = 11. When
we use the random backup algorithm, the first VM backup is
placed on a PM randomly chosen from 12 PMs, say PM P1.
The second and third backups are placed in PMs randomly
chosen from all the other PMs in the datacenter. Thus, when
we have a large number of VMs and their backups are stored
in the entire datacenter, the total number of vmsets is:(

12

3

)
= 220. (5)

Suppose that three PMs fail in the datacenter. Then the
possibility of VM backup loss is the number of vmsets divided
by the maximum number of sets:

# vmsets(
N
R

) =
220(
12
3

) = 100%. (6)

Using a lower spread width (W ) can decrease the proba-
bility of VM backup loss from correlated failures. Suppose
W = 4 and the first VM backup is also placed on a PM
randomly chosen from 12 PMs, say PM P1. The second and
third backups can be placed in PMs randomly chosen from
subsequent PMs PM P2, P3, P4 and P5 due to the spread
width W = 4. Thus, when we have a large number of VMs
and their backups are stored in the entire datacenter, the total
number of vmsets is:

12 ·
(
4

2

)
= 72. (7)

Suppose that three PMs fail in the datacenter. Then the
possibility of VM backup loss is the number of vmsets divided
by the maximum number of sets:

# vmsets(
N
R

) =
72(
12
3

) = 32.7%. (8)

Now, we introduce the VMset method that produces lower
possibility of VM backup loss with the same W value. VMset



is developed based on the copyset algorithm [7] which is for
data replica placement to increase the reliability of replicas
during a concurrent failure. VMset provides high VM reliabil-
ity by limiting the number of PMs that store the backups of all
the VMs running on the same PM. Compared with the previous
VM backup random placement methods, VMset places all VM
backups on a much smaller size of vmset group to achieve
lower probability of VM backup loss.

For instance, suppose we still have the same parameters for
the datacenter. The first VM backup is also placed in a PM
randomly chosen from 12 PMs. We only allow all the VMs
to store their backups on the following 8 vmsets:

{P1, P2, P3}{P4, P5, P6}{P7, P8, P9}{P10, P11, P12},
{P1, P5, P9}{P2, P6, P10}{P3, P7, P11}{P4, P8, P12}, (9)

That is, if the first backup is placed on PM P2, the second
and the third backups can only be randomly placed on PM P1

and P3 or P6 and P10 as shown in Figure 1, which is different
from the above backup placement that randomly places the two
replicas on the other PMs chosen from 11 PMs (W = 11) or
4 sequent PMs (W = 4). Note that with VMset, the backups
of VMs on the same PM are split uniformly to four other PMs
(P1, P3, P6, P10), as the VM backup spread width W = 4.
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Fig. 1: Illustration of the VMset method.

This method creates only 8 vmsets. If three PMs fail
concurrently, the probability of VM backup loss is:

# VMsets(
N
R

) =
8(
12
3

) = 4%, (10)

which significantly reduces the loss probability of VM backups
of the random backup algorithm. With VMset, we will only
lose VMs and backups if all the PMs in a vmset fail simul-
taneously. For example, choosing a system with N = 5000,
R = 3, W = 10, when 1% of the PMs fail simultaneously,
VMset yields the VM backup loss probability as:

# VMsets(
N
R

) =
10
3−1 ·

5000
3(

5000
3

) =
8333

2.01× 1010
= 0.000042%,

(11)
which is much lower than 99.99% in the random backup
algorithm.

In the following, we introduce how to create the vmsets.
We define a permutation as an ordered list of all PMs

in the system. We perform e = W
R−1 permutations on the

PMs in the datacenter. If the number e is not an integer, we
only choose its integer part. The vmset generation needs to
follow two rules. First, each vmset overlaps with each other
vmset by at most one PM (e.g., the only overlapping PM
of vmset {P1, P2, P3} and {P1, P5, P9} is PM P1). This
ensures that each vmset increases the spread width for its
PMs by exactly R − 1. Second, the mechanism ensures that
the vmset should cover all the PMs. In the above example,
W = 4, R = 3 and N = 12. We have e = 2 permutations,
say {P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12} and
{P1, P5, P9, P2, P6, P10, P3, P7, P11, P4, P8, P12} as shown
in Figure 1. Each permutation form N

R vmsets as shown in
(9). Therefore, e permutations form e · NR = W

R−1 ·
N
R vmsets.

However, in the random backup algorithm, the number of
vmsets is around O(W (R−1)) [7].

In VMset, when the PMs in one vmset fail together, the VMs
and backups will be lost. The above vmset creation method
does not consider the different failure rates of different PMs in
different failure domains to reduce the probability that the PMs
in one vmset fail together. In order to increase the reliability of
VMs and their backups further, we introduce a more advanced
vmset creation method. Actually, we can generate E = N−1

R−1
(that is greater than e) permutations that follow the two rules
indicated above. In the example above, we can generate 5
permutations (e.g., permutation {P1, P4, P7, P2, P9, P11,
P3, P6, P12, P5, P8, P10}) that follow the two rules. Then,
to create reliable vmsets, we select e permutations from E
permutations with the smallest probability that all the PMs
in one vmset fail together. Suppose PM Pi has a failure rate
fPi

(considering both the hardware failure probability and the
failure rate of failure domain where this PM resides in), and
then we calculate the concurrent failure probability of one
vmset fvmset as the product of the failure rates of PMs in this
vmset:

fvmset =
∏

fPi
. (12)

Then, we calculate the failure probability of each permutation
Fpermutation as the sum of concurrent failure probabilities of
all the vmsets in the permutation:

Fpermutation =
∑

fvmset. (13)

VMset then sorts the permutations in descending order of their
failure probabilities and and selects top e permutations to map
all the VM backups according to the selected permutations.
Therefore, the selected permutations can always achieve the
lowest VM backup loss probability with the consideration of
the different failure rates of different PMs.

Hence, the VMset method significantly reduces the proba-
bility of VM backup loss with much lower number of PMs
involved in storing the backups of VMs running on the same
PM, and then avoids VM reallocation which can reduce the
probability of PM overload. The lower probability of PM
overload can also reduce the possibility of cascading failure
occurrence.



C. Dynamic Oversubscription Ratio Adjustment (DOA)

As mentioned in Section I, the cascading failure is caused
by oversubscription on PMs and then the PMs and domain
overloads due to workload migration during failures. We
assume that each resource type has an oversubscription ratio.
In order to avoid the cascading failures and decrease the fail-
ure possibility, we propose Dynamic Oversubscription Ratio
Adjustment (DOA) to dynamically adjust the oversubscription
ratio of each PM based upon the current resource utilization
on the PM. DOA adaptively decreases the oversubscription
ratio of a resource type when the resource is over-utilized and
increases it when a resource is under-utilized.

In DOA, each PM monitors the resource utilization (e.g.,
CPU and memory) of each resource type of all the VMs
running on itself. If the utilization of one resource on a PM
is not in a pre-defined threshold range (e.g., 85%-100%), the
PM changes the oversubscription ratio of this resource type.
Next we introduce the details on how to dynamically adjust
the oversubscription ratio based on the real-time workload on
each PM. For simplicity, we use the memory resource of PMs
as an example and this method can be for any resource type.

Suppose the memory capacity of a PM is CM and the master
machine can assign it VMs (whose total required memory
resource is LM ) to reach the specified oversubscription ratio as
LM

CM
. At the beginning of each time period, the PM examines

whether the memory resource utilization exceeds the pre-
defined threshold range. If the utilization exceeds the higher
bound of the range, the PM notifies the master machine and
then the master machine reduces the maximum total memory
of VMs that is allowed to allocate to the PM by LM

a , where
a (e.g., 2) is a small constant since we want to fast reduce
the memory resource demand of VMs on this PM. Thus, it
can reduce the overload occurrence probability of the PM
caused by memory resource overload. If the utilization is
lower than the lower bound of the threshold range, the master
machine increases the maximum total memory of VMs that is
allowed to assign to this PM from LM to LM + CM

b until the
memory utilization exceeds the lower bound of the threshold
range. Here, b (e.g., 10) is a large constant since we want
to increase the resource demand of VMs that is allocated
to this PM slowly, so that DOA can find a more suitable
oversubscription ratio and reduce the overload occurrence
possibility of PM efficiently. This way, DOA can maintain the
resource utilization within the pre-defined threshold range as
much as possible, which reduces the overload possibility of
PMs. The oversubscription ratio adjustment here is similar to
the window size adjustment in the TCP/IP sliding window
protocol [45] in order to find an appropriate value.

Figure 2 shows a simple example of DOA. The number
shown below each PM indicates the maximum size of VMs’
memory that can be assigned to it. DOA examines the resource
utilization periodically and changes the oversubscription ratio
accordingly. For example, in period 1, the leftmost PM has
a memory utilization of 100% and the maximum size of
memory of VM that can be assigned to the PM is 8GB.
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Fig. 2: Illustration of dynamic oversubscription ratio adjustment.

After DOA detects that the memory utilization on this PM
exceeds the pre-defined threshold range (i.e., 100%>95%), in
the next time period (period 2), the oversubscription ratio is
reduced and then the maximum size of memory of VMs that
can be assigned to this PM is reduced to 4. On the other
hand, all the resource utilizations of other PMs are below
95% so that the maximum size of memory which can be
assigned to the PMs are increased by 1GB at period 2. In
this way, the oversubscription ratio of each resource type in a
PM is dynamically adjusted according to the real-time resource
utilization of the PM and will not exceed the higher bound or
lower bound of the threshold range.

IV. PERFORMANCE EVALUATION

A. Simulation Setup

We conducted trace-driven simulation on a Java-based sim-
ulator to evaluate the performance of our proposed CFRS. We
used the VM resource utilizations in CPU and memory from
the Google Cluster trace [46, 47] to generate VM workloads.
The Google Cluster trace records CPU and memory usage of
VMs on a cluster of about 11000 machines from May 2011
for 29 days. We simulated a cloud datacenter, in which 19200
PMs are connected through 240 Top-of-Rack (ToR) switches
and 80 PMs are in one rack, and each power station supplies 20
racks [11]. All the PMs in the datacenter are organized into
240 network failure domains and 12 power failure domains
shown in Figure 3. The failure rate was randomly chosen from
[0.000022, 0.000032] per hour for a network failure domain
and 0.4× 10−6 per hour for a power failure domain [11]. For
each overloaded PM, the failure rate is 0.0001 per minute to
stop working and fail. When a PM fails and its VMs need to
be reassigned to other PMs to run, in order to restart the VMs
quickly, the capacities of the destination PMs for the VMs may
not be checked as explained in Section III-A1. We set the prob-
ability of not ensuring sufficient capacity of destination PMs
to 2%-15% as the X axis of the experimental result figures.

We configured the PMs in the datacenter with the capacities
of Intel Xeon 6 CPU cores and 16 GB memory. We also
configured each VM with the demand number of CPU cores
randomly chosen from 1 to 4 and the demand memory
randomly chosen from 1GB to 8GB like the Amazon EC2
instances (e.g., t2.small, t2.medium, and t2.large) [48]. The



default number of backups for each VM is 3. We repeatedly
carried out each simulation for 10 times and reported the
average results. Each PM conducts VM migration periodically
every 60 seconds. When the simulation was started, the sim-
ulator updates the VM’s resource utilization in the datacenter
every 60 seconds, and records the number of the occurrences
of overloaded PMs during the experiment period.
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Fig. 3: A datacenter with failure domains.

We compare the performance of CFRS with three other
methods, Random, DieHard [11] and Venice [17]. Venice does
not have VM backup method and we add this method to
Venice to make it comparable to other methods. The details
of these methods are presented in Section II. In Random and
Venice, the PMs to host VM backups are randomly chosen
from all the PMs. In order to guarantee the fairness between
the methods, since there is no VM migration in Random and
DieHard, we add the periodical VM reassignment (i.e., load
balancing) function (which randomly selects the migration
VMs and destination PMs with enough capacity for migrated
VMs) into them and represent these two enhanced methods
by Random* and DieHard*. For all the four methods, when
a PM, say Pi, is overloaded or failed, to recover each VM
running in Pi, the backups of the VM will be used first;
only when the backups are not available, a new VM is re-
launched. The details are presented in Section III. The default
oversubscription ratio is 2 for each method, and we set a = 2
and b = 10 in CFRS. The default number of backups in the
simulation is 3 and only DieHard determines the number of
backups for each VM based on a strategy that we will explain
later. DieHard and Venice need the users to set VMs’ reliability
requirement to determine the minimum number of backups
(for DieHard) or calculate the availability score of VM (for
Venice). Then we set the reliability requirement as that one VM
can get its required resource in 95% of its running time [17].

B. Evaluation Metric Description

Each simulation ran for 24 hours simulation time. We
measured the following metrics after each simulation.

1. The number of domain failures. In a cascading failure, a
domain fails and then its workload is moved to other domain,
which becomes overloaded and fails, and this process repeats,
leading to a cascading failure. In the experiment, when 95%
PMs within one failure domain are failed by overload, we

consider that this domain is failed and count it as a domain
failure. Since the cascading failure we consider is mainly
caused by PM overload, we exclude the first domain failufre
when counting the number of domain failures.

2. SLO violation. This metric aims to evaluate the perfor-
mance of each method on satisfying SLOs. SLO violation is
determined by the percentage of a PM’s running time, during
which the PM has a 100% CPU utilization (SLOVO) and the
performance degradation due to VM migration (SLOVM) [49].
SLOV O = 1

N

∑N
i=1

Tsi

Tai
, where N is the number of running

PMs, Tsi is the total running time of PM i with 100% CPU
utilization, and Tai

is the total time during PM i serving VMs.
SLOVM = 1

M

∑M
j=1

Cdj

Crj
where M is the total number of

VMs. Cdj
is the estimation of VM performance degradation

caused by VM migration (we use 10% as in [49]). If the
VMs needed to be reassigned to another PM via footprint
transmission, the performance degradation is set to 0. Crj is
the total CPU requested capacity by VM j. Finally, SLOV is
the product of SLOVO and SLOVM.

3. The number of failed PMs. This metric aims to evaluate
the failure severity of the datacenter. A smaller number of
failed PMs means better performance on PM failure avoidance.
All types of failures including the first failure caused by power
outage and network failure are counted in this metric.

4. Computing time. This metric measures the system over-
head and then represents the efficiency of the system in time
scale. The computing time is the sum of all the running time
for each method excluding the VM transmission time.

C. Simulation Results
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Fig. 4: Number of domain failures.

Figure 4 shows the number of domain failures versus the
probability of not ensuring sufficient capacity of destination
PM which is from 2% to 15%. The result follows Ran-
dom>DieHard>Random*> DieHard*>Venice>CFRS. Since
the domain failures are mainly caused by overloaded PMs,
Random and DieHard without periodical load balancing al-
ways yield the largest number of domain failures. The Ran-
dom* randomly assigns all the VMs to PMs that have enough
capacity for the VMs at the start of the simulation. During
the simulation, when some PMs fail or become overloaded,
the master machine may reallocate the VMs from these
PMs without checking whether the available capacities of the
destination PMs are enough to host the VMs. When the master
machine checks the resource utilization of the destination
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PMs and reallocate VMs to PMs that have enough available
capacities, since it does not achieve long-term load balance,
the destination PM has a high probability to be overloaded
and may fail and generate a cascading failure. Also, to select
VMs from an overloaded PM, Random* randomly selects
VMs from the PM, which also cannot achieve long-term load
balance, and generates PM failure and a cascading failure.
Note that Random* randomly places VM backups without
any VM backup placement optimization, so the backups of
a VM may also fail in the cascading failures. When a VM’s
backups fail, the VM’s host PM needs to migrate all the data
of the VM to another PM, which costs much longer time in
VM migration compared with only footprint transmission to
the PM host of a backup. The longer time in VM migration
increases the overload duration of the source PM, which makes
the PM more likely to fail with its failure rate. As a result,
more PMs are overloaded, which leads to cascading failures
and then a larger number of domain failures compared with
other methods.

Like Random*, in VM reallocation to handle the PM
overload or failure, DieHard* cannot achieve long-term load
balanced state for the source PMs and the destination PMs.
Therefore, the PMs are likely to be overloaded and fail, leading
to cascading failure. DieHard* is more advantageous than
Random* in that it has the VM backup placement optimization
by placing more VMs and their backups on the domains with
lower failure rates, which helps reduce loss probability of
VMs and their backups. Since more VM backups are available
during PM failures compared to Random*, in VM reallocation,
the VM migration has a higher probability to only conduct
footprint transmission rather than transmitting all data of VMs.
Shorter time in VM migration means that source PMs are less
likely to be overloaded in DieHard* compared to Random*.
Thus, few PMs are overloaded, which leads to fewer domain
failures in DieHard* compared with Random*.

In the initial VM allocation and VM reallocation during PM
overload or failure, Venice allocates a VM to a PM based on
the availability scores. Venice randomly allocates VM backups
to PMs to increase VM reliability but does not have VM
backup placement optimization compared with DieHard*.

DieHard* randomly selects PMs with enough capacity
for migrated VMs without considering the reliability of the
destination PMs. DieHard*’s VM backup optimization can
increase the probability that a VM backup is available in a
domain failure, but cannot ensure VM back availability in

cascading failures which may make all backups of a VM fail.
Therefore, Venice can achieve better VM reliability after VM
migration, which generates few VM reallocations and then a
smaller number of PM failures and domain failures.

We see that CFRS produces the smallest number of domain
failures. In a PM overload or failure, the master machine
needs to conduct VM reallocation. When the master machine
checks the available capacities of the destination PMs, CFRS
estimates the workload on PMs and VMs in each epoch during
a time period and balances the workload on both source PMs
and destination PMs in long term by carefully selecting VMs
to migrate out and the destination PMs for VMs that need to
reallocate. The long-term load balance avoids PM overload in
long term and hence avoids PM failures or cascading failures.
Meanwhile, when the master machine does not check the
destination PM, the PM has a high probability to be overloaded
and failed. In this case, CFRS can help achieve long-term
load balance in the next VM reallocation period, which help
avoid PM failures and cascading failures. Like DieHard* and
Venice, VMset considers the failure rates of different PMs
in VM backup placement to increase VM backup reliability.
Further, in cascading failures and concurrent failures, VMset
increases the reliability of VMs’ backups, while DieHard* and
Venice tend to lose VM backups. Fewer VM backup losses lead
to shorter time needed for VM reallocation (as transmitting
footprint needs shorter time than transmitting all the data
of a VM), which reduces the time duration that the source
PM is overloaded and then the failure probability of the PM.
Furthermore, CFRS dynamically adjusts the oversubscription
ratio based on the real resource utilization of each PM. Once
the resource utilization is higher than the pre-defined thresh-
old range, the oversubscription ratio is reduced to limit the
resource usage of the PM and vice versa. In summary, CFRS
produces the lowest number of domain failure occurrences
among all of the methods.

Figure 5 shows the number of failed PMs versus the
probability of not ensuring sufficient capacity of destination
PM which is from 2% to 15%. The result follows Ran-
dom>DieHard>Random*> DieHard*>Venice>CFRS due to
the same reasons as in Figure 4

In Figure 6, we measure the performance of SLO
violation versus the probability of not ensuring suffi-
cient capacity of destination PM which is from 2% to
15%. The result follows Random>DieHard>Random*>
DieHard*>Venice>CFRS, which is the same as the result in



Figure 4. This is because more failed PMs mean that more
VMs’ requests cannot be satisfied, which results in higher SLO
violation.

Figure 7 shows the computing time of each method
versus the number of VMs. The result follows Ran-
dom*<DieHard<Venice<DieHard*<CFRS. For Random*, it
does not have any optimization algorithm and its computing
time is only for calculating the available capacities of PMs to
find PMs with enough capacity for VMs in periodical load
balancing. In DieHard, it needs to calculate the necessary
number of VM backups and generate the VM placement to
provide VM reliability guarantee. DieHard* needs additional
time for periodical load balancing. In Venice, it calculates
the availability score of each PM according to the PM’s
resource utilization and failure rate, and the score of each
VM according to the required resource of the VM and the
reliability requirement set by users in initial VM allocation and
periodical load balancing. CFRS has the highest computing
time compared with other methods, since it needs to calculate
the priority score for each overloaded PM and its VMs in
periodical load balancing operation. It also needs to generate
a reliable backup placement to achieve higher VM backup
reliability. Meanwhile, in DOA, each PM needs to check if its
resource utilization is in the threshold range and then adjust
the oversubscription ratio if needed.

D. Effectiveness of Each Method

Now we evaluate the effectiveness of VMset and DOA in
CFRS. We first evaluate the effectiveness of VMset. Figure 8
shows the SLO violation versus the probability of not ensuring
sufficient capacity of destination PM which is from 2% to
15%. Here, CFRS w/o VMset means CFRS without VMset,
which uses random VM backup placement. The result follows
Random*>CFRS w/o VMset>CFRS. CFRS w/o VMset does
not have a VM backup placement optimization method. VMset
increases the reliability of VM backups in cascading failures
and concurrent failures, and further considers the failure rates
of different PMs in VM backup placement to increase VM
backup reliability. It reduces the time duration that a source
PM is overloaded and then the failure probability of the PM. In
CFRS w/o VMset, the VM backup reliability is not as high as
CFRS and hence yields a larger number of failed or overloaded
PMs. Thus, CFRS w/o VMset generates a higher SLO violation
value than CFRS.

Figure 9 shows the SLO violation versus the number of VM
backups for each VM. R means the number of VM backups
for each VM. The result shows that R = 1 > R = 5 > R =
10 > R = 15; that is, a higher R value leads to less SLO
violation. For a smaller R (i.e., a limited number of backups
for a VM), when some PMs fail, then some VMs may lose all
if their backups that are stored on the failed PMs. As a result,
the VMs on them must be reallocated to other PMs without
the backups. More total VM migrations generate more perfor-
mance degradation, which leads to larger SLO violation value.
When R is a little larger, the VMs that are hosted in failed
PMs have backups on available PMs with higher probability
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and then these VMs can be reassigned to PMs with backups
by footprint transmission with less VM migration performance
degradation. For a larger R, while some PMs fail, more VM
backups can survive during failures. Then, more VMs can be
reassigned to other PMs with the backups without transferring
the total VMs, generating a lower SLO violation value.

Figure 10 shows the number of failed PMs versus the
probability of not ensuring sufficient capacity of destination
PM. Here, CFRS w/o DOA means CFRS without DOA.
The result follows Random*>CFRS w/o DOA>CFRS.
CFRS w/o DOA does not adjust the oversubscription ratio
based on the real resource utilization. In DOA, the adjusted
oversubscription ratio can decrease the possibility that the
total resource using by all the VMs on a PM exceeds its
capacity. It can reduce the number of overloaded PMs and
failed PMs. In CFRS w/o DOA, the PM is more likely to be
overload compared with CFRS. Thus, CFRS w/o DOA can
cause a PM to be overloaded with a higher probability than
CFRS, which may lead to the failure of this PM.

V. CONCLUSION

After a failure (e.g., power outage, network failure) occurs,
due to the load transfer from failed domains to other domains,
the destination domains may become overloaded and fail,
which cause a cascading failure. Previous methods to handle
failures are not sufficiently resilient to such cascading failures.
In this paper, we propose a Cascading Failure Resilience
System (CFRS). First, CFRS chooses VMs in overloaded
PMs to migrate out and selects destination PMs to host the
VMs from overloaded PMs or failed PMs to achieve long-
term load balance, which reduces the probability of failure
occurrence. Second, CFRS places VM backups to PMs to
increase the backup reliability in cascading failures. Third,
CFRS dynamically adjusts oversubscription ratio of each re-
source in a PM according to the real workload of the PM
to avoid PM overload and hence possible failure. Our trace-
driven simulation shows the superior performance of CFRS in
cascading failure avoidance compared with other methods. In
the future work, we will study how to estimate the effect of
failures and explore how to mitigate different types of failures.
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