
Proactive Incast Congestion Control in a Datacenter
Serving Web Applications

Haoyu Wang and Haiying Shen
Department of Computer Science

University of Virginia, Charlottesville, VA 22903, USA
Email: {hw8c, hs6ms}@virginia.edu

Abstract—With the rapid development of web applications in
datacenters, network latency becomes more important to user
experience. The network latency will be greatly increased by
incast congestion, in which a huge number of requests arrive
at the front-end server simultaneously. Previous incast problem
solutions usually handle the data transmission between the data
servers and the front-end server directly, and they are not
sufficiently effective in proactively avoiding incast congestion. To
further improve the effectiveness, in this paper, we propose a
Proactive Incast Congestion Control system (PICC). Since each
connection has bandwidth limit, PICC novelly limits the number
of data servers concurrently connected to the front-end server to
avoid the incast congestion through data placement. Specifically,
the front-end server gathers popular data objects (i.e., frequently
requested data objects) into as few data servers as possible, but
without overloading them. It also re-allocates the data objects
that are likely to be concurrently or sequentially requested into
the same server. As a result, PICC reduces the number of data
servers concurrently connected to the front-end server (which
avoids the incast congestion), and also the number of connection
establishments (which reduces the network latency). Since the
selected data servers tend to have long queues to send out data,
to reduce the queuing latency, PICC incorporates a queuing delay
reduction algorithm that assigns higher transmission priorities to
data objects with smaller sizes and longer queuing times. The
experimental results on simulation and a real cluster based on a
benchmark show the superior performance of PICC over previous
incast congestion problem solutions.

I. INTRODUCTION

Web applications, such as social network (e.g., Facebook,
Linkedin), video streaming (e.g., YouTube, Netflix), are widely
used in our daily life. A data query of a web application
always needs to retrieve many data objects concurrently from
different cloud data servers [1–5]. As shown in Figure 1,
after receiving a client’s data query, the front-end server sends
many data requests for data objects stored in all targeted
servers and receives thousands of responses simultaneously.
Although a high parallelism of data requests can achieve
better performance on the back-end side, when a large number
of concurrent responses arrive at the front-end server, the
switch buffer can not handle all the concurrent responses [6].
Then, it causes packet drops and TCP timeouts, which can
introduce retransmission delay and up to 90% throughput
reduction [7]. This kind of network congestion is called incast
congestion, which is a non-ignorable reason of the delay in
modern datacenter [1, 2, 8, 9]. Indeed, the incast congestion
occurred in Morgan Stanley’s datacenter greatly degrades the

performance [10]. Web application users often have a strict
requirement on response latency [11, 12]. For example, data
query latency inside Azure storage system needs to be less
than 100ms [13] to meet user satisfaction and some web
applications require much shorter latency such as 178µs [1].
Moreover, user loyalty is affected by the application’s response
latency. For example, the sale of Amazon will degrade by one
percent when the latency of its web presentation increases
as small as 100ms [14]. In order to reduce response latency
and improve users’ experience, it is critical to avoid incast
congestion.

. . .

Data request

Data response

Front-end server

Si Sj Sk

Incast
congestion

A data query from a client

Fig. 1: Illustration of incast congestion.

The incast congestion problem is common and critical in
the TCP protocol environment. Many previous solutions for
this problem can be classified into three categories: link layer
solutions [15–18], transport layer solutions [6, 19–23] and
application layer solutions [24–27]. These solutions usually
handle the data transmission between the data servers and the
front-end server directly, but they are not sufficiently effective
in proactively avoiding incast congestion.

To address this problem, in this paper, we propose a new
application layer solution, called Proactive Incast Congestion
Control (PICC) for a datacenter serving web applications. The
root cause of the incast congestion problem is the many-to-
one concurrent communications between the single front-end
server and multiple data servers [8]. Since each connection
has bandwidth limit, PICC novelly limits the number of data
servers concurrently connected to the front-end server to avoid
incast congestion through data placement. In this case, a
challenge faced by PICC is how to satisfy the response latency
requirements from users.

To handle this challenge, PICC places popular (i.e., fre-
quently requested) data objects into as few data servers as
possible, and also stores correlated data objects in the same
data server, but without overloading the servers (called gath-
ering servers). Correlated data objects are the data objects

that tend to be requested concurrently or sequentially. For
example, different data objects for a webpage are usually
requested concurrently, and a webpage indexed by another
webpage may be requested sequentially. In addition, since
gathering servers tend to have long queues to send out data,
in order to reduce the queuing latency in gathering servers,
PICC assigns different transmission priorities to data object
responses in the queue; a data object with a smaller size and
longer waiting time has a higher priority to be transmitted
out. As a result, when a client sends a data query to the
front-end server, the front-end server is likely to send data
requests to a limited number of servers. It decreases the
number of data servers concurrently connected to the front-end
server, which reduces the probability of the incast congestion
occurrence. Also, it reduces the number of establishments
of the connections between the data servers and the front-
end server (especially for the situation that most connections
only carry transient transmission of only a few data objects),
which reduces connection establishment time and hence the
data response latency to the client. Within our knowledge,
PICC is the first work that focuses on the data placement
to proactively avoid incast congestion. We summarize our
contribution below:

1. Popular data object gathering. We dynamically gather
the popular data objects into as few data servers as possible
but without overloading them. Therefore, when a client sends
out a data query, the number of data servers concurrently
transmitting data to the front-end server is constrained and
the probability of incast congestion occurrence is decreased.
Also, the number of connection establishments between the
data servers and the front-end server is reduced, which reduces
data query latency.

2. Correlated data object gathering. We periodically cluster
correlated data objects into a group, and then allocate each
group to the same data server but without overloading it. In
this way, for a client’s data query, the data requests issued
from the front-end server have a high probability to be sent to
only a few servers. It helps reduce the number of data servers
concurrently connected to the front-end server and the number
of connection establishments, which avoids incast congestion
and reduce data query latency.

3. Queuing delay reduction. After we gather popular or
correlated data objects into several gathering servers, more
data object responses need to be sent from a gathering server
and it increases the queuing latency. We propose a queuing
delay reduction algorithm to reduce the adverse effect of the
head-of-line blocking (i.e., a queue of packets is held up by
the first packet which increases the queuing latency). The
algorithm assigns a higher priority to the data objects with
a smaller size and longer waiting time to be transmitted out,
so that the average request latency in the gathering servers is
reduced.

The remainder of the paper is organized as follows. Sec-
tion II presents an overview of the related work. Section III
describes the detailed design of PICC. Section IV and Sec-
tion V present the performance evaluation based on a bench-

mark in simulation and on a real-world testbed, respectively.
Section VI concludes this paper on our future work.

II. RELATED WORK

Link layer solutions. The quantized congestion notification
(QCN) method [15] was developed for congestion control
at the link layer in the datacenter network. It is composed
of two parts: the congestion point algorithm which samples
the packets only when congestion occurs to evaluate the
congestion situation, and the reaction point algorithm which
recovers the network congestion reported by the congestion
point algorithm. QCN runs on special switch, which is costly
and hard to implement in practice. Devkota et al. [16] modified
QCN by sampling each packet regardless of the occurrence of
the congestion in order to get better performance in avoiding
congestion. Zhang et al. [17] improved QCN by distinguishing
each flow based on their sending rates and adjusting the
feedback to each flow accordingly. Huang et al. [18] proposed
to slice the TCP packet into a smaller size to reduce the
congestion possibility.

Transport layer solutions. The transport layer solutions are
mainly focused on improving TCP protocols. Vasudevan et
al. [6] proposed disabling the delayed ACK mechanism and
conducts a retransmission when the retransmission timeout is
reached. ICTCP [19] adjusts the receive window according to
the ratio of the actual throughput over the expected throughput.
When the ratio decreases, the window size is increased to
use more available bandwidth and vice versa. To improve
the downlink bandwidth utilization, DCTCP [20, 21] and
MPTCP [28] reduce the window size by a flexible ratio
according to current network status. Multipath TCP [29, 30]
tries to seek a possible path to transfer data from servers to the
front-end server among multiple paths in order to fully utilize
the bandwidth of each link of all paths and avoid passing
congested links. It also uses the different window sizes for
different TCP sub-flows.

Application layer solutions. In [24–27], a short delay is
introduced between two consecutive requests by manually
scheduling the second response with an extra short delay or re-
schedule the transport path for each request in order to reduce
the number of concurrently connected data servers to avoid
incast congestion. Yang et al. [24] proposed inserting one unit
time delay between two consecutive requests. The methods in
[25, 26] ask the target server to wait for a certain time before
transmitting the requested data. Wang et al. [27] proposed a
transport path re-scheduling method by concentrating all the
data requests into a limited number of data servers within one
rack. However, the added extra delay or re-scheduled path will
increase the response latency of data requests, which may not
satisfy the user low-latency requirement on web applications.

Unlike the previous solutions, PICC handles the incast
congestion problem from a completely different perspective.
It novelly uses data placement to limit the number of con-
currently connected data servers to the front-end server, while
reducing the response latency.

III. DESIGN OF THE PICC SYSTEM

In this section, we present the details of our proposed
Proactive Incast congestion Control system (PICC). The main
cause of incast congestion is that many responses arrive at
the front-end server simultaneously. The number of concurrent
responses, or in another word, the number of servers simul-
taneously connected to the front-end server may exceed the
processing capacity of the front-end server, and then some of
the responded data objects will be lost. Therefore, reducing
the number of servers concurrently connected to the front-end
server can avoid the incast congestion. Rather than relying on
short delay insertion between two requests (which introduces
extra latency) or sliding window protocol (which may not fully
utilize bandwidth), PICC has data object placement methods
to proactively reduce the number of data servers concurrently
connected to the front-end server.

In the current datacenter, when the front-end server receives
a query from a client, it sends out multiple data object requests
and receives responses from a number of data servers concur-
rently. In PICC, due to its data object reallocation strategies,
fewer data servers need to respond to the front-end server
for a data query, which helps avoid the incast congestion.
Note that when data is already stored in the data storage
system, PICC conducts data reallocation by transferring data
between servers. For a data storage system that follows a
certain rule to store and fetch data (e.g., MongoDB [31] key-
value storage system), before PICC moves data objects from
server Si to server Sj , it creates a link for the data object
in Si pointing to Sj . Then, the data fetching still follows the
original procedure and the only difference is that the real data
response is transmitted from Sj to the front-end server rather
than Si.

A. Popular Data Object Gathering

The front-end server runs the popular data object gathering
algorithm periodically after each time period T . In the fol-
lowing, we explain how to find popular data objects, how to
determine the gathering servers that store popular data objects,
and how to store popular data objects to the gathering servers.

The popular data objects are identified based on the data
object request historical log. Like [32], we also assume that
we can use the historical request frequency of one data object
to predict its request frequency in the next time period. We
use T to denote a time period and use t ∈ T to denote a
time-slot. Upon receiving a client’s data query, the front-end
server will send out multiple requests to different data servers
for data objects. After time period T , the front-end server has
a log recording the requesting frequency of each requested
data object and its host data server. Based upon the log, the
front-end server first sorts all the data objects in the system in
descending order of their requesting frequencies. It then selects
θ data objects on the top of the sorted list, and notifies their
host data servers to transfer these data objects to the gathering
servers in the same rack. The front-end server updates the log
and conducts the data reallocation periodically. In this way,

the popular data list are dynamically updated and popular data
objects are stored in several gathering servers.

We need to select the gathering servers from all data servers.
For the purpose of minimizing the total size of data objects
transferred from other data servers to the gathering servers,
we need to select a data server which stores the largest size
of data objects requested by the front-end server within each
rack during T . Accordingly, based on the recorded log, the
front-end server calculates the weight W of data server Si:
WSi

=
∑

o∈Si
Bo ∗ Fo. Here, o ∈ Si denotes each data object

stored in data server Si, Bo denotes the size of data object
o, and Fo denotes the requesting frequency of data object o
during time period T . For each rack, the front-end server sorts
data servers in descending order of server weights. To limit the
transfer distance of popular data objects in order to constrain
the overhead, we select gathering servers in each rack, so that
popular data objects only need to be transferred within a rack.

Among the selected θ popular data objects, the front-end
server finds the data objects in each rack and estimates their
total demand on different resources (storage, computing, I/O
and bandwidth). Then, from the top of the sorted data server
list of the same rack, it selects a few data servers to function
as gathering servers, whose total resource capacity for each
resource is no less than the total resource demand of the
popular data items in the rack. This step is to avoid data object
transmission from their original servers to the gathering servers
and limit the number of gathering servers while avoiding
overloading them. We could select only one gathering server
first and only when the server cannot host more popular data
objects, we then select the next server. However, it is possible
that a popular data object is already stored in a top server,
which is not the gathering server. Therefore, selecting top a
few servers avoids data transmission in such a case.

Next, the front-end server assigns the popular data objects in
each rack to the gathering servers in the rack. For each data ob-
ject, the font-end server checks whether it is stored in a gather-
ing server in the rack. If yes, it continues to check the next data
object; otherwise, the data object is transferred from its current
data server to the nearest gathering server in the same rack
that has sufficient capacity for it. Note that it is possible that
all selected gathering servers do not have enough capacities to
host a data object due to resource fragmentation in placing data
objects to the servers, though their total available capacity is no
less than the total demand on each resource of the popular data
objects in their rack. In this case, the top server in the sorted
data server list is selected as a new gathering server to host this
data object. This process repeats until the popular data objects
in each rack are all reallocated to gathering servers in the
same rack. As a result, the popular data objects in a rack are
always gathered in a few gathering servers (but without over-
loading them), which limits the number of servers concurrently
connected to the front-server and hence helps avoid incast
congestion. Note that since popular data objects are stored in
these gathering servers, the weights of these servers maintain
high in their racks. As a result, the gathering servers are
unlikely to be changed once they are selected at the first time.

Algorithm 1: Popular data object gathering algorithm.
1 /* select popular data objects periodically */
2 Record the request frequencies of all the data objects;
3 Sort the data objects in descending order of request frequency;
4 Select top θ data objects in the sorted list as popular data objects;
5 /* select gathering servers and reallocate popular data objects */
6 for each rack do
7 Sort the data server list in descending order of server weight W ;
8 From the top of the sorted server list
9 Select gathering servers that can host all the popular data objects

in the same rack;
10 for each data object o in popular data list
11 do
12 if o is in a gathering server in its rack then
13 Continue;
14 else
15 if a gathering server in the same rack has enough capacity

then
16 Reallocate to the nearest gathering server in this rack;
17 else
18 Select a new gathering server from the sorted server

list of the same rack and reallocate;

Algorithm 1 shows the pseudo-code of the popular data
object gathering algorithm. Figure 2 shows an example of this
algorithm. In this figure, each red rectangular represents one
popular data object. Without this algorithm, in time period
T1, the datacenter distributes all popular data objects into
several random servers. Then, one data query to the front-end
server generates several data object requests targeting servers
Si,Sj ,......,Sk. As a result, a larger number of servers will be
connected to the front-end server and respond to the front-end
server concurrently, which is likely to cause incast congestion
on the front-end server side.

. . .

Data request

Data response

Front-end server

Si Sj Sk

Incast
congestion

T1 T2 T2T2 T1T1

Fig. 2: Popular data object gathering.

In our proposed popular data object gathering algorithm,
the front-end server reallocates popular data objects into only
a few gathering servers in each rack periodically. In this way,
when the front-end server processes data queries from the
clients, it requests and receives data objects mainly from the
gathering servers. In Figure 2, in time period T2, Si stores one
popular data object, so it is selected as the gathering server
to store all popular data objects. The popular data objects are
transferred from their previous servers to Si, as indicated by
red lines in the figure. After the popular data reallocation,
when the front-end server receives queries from the clients,
it mainly requests data objects from Si. As the number of

data servers concurrently connected to the front-end server is
reduced from three to one, the probability of incast congestion
occurrence is reduced.

B. Correlated Data Object Gathering

In the popular data object gathering method, we allocate top
θ popular data objects to as few gathering servers as possible
to reduce the number of servers concurrently responding to
the front-end server. In order to further reduce the number
of servers concurrently responding to the front-end server,
we propose the correlated data object gathering method. Note
that some data objects are usually requested concurrently or
sequentially. For example, different data objects for a webpage
are usually requested concurrently, and a webpage indexed by
another webpage may be requested sequentially. Our method
clusters the correlated data objects into the same group and
allocate each group into the same gathering server.

After we gather correlated data objects into the same data
server, then data requests for correlated data objects are gener-
ated from the front-end server to the same data server through
the connection that is already established. It reduces the data
transmission latency caused by the connection rebuilding delay
between the front-end server and data servers [33]. It also
decreases the number of servers concurrently connected to the
front-end server since the front-end server generates requests
to a limited number of servers at the same time and the connec-
tion lifetime is longer than the previous method. Consequently,
data objects are transferred from a limited number of data
servers with non-stop connections with the front-end sever.

In the following, we introduce how to find correlated data
objects. We first introduce a concept of data object closeness
between two data objects to represent the likelihood that the
two data objects will be requested concurrently or sequentially.
After each time period T , from the data request log, the front-
end server can derive the frequency that two data objects, o1
and o2, are requested concurrently during each time-slot t,
denoted by Pt (o1, o2). It can also derive the frequency that
two data objects, o1 and o2, are requested sequentially during
each time-slot t, denoted by Qt (o1, o2). Then, the closeness
of o1 and o2 for time period T is calculated by:

CT (o1, o2) = α ∗
∑
t∈T

Pt (o1, o2) + β ∗
∑
t∈T

Qt (o1, o2)

+(1− α− β)CT−1(o1, o2).

(1)

Here, α and β are the weights for the concurrent request
frequency and sequential request frequency. The inclusion of
(1 − α − β)CT−1(o1, o2) is for the purpose of reflecting the
closeness of two data objects in the long term.

After the front-end server calculates the closeness of every
two data objects, it builds an undirected graph G(V,E), where
V is the set of all data objects, E is the set of all edges con-
necting data objects, and the weight of each edge connecting
data objects o1 and o2 is their current closeness CT (o1, o2). It
then uses the minimum cut tree based algorithm [34] to divide
the graph vertices to clusters. The data objects in each cluster
are correlated data objects. Algorithm 2 shows the pseudo-
code of the data object clustering algorithm. The algorithm

returns all linked sub-graphs as the clusters of G so that the
front-end server can store data objects in one cluster to the
same data server.

When the front-end server notifies the data server of a
popular data object to transfer it to a gathering server, it also
notifies the data servers of other data objects in the same
cluster of this popular data object to transfer them to the
gathering server. Some data object clusters may not contain
popular data objects. For such a data object cluster, the front-
end server finds the data server that stores the most of the
data objects in the cluster and has sufficient capacity to store
other data objects in the cluster, say Si, and notifies the data
servers of the other data objects in the cluster to transfer them
to Si. Since the popularity of data objects may vary [35], we
periodically run this algorithm to maintain the data objects
with high closeness in the same gathering server to avoid incast
congestion and reduce response latency.

Algorithm 2: Correlated data object clustering algorithm.
1 V ′ = V ∪ s; //s is the artificial sink;
2 Graph generation Link s to each data object v to generate graph

G′(V ′, E′);
3 for all nodes v ∈ V do
4 Link V to s with the weight w;

5 Generate the minimum cut tree T ′ of G′ [36];
6 Remove s from T ′;
7 Divide G into N clusters; //N is the number of servers in the system;
8 Return the clusters of G

C. Queuing Delay Reduction

A gathering server stores a large number of popular data
objects, which are requested frequently to send a large amount
of data by the front-end server, or stores correlated data
objects that tend to be concurrently or sequentially requested
by the front-end server. Each gathering server maintains a
sending queue of all requested data objects and sends them
out sequentially. In order to minimize the average waiting
and transmission time per data object, we propose a queuing
delay reduction algorithm that reduces the adverse effect of
head-of-line blocking by setting different priorities for the data
objects based on their sizes and waiting times. That is, a data
object with a smaller data size and longer waiting time has a
higher priority to be transmitted first. According to [37], the
transmission latency and the queuing latency is in microsecond
scale. For a data object o, we use τo to denote its waiting time
in the queue. We then calculate the priority value of data object
o, denoted by Mo, by:

Mo = τ3o /Bo (2)

To place more weight on waiting time when determining the
priority of data objects, we triple the value of τ . This exponent
can be set to another value depending on how much weight
the system wants to give to the waiting time. The data objects
in the queue will be re-ordered based on their priority values.

Figure 3 shows an example of queuing delay optimization
process. Each rectangular represents one data object and the
size of the rectangular means the size of the data object.
Assume that the four data objects have the same waiting time.
In situation 1, the four data objects in the sending queue have

sizes 400kb, 2kb, 2kb, 200kb in sequence. Then, the queue will
be blocked by the 400kb red data object and other three blue
objects have to wait in the queue before the red data object is
sent out. Assume that the data uploading speed is g and the

Front-end server

Si
1

2

Data server
Queue

200kb

200kb

2kb2kb

2kb2kb

400kb

400kb

Fig. 3: An example of queue reordering.

size of a transmission unit is 400kb. Then, the average waiting
and transmission latency equals (400/g + 604/g)/4 = 251/g.
In situation 2, we use the queuing delay reduction algorithm
to reorder the data objects in the queue. The optimized order
of the four data objects in the queue is 2kb, 2kb, 200kb, 400kb,
and the average latency equals (204/g + 604/g)/4 = 202/g.
The improved queue achieves about 49/g less latency than
the original queue. In our proposed queuing delay reduction
algorithm, although the latency of the lower priority objects
will be increased, the average latency per data object in the
queue will be greatly reduced.

Since the length of the entire sending queue of a gathering
server is very long and the long reordering time may introduce
high latency before data transmission, we propose to only
schedule the beginning m (m is a much smaller integer than
the length of the sending queue, e.g., 10) data objects at a time,
which form a sub-queue. Considering that the length of a sub-
queue is much shorter than the entire queue, the reordering
will be faster, which prevents delaying data transmission.
Algorithm 3 shows the pseudo-code of the queuing delay
reduction algorithm.

Algorithm 3: Queuing delay reduction algorithm.
1 for all the data objects waiting to transfer out;
2 do
3 Select top m data objects to generate a sub-queue;
4 for each data object o in the sub-queue;
5 do
6 Calculate the priority value Mo according to Formula (2);

7 Sort the data objects in the sub-queue according to Mo;
8 Transfer out all the data objects in the sub-queue;

IV. PERFORMANCE EVALUATION IN SIMULATION

We used simulation to conduct large-scale experiments since
a real cluster cannot provide large-scale experiment environ-
ment. We developed a simulator in Java with packet-level
transmission and constructed a typical fat-tree structure [38]
using 4000 data servers with 50 data servers inside each
rack [39]. In the simulation, we set the capacity of the down-
link, uplink and buffer size of each edge-switch to 10Gbps,
10Gbps and 1000kb, respectively [19]. For each data object, it
has three replicas randomly distributed on three different data
servers in different racks. The size of each data object was

randomly chosen from [20B,1024B] [1]. There are 105 data
objects in the datacenter.

We used the Yahoo! Cloud Serving Benchmark
(YCSB) [40] to generate workload for data requests. YCSB
is an open source benchmark used to test the performance
of storage system. We chose the zipfian YCSB setting, in
which the front-end server requests data objects according
to the Zipfian distribution. We also manually set the request
probabilities of popular data objects and regular data objects,
generated the workload based on the probabilities [35], and
repeated all experiments. These experimental results are
similar to those with YCSB. Due to space limit, please
refer to [41] for the experimental results with the manual
workload setting. The timeout and the number of TCP packet
retransmissions were set to 1ms and 5, respectively [19]. We
simulated the incast congestion situation with one front-end
server requesting data objects from multiple data servers.
In every experiment, all the data queries are generated by
the front-end server and considered as the historical data for
determining gathering servers. The data query rate means the
number of data queries sent from the front-end server per
hour. We set T to 5mins and set the default θ to 1000. We
measured the performance of each query after the front-end
server receives all the queried data objects of the query and
then calculated the average per query [19]. We repeated each
experiment for ten times, and report the average result.

We compared the performance of PICC with three other rep-
resentative methods: Baseline, TCP sliding window protocol
(We denote it as TSW) [1], and ICTCP [19]. We used Baseline
as a baseline for the comparison without using any incast
congestion problem solutions. In this method, data objects are
randomly distributed to data servers. For a data query from a
client, the front-end server sends requests simultaneously to
all the targeted data servers. In TSW, the front-end server can
adjust the number of its concurrently connected servers using
the classical sliding window protocol. The window size will
increase one by one until the front-end server detects the incast
congestion occurrence, and then the window size will decrease
to half of the previous window size. ICTCP [19] adjusts the
sliding window size by detecting the bandwidth utilization. It
divides total bandwidth into two parts. The first part is used
to receive all the traffic and predict the bandwidth utilization.
It then adjusts the window size in the second part based upon
the predicted bandwidth utilization in order to fully utilize the
available bandwidth without over-utilizing the bandwidth ca-
pacity. In the transport layer solutions, since ICTCP performs
better than DCTCP [19], which is an optimized TCP protocol
widely used in current datacenters, we selected ICTCP as a
comparison method.

A. Performance of Query Latency

Each data query consists of multiple data requests for
different data objects. The request latency for a data object
is the time period between the time a front-end server sends a
request to a data server and the time it receives the requested
data object. The longest time among all the requests of a

0%

20%

40%

60%

80%

100%

1 10 100 1000

C
D

F
o

f
q

u
er

ie
s

Time (µs)

Baseline TSW ICTCP PICC

(a) CDF of data query latency

0

1000

2000

3000

4000

5000

1000 2000 3000 4000 5000D
at

a
q

u
er

y
la

te
n

cy
 (

µ
s)

Data query rate

Baseline TSW ICTCP PICC

(b) Data query latency

Fig. 4: Performance of data query latency.

query is the latency of this query. Figure 4(a) and Figure 4(b)
show the Cumulative Distribution Function (CDF) of data
queries versus the data query latency, and the data query
latency versus data query rate. From both figures, we see the
query latency results follow PICC<ICTCP<TSW<Baseline.
In Baseline, without any solutions to avoid incast congestion,
many simultaneous responses to the front-end server cause
incast congestion, leading to data packet retransmission and
hence high transmission latency. TSW reduces the number of
servers connected to the front-end server once it exceeds the
capacity of the maximum window size (which causes incast
congestion). Therefore, TSW achieves better performance than
Baseline in terms of data query latency. However, TSW pro-
duces a longer request latency than that of ICTCP. TSW cannot
fully utilize the bandwidth when the window size decreases
to its half size. Also, the window size increases until the
incast congestion occurs, which leads to packet loss and data
retransmission. ICTCP improves the sliding window protocol
to fully utilize available bandwidth and meanwhile avoids
increasing the window size beyond the receiving capacity of
the receiver. Thus, ICTCP generates shorter query latency than
TSW. PICC generates lower query latency than ICTCP. PICC
stores popular data objects into several gathering servers and
stores correlated data objects into the same server. In this way,
most of the requests can be responded continuously from a
limited number of servers by fully utilizing the bandwidth.
Furthermore, since many of the responses can be generated
by one server, there is no extra delay introduced from new
connection establishments.

Figure 4(b) also shows that the data query latency of all
methods increases proportional to the data query rate. A higher
data query rate means that more data objects need to be trans-
mitted from each data server during unit time, which generates
a longer data transmission time. These figures indicate that
PICC generates the shortest data query latency among all
methods by proactively avoiding incast congestion and fully
utilizing the downlink bandwidth of the front-end server.

B. Performance of Data Transmission Efficiency

Data object transmissions and retransmissions from the
data servers to the front-end server lead to inter-rack packet
transmissions. PICC additionally produces inter-rack packet
transmissions caused by the inter-rack data reallocation. A
smaller number of inter-rack packets leave more bandwidth for
the connection between the front-end server and data servers,
leading to higher throughput. At the same time, the bandwidth

of links of an aggregation router is much lower than the total
downlink bandwidth of all data servers connecting to this
router. Therefore, it is important to reduce the number of inter-
rack packets (that are transmitted between racks).

0E+0

1E+4

2E+4

3E+4

4E+4

5E+4

600500400300200

N
u

m
b

e
r

o
f

in
te

r-
ra

ck

p
a

ck
e

ts

Downlink bandwidth (Mbps)

Baseline TSW ICTCP PICC

Fig. 5: Inter-rack transmissions.

0%

20%

40%

60%

80%

100%

600500400300200
D

at
a

 t
ra

n
sm

is
io

n

e
ff

ic
ie

n
cy

Downlink bandwidth (Mbps)

Baseline TSW ICTCP PICC

Fig. 6: Transmission efficiency.

Figure 5 shows the number of inter-rack packets of
different methods with different downlink bandwidths of
the front-end server. We see that the results follow
PICC<ICTCP<TSW<Baseline. Baseline has the largest num-
ber of inter-rack packets since it has the highest probability
of generating incast congestion without any solutions to avoid
the incast congestion. For TSW, all the data servers directly
respond to the front-end server based upon the sliding window
protocol, which can reduce the inter-rack packet retransmis-
sion. In ICTCP, it improves the sliding window protocol in
avoiding the incast congestion by predicting the bandwidth
utilization to fully utilize the available bandwidth. With fewer
incast congestion occurrences, ICTCP generates fewer data ob-
ject retransmissions so that it reduces the number of inter-rack
packets compared with TSW. By gathering popular data objects
and correlated data objects into a limited number of servers,
PICC proactively avoids incast congestion and produces the
lowest number of inter-rack packets even though it sometimes
needs inter-rack packet transmission for data reallocation. In
summary, PICC generates the smallest number of inter-rack
packets since it reduces the incast congestion occurrences and
data retransmissions compared with other methods.

We then measure the data transmission efficiency by
size

latency/BW , where size is the total size of all the requested
data of a query, latency is actual query latency of the query,
and BW is the downlink bandwidth of the front-end server.
Figure 6 shows the average data transmission efficiency
per query of the four methods versus different downlink
bandwidths of the front-end server. The results follow
PICC>ICTCP>TSW>Baseline. Furthermore, the result of
PICC increases as the downlink bandwidth decreases, while
other methods keep nearly constant. For Baseline, all the
requests are sent from the front-end server and may be
responded concurrently, which leads to incast congestion and
long transmission latency due to retransmissions. TSW with
the sliding window protocol achieves better performance than
Baseline. In ICTCP, it adjusts half of bandwidth based upon
the bandwidth utilization, which leads to higher bandwidth
utilization and higher data transmission efficiency than TSW.
PICC transfers popular and correlated data objects into a
limited number of servers, and then the front-end server has
a higher probability to request data objects from these data

servers, so that its downlink bandwidth can be more fully
utilized. In summary, PICC achieves the best performance
in data transmission efficiency and bandwidth utilization
compared with other three methods.

0

1000

2000

3000

4000

5000

1000 2000 3000 4000 5000

N
u

m
b

e
r

o
f

in
ca

st

co
n

g
e

st
io

n
s

Data query rate

Baseline TSW ICTCP PICC

(a) Number of incast congestions

0

2

4

6

8

10

12

1000 2000 3000 4000 5000C
o

m
p

u
ti

n
g

 t
im

e
 (

m
s)

Data query rate

ICTCP PICC

(b) Algorithm computing time

Fig. 7: Incast congestion avoidance and computing time.

Figure 7(a) shows the number of incast congestions oc-
curred. We see that TSW and Baseline generate dramatically
more incast congestions than ICTCP and PICC, and PICC
generates significantly fewer incast congestions than ICTCP
due to the reasons explained above. Also, as the data query
rate increases, the number of incast congestions of these four
methods grows since more data queries in a unit time period
lead to a higher possibility of incast congestion occurrence.

Figure 7(b) shows the average computing time of PICC
and ICTCP for the data reallocation scheduling and window
size adjustment calculation per data query, respectively. The
computing time of Baseline is 0 and the computing time of
TSW is negligible. The results show that the computing time
of PICC is higher than that of ICTCP. Also, as the data query
rate increases, the computing time of PICC increases. Because
PICC needs to find popular data objects and correlated data
objects, more data queries cause more computing time. We
also see that even for 5000 data query rate, the computing time
is only 11ms, which is very small compared with the entire
data transmission latency reduction in Figure 4. In summary,
compared with ICTCP, PICC greatly reduces the number of
incast congestions with reasonably higher computing time.

C. Sensitivity Evaluation and Effectiveness of Each Method

0

50

100

150

200

1000 2000 3000 4000 5000

N
u

m
b

e
r

o
f

ga
th

e
ri

n
g

se
rv

e
rs

Data query rate

(a) Number of gathering servers

0

0.2

0.4

0.6

0.8

1

1000 2000 3000 4000 5000R
e

so
u

rc
e

 u
ti

liz
at

io
n

 o
f

ga
th

e
ri

n
g

se
rv

e
rs

Data query rate

CPU Memory

(b) Effectiveness of gathering servers

Fig. 8: Performance of gathering servers.

1) Performance of the Popular Data Object Gathering
Method: Figure 8(a) shows the number of gathering servers
versus the data query rate. We see that the number of gathering
servers is increased with the data query rate. This is because
the resource capacities of gathering servers must be high
enough to handle the resource demands of the selected popular
data objects, and higher query rate causes higher resource
demands. Figure 8(b) shows the resource utilization (the usage

percent of CPU and memory) of gathering servers versus the
data query rate. Both of the CPU and memory utilizations
are around 80% to 90%, which means that the resources of
the gathering servers are almost fully utilized but they are not
overloaded.

0

500

1000

1500

2000

2500

3000

3500

1000 2000 3000 4000 5000

D
at

a
q

u
e

ry
 la

te
n

cy
 (

µ
s)

Data query rate

ICTCP PICC-L PICC-M PICC-H

(a) Data query latency

0E+0

4E+3

8E+3

1E+4

600500400300200
N

u
m

b
e

r
o

f
in

te
r-

ra
ck

p

a
ck

e
ts

Downlink bandwidth (Mbps)

ICTCP PICC-L PICC-M PICC-H

(b) Inter-rack data transmission

Fig. 9: Performance of different θ settings.
We measured the performance of the popular data object

gathering method with different θ threshold settings. We use
PICC-L, PICC-M and PICC-H to denote PICC when θ equals
to 10, 1000 and 10000, respectively. Since Baseline and
TSW always have worse performance than ICTCP, we only
compared ICTCP with PICC here. Figure 9(a) shows the data
query latency versus the data query rate. It shows that PICC-
M produces the lowest query latency, but PICC-H generates
higher query latency than ICTCP. PICC-H sets a high θ
threshold, so that more data objects being transferred to a
gathering server may lead to congestion on it, and lower the
transmission bandwidth between the gathering server and the
front-end server. Finally, it leads to more data retransmission
and increases data query latency. PICC-L does not aggregate
enough popular data objects in a few gathering servers, so the
number of concurrently connected data servers to the front-end
server is not sufficiently reduced, leading to incast congestion
and higher query latency. Therefore, an appropriate setting for
the θ threshold is important.

Figure 9(b) shows the number of inter-rack packets versus
the downlink bandwidth of the front-end server. The results
follow ICTCP>PICC-H≈PICC-L>PICC-M due to the same
reasons as explained above.

0

500

1000

1500

2000

2500

1000 2000 3000 4000 5000

D
at

a
q

u
e

ry
 la

te
n

cy
 (

µ
s)

Data query rate

ICTCP PICC w/o C PICC

(a) Data query latency

0E+0

2E+3

4E+3

6E+3

8E+3

1E+4

600500400300200

N
u

m
b

e
r

o
f

in
te

r-
ra

ck

p
ac

ke
ts

Downlink bandwidth (Mbps)

ICTCP PICC w/o C PICC

(b) Inter-rack data transmission

Fig. 10: Performance of the correlated data object gathering method.

2) Performance of the Correlated Data Object Gathering
Method: In order to measure the effectiveness of the correlated
data object gathering method, we tested the performance of
PICC without this method, denoted by PICC w/o C. Fig-
ure 10(a) shows the data query latency versus the data query
rate. Figure 10(b) shows the number of inter-rack packets
versus different downlink bandwidths of the front-end server.
The correlated data object gathering method gathers the data

objects that tend to be requested concurrently or sequentially
in the same data server. Then, the front-end server sends
requests to fewer data servers, which reduces the number of
data servers concurrently connected to the front-end server
and the probability of incast congestion occurrence. Therefore,
PICC produces lower query latency than PICC w/o C.

V. PERFORMANCE ON A REAL TESTBED

We implemented PICC and other comparison methods on
Palmetto [42]. All the servers we use are with 2.4G Intel Xeon
CPUs E5-2665 (16 cores), 64GB RAM, 240GB hard disk and
10G NICs. The operating system of each server is Ubuntu
15.10 LTS version. The CPU, memory and hard disk never
became a bottleneck in any of our experiments. We randomly
selected 150 servers and one front-end server from all servers,
each of which has the downlink and uplink as 10Gbps. We
randomly distributed 5000 data objects into the data servers,
and the size and the number of replicas of each data object
follow the same settings as in our simulation. We also use
YCSB to generate workload with the same settings as in the
simulation.

0

50

100

150

200

250

300 600 900 1200 1500

D
at

a
q

u
e

ry
 la

te
n

cy
 (

µ
s)

Data query rate

Baseline TSW ICTCP PICC

(a) Data query latency

0%

20%

40%

60%

80%

100%

0 100 200 300

C
D

F
o

f
q

u
re

ie
s

Time (µs)

Baseline TSW ICTCP PICC

(b) CDF of data query latency

0

1000

2000

3000

4000

5000

300 600 900 1200 1500

N
u

m
b

e
r

o
f

in
ca

st

co
n

ge
st

io
n

s

Data query rate

Baseline TSW ICTCP PICC

(c) Number of incast congestions

0

50

100

150

300 600 900 1200 1500

D
at

a
q

u
e

ry
 la

te
n

cy
 (

µ
s)

Data query rate

ICTCP PICC w/o C PICC

(d) Effectiveness of PICC methods

Fig. 11: Performance on a real cluster.

Figure 11(a) shows the query latency of all methods versus
the data query rate. Figure 11(b) shows the CDF of queries
over time of all methods. Both figures show the same order
and relationship between different methods as in Figure 4
in the simulation due to the same reasons. Both of the
figures indicate that PICC has the best performance in query
latency. Figure 11(c) shows the number of incast congestion
occurrences versus the data query rate. It shows the same order
and trend of different methods due to the same reasons as in
Figure 7(a). The figure indicates that PICC can greatly reduce
the number of incast congestion occurrences. Figure 11(d)
shows the data query latency of ICTCP, PICC and PICC w/o
C versus the data query rate. PICC has shorter query latency
than PICC w/o C. The results indicate that both the popular
data object gathering method and the correlated data object

gathering method are effective in reducing the data query
latency.

VI. CONCLUSION

Web applications are featured by a very large number of
data object responses for a data query, which may cause incast
congestion and makes it difficult to meet the stringent low-
delay response requirements. We propose a Proactive Incast
Congestion Control system (PICC), which is the first work that
focuses on the data placement to proactively avoid incast con-
gestion within our knowledge. First, PICC reallocates popular
data objects into as few gathering servers as possible. Second,
PICC reallocates data objects that tend to be concurrently or
sequentially requested into the same data server. Such data
reallocation reduces the number of data servers concurrently
connected to the front-end server and reduces the number of
connection establishments, which help avoid incast congestion
and reduce query latency. Third, considering that the gathering
servers may introduce extra queuing latency, PICC further
incorporates a queuing delay reduction algorithm to reduce
the average latency per data object. The experiments both in
simulation and a real cluster based on a benchmark show that
PICC greatly reduces data query latency and the probability of
the incast congestion occurrence. In the future, we will study
how to determine appropriate parameter (e.g., θ) values and
how to further reduce the overhead of data reallocation.

ACKNOWLEDGMENT

This research was supported in part by U.S. NSF grants
OAC-1724845, ACI-1719397 and CNS-1733596, and Mi-
crosoft Research Faculty Fellowship 8300751. We would like
to thank Dr. Yuhua Lin’s help on this paper.

REFERENCES

[1] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, and T. Tung.
Scaling Memcache at Facebook. In Proc. of NSDI, 2013.

[2] A. Shalita, B. Karrer, I. Kabiljo, A. Sharma, A. Presta, A. Adcock,
H. Kllapi, and M. Stumm. Social hash: an assignment framework for
optimizing distributed systems operations on social networks. In Proc.
of NSDI, 2016.

[3] G. Liu, H. Shen, and H. Wang. Computing load aware and long-view
load balancing for cluster storage systems. In Proc. of Big Data, 2015.

[4] G. Liu, H. Shen, and H. Wang. Deadline guaranteed service for multi-
tenant cloud storage. Trans. on TPDS, 2016.

[5] H. Wang, J. Gong, Y. Zhuang, H. Shen, and J. Lach. Healthedge:
Task scheduling for edge computing with health emergency and human
behavior consideration in smart homes. In Proc. of Big Data, 2017.

[6] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. Andersen,
G. Ganger, G. Gibson, and B. Mueller. Safe and effective fine-
grained TCP retransmissions for datacenter communication. In Proc.
of SIGCOMM, 2009.

[7] L. Li, K. Xu, D. Wang, C. Peng, K. Zheng, R. Mijumbi, and Q. Xiao. A
Longitudinal Measurement Study of TCP Performance and Behavior in
3G/4G Networks Over High Speed Rails. Trans. on Networking, 2017.

[8] A. Phanishayee, E. Krevat, V. Vasudevan, D. Andersen, G. Ganger, G. A.
Gibson, and S. Seshan. Measurement and Analysis of TCP Throughput
Collapse in Cluster-based Storage Systems. In Proc. of FAST, 2008.

[9] J. Huang, T. He, Y. Huang, and J. Wang. ARS: Cross-layer adaptive
request scheduling to mitigate TCP Incast in data center networks. In
Proc. of INFOCOM, 2016.

[10] G. Judd. Attaining the Promise and Avoiding the Pitfalls of TCP in the
Datacenter. In Proc. of NSDI, 2015.

[11] W. Chen, J. Rao, and X. Zhou. Preemptive, Low Latency Datacenter
Scheduling via Lightweight Virtualization. In Proc. of ATC, 2017.

[12] D. Crankshaw, X. Wang, G. Zhou, M. Franklin, J. Gonzalez, and
I. Stoica. Clipper: A Low-Latency Online Prediction Serving System.
In Proc. of NSDI, 2017.

[13] Z. Wu, C. Yu, and H. Madhyastha. CosTLO: Cost-Effective Redundancy
for Lower Latency Variance on Cloud Storage Services. In Proc. of
NSDI, 2015.

[14] R. Kohavl and R. Longbotham. Online Experiments: Lessons Learned.
Computer, 2007.

[15] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, R. Pan, and
B. Prabhakar. Data center transport mechanisms: Congestion control
theory and ieee standardization. In Proc. of Allerton, 2008.

[16] P. Devkota et al. Performance of quantized congestion notification in
TCP incast scenarios of data centers. In Proc. of MASCOTS, 2010.

[17] Y. Zhang and N. Ansari. On mitigating TCP incast in data center
networks. In Proc. of INFOCOM, 2011.

[18] J. Huang, Y. Huang, J. Wang, and T. He. Packet slicing for highly
concurrent TCPs in data center networks with COTS switches. In Proc.
of ICNP, 2015.

[19] H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP: Incast Congestion
Control for TCP in Data-Center Networks. TON, 2013.

[20] M. Alizadeh, A. G. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan. Data center TCP (DCTCP). In
Proc. of SIGCOMM, 2010.

[21] B. Vamanan, J. Hasan, and T. N. Vijaykumar. Deadline-Aware Datacen-
ter TCP (D2TCP). In Proc. of SIGCOMM, 2012.

[22] M. Flores, A. Wenzel, and A. Kuzmanovic. Enabling router-assisted
congestion control on the Internet. In Proc. of ICNP, 2016.

[23] G. Vardoyan, N. S. Rao, and D. Towsley. Models of TCP in high-BDP
environments and their experimental validation. In Proc. of ICNP, 2016.

[24] Y. Yang, H. Abe, K. Baba, and S. Shimojo. A Scalable Approach to
Avoid Incast Problem from Application Layer. In Proc. of COMPSACW,
2013.

[25] M. Podlesny and C. Williamson. An Application-Level Solution for the
TCP-Incast Problem in Data Center Networks. In Proc. of IWQoS, 2011.

[26] M. Podlesny and C. Williamson. Solving the TCP-Incast Problem with
Application-Level Scheduling. In Proc. of MASCOTS, 2012.

[27] H. Wang, H. Shen, and G. Liu. Swarm-based Incast Congestion Control
in datacenter Serving Web Applications. In Proc. of SPAA, 2017.

[28] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design,
Implementation and Evaluation of Congestion Control for Multipath
TCP. In Proc. of NSDI, 2011.

[29] Q. Peng, A. Walid, J. Hwang, and S. Low. Multipath TCP: Analysis,
design, and implementation. Trans. on Networking, 2016.

[30] B. Hesmans and O. Bonaventure. Tracing multipath TCP connections.
Proc. of SIGCOMM, 2015.

[31] MongoDB. https://www.mongodb.com/, [Accessed in July 2017].
[32] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,

J. Ferris, A. Giardullo, S. Kulkarni, and H. Li. TAO: Facebook’s
Distributed Data Store for the Social Graph. In Proc. of ATC, 2013.

[33] E. Jeong, S. Woo, M. A. Jamshed, H. Jeong, S. Ihm, D. Han, and
K. Park. mTCP: a Highly Scalable User-level TCP Stack for Multicore
Systems. In Proc. of NSDI, 2014.

[34] G. W. Flake and K. Tarjan, R.and Tsioutsiouliklis. Graph clustering and
minimum cut trees. Internet Mathematics, 2004.

[35] D. Boru, D. Kliazovich, F. Granelli, P. Bouvry, and A. Y. Zomaya.
Energy-efficient data replication in cloud computing datacenters. Cluster
computing, 2015.

[36] R. E. Gomory and T. C. Hu. Multi-terminal network flows. J. SIAM,
1961.

[37] C. Lee, C. Park, K. Jang, S. Moon, and D. Han. Accurate Latency-based
Congestion Feedback for Datacenters. In Proc. of ATC, 2015.

[38] J. McCauley, M. Zhao, E. J. Jackson, B. Raghavan, S. Ratnasamy, and
S. Shenker. The Deforestation of L2. In Proc. of SIGCOMM, 2016.

[39] A. Putnam, A. M. Caulfield, E. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, and J. Fowers. A reconfigurable fabric for
accelerating large-scale datacenter services. In Proc. of ISCA, 2014.

[40] B. F. Cooper, A. Silberstein, E. Tam, and R. Ramakrishnan. Bench-
marking cloud serving systems with ycsb. In Proc. of SOCC, 2010.

[41] Evaluation supplement. https://www.dropbox.com/s/m4sndwtrw51zsf5/
Infocom-long-version.pdf?dl=1, [Accessed in July 2017].

[42] Palmetto Cluster. http://citi.clemson.edu/palmetto/index.html, [Accessed
in MAY 2016].

