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Abstract—In spite of many shuffle-heavy jobs in current
commercial data-parallel clusters, few previous studies have
considered the network traffic in the shuffle phase, which contains
a large amount of data transfers and may adversely affect the
cluster performance. In this paper, we propose a network-aware
scheduler (NAS) that handles two main challenges associated
with the shuffle phase for high performance: i) balancing cross-
node network load, and ii) avoiding and reducing cross-rack
network congestion. NAS consists of three main mechanisms: i)
map task scheduling (MTS), ii) congestion-avoidance reduce task
scheduling (CA-RTS) and iii) congestion-reduction reduce task
scheduling (CR-RTS). MTS constrains the shuffle data on each
node when scheduling the map tasks to balance the cross-node
network load. CA-RTS distributes the reduce tasks for each job
based on the distribution of its shuffle data among the racks in
order to minimize cross-rack traffic. When the network is con-
gested, CR-RTS schedules reduce tasks that generate negligible
shuffle traffic to reduce the congestion. We implemented NAS in
Hadoop on a cluster. Our trace-driven simulation and real cluster
experiment demonstrate the superior performance of NAS on
improving the throughput (up to 62%), reducing the average job
execution time (up to 44%) and reducing the cross-rack traffic
(up to 40%) compared with state-of-the-art schedulers.

I. INTRODUCTION

Over the past decade, data-parallel frameworks such as
MapReduce [14], Cosmos [9] and Spark [2] become increas-
ingly common for big data analysis [38]. These frameworks
need to process petabytes of data every day. Network is often
identified as the bottleneck of the data-parallel frameworks
because of the network-intensive job running stages such
as shuffle [22]. Thus, we focus on addressing the network
congestion problem in this paper. We use MapReduce as a
study case though our proposed methods can be applied to
other data-parallel frameworks.

A job in MapReduce consists of the map and reduce stages,
each of which consists of multiple map and reduce tasks.
When each of these tasks has all its input data ready, it is as-
signed to container on a node to execute, as shown in Figure 1.
Each container contains certain amount of CPU and memory
resources [22]. Each map task processes one input data block
and generates the intermediate key-value pairs (called map
output data or shuffle data). Each reduce task consists of two
phases: shuffle and reduce phases. In the shuffle phase, all data
with the same key from different map tasks is assigned to the
same reduce task, and the reduce task fetches the data from the
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Fig. 1: Map, shuffle and reduce phases in MapReduce [14].

corresponding map tasks. Finally, each reduce task processes
the input data and generates the final output. In Hadoop, when
a certain percent (called map completion threshold) of map
tasks for a job have completed, the reduce tasks of the job can
be scheduled. Only after a reduce task is scheduled, the shuffle
phase can start. Overlapping the map and shuffle phases (i.e.,
intra-job concurrency) improves the performance in terms of
throughput and execution time. Usually, the nodes that process
reduce tasks (i.e., reducers) for a job are different from the
nodes that process the map tasks (i.e., mappers) for the same
job. Thus, the map output data usually is transferred through
network to different computing nodes that run the reduce
tasks. As a result, almost all the shuffle data is transmitted
to different nodes, generating a large amount of cross-node
and even cross-rack network traffic.

It has been shown that in a modern commercial MapReduce
cluster, there are a large amount of shuffle-heavy jobs (i.e.,
jobs that generate a large amount of shuffle data). For example,
60% and 20% of the jobs are shuffle-heavy jobs on the Yahoo!
[10] and Facebook MapReduce clusters [39], respectively.
The transfer of shuffle data is the dominant source of cross-
node/rack network traffic [5], which greatly affects the perfor-
mance of MapReduce clusters. In fact, network utilization has
been identified as a key factor in increasing the performance of
MapReduce clusters [13]. Therefore, it is critical to consider
the shuffle phase in task scheduling to reduce the traffic and
improve performance.

However, many schedulers [3], [4], [17], [39] only focus



on the map stage. For example, Capacity [3], Fair [4] and
Dominant Resource Fairness [17] schedulers aim to achieve
the fairness of resource allocation (e.g., CPU, memory, storage
and bandwidth) among users or jobs in the map stage. Delay
scheduler in [39] aims to improve the map input data locality
(i.e., the node running a map task has its required data) in the
map stage. ShuffleWatcher [5] has been proposed to reduce
cross-rack shuffle data traffic and avoid network congestion.
When the cross-rack network is congested, ShuffleWatcher
delays scheduling reduce tasks (and hence the shuffle data
transfer) by assigning map tasks instead, and assigns a job’s
reduce tasks to different racks based on the amount of shuffle
data each rack contains. Although ShuffleWatcher reduces
the cross-rack traffic of the reduce tasks, it increases the
cross-rack traffic to read map input data, as mentioned in
[22]. Therefore, it is important to consider the shuffle phase
in task scheduling to avoid and reduce network congestion
without compromising cluster performance. There are three
main challenges in designing such a scheduler as listed below.

1. Balancing cross-node network load. The output data
sizes of map tasks are different from jobs to jobs. Then,
the distribution of the sizes of shuffle data transferred
among different nodes may be skewed. Since each node
has a fixed amount of bisection bandwidth, the map task
scheduling may lead to imbalanced shuffle data transfer
load among different nodes. That is, the network is
congested on some nodes, while remaining idle on some
other nodes. Also, the total network load in a cluster
at a time must be constrained by controlling cross-node
network load.

2. Avoiding cross-rack network congestion. Shuffle-heavy
jobs require to transfer a large amount of shuffle data
across racks, resulting in high requirement of network
bandwidth. Many jobs executed by different users simul-
taneously exacerbate the pressure of the need of network
bandwidth. Unlike the CPU, memory, and disk resources
that are easy to scale-up by deploying more hardware,
network bandwidth is hard to scale-up with curren-
t hardware technology [5]. Current datacenter network
architectures [6] typically provide cross-rack bandwidth
and within-rack bandwidth per node with a ratio of
5:1 to 20:1 [14], [18], [39]. Poor scheduling of reduce
tasks on different nodes may lead to cross-rack network
congestion, which degrades the performance.

3. Reducing cross-rack network congestion. The overlap
between the map and shuffle phases improves the perfor-
mance. ShuffleWatcher sacrifices such overlap to avoid
network congestion [5], which degrades the performance.
Therefore, it is important to reduce congestion while
reducing the sacrifices of intra-job concurrency to achieve
better performance.

In this paper, we propose network-aware scheduler (NAS)
that incorporates three mechanisms to handle these three
challenges respectively. The three mechanisms are map task
scheduling (MTS), congestion-avoidance reduce task schedul-

ing (CA-RTS) and congestion-reduction reduce task schedul-
ing (CR-RTS). NAS considers the shuffle phase in both the
map and reduce task scheduling.

1. Map task scheduling (MTS). MTS aims to balance the
cross-node network traffic generated in the shuffle phase
by constraining the size of the shuffle data transmitted
from each node under a pre-determined threshold. More
importantly, through constraining the shuffle data size on
each node, MTS constrains the maximum total shuffle da-
ta being processed in the cluster and avoids the cross-rack
network congestion. Specifically, based on the predicted
shuffle data size [36] of each map task, MTS calculates
the total shuffle data size of all the map tasks in every
node. Once a worker node requests for a map task, MTS
checks the user list in the top-down manner until finding
a map task with an output data size that can keep the
updated total shuffle data size in the node no higher than
the threshold, while still providing a certain degree of
data-locality and fairness.

2. Congestion-avoidance reduce task scheduling (CA-
RTS). CA-RTS aims to avoid the cross-rack network
congestion while improving cluster performance. For
each job, it distributes its reduce tasks based on the
distribution of its shuffle data among the racks in order to
minimize cross-rack traffic. It also gives higher priority
to the reduce tasks of jobs with larger shuffle data sizes
and completed map tasks in scheduling in order to fully
utilize available bandwidth when the cross-rack network
is not congested and start the jobs with all completed map
tasks as earlier as possible.

3. Congestion-reduction reduce task scheduling (CR-
RTS). Usually, both shuffle-heavy and shuffle-light jobs
(i.e., jobs that generate very little shuffle data size) run
at the same time. Considering that the shuffle-light jobs
consume negligible cross-rack network bandwidth [5],
rather than delaying the shuffle phase of all jobs as
in ShuffleWatcher, CR-RTS does not delay the shuffle
phases of shuffle-light jobs. As a result, CR-RTS reduces
network congestion while reducing the sacrifices of over-
lap between the shuffle and map phases.

We implemented NAS in Hadoop on a cluster. Our trace-
driven simulation and real cluster experiment demonstrate the
superior performance of NAS on improving the throughput (up
to 62%), reducing the average job execution time (up to 44%)
and reducing the cross-rack traffic (up to 40%) compared with
state-of-the-art schedulers.

The rest of the paper is organized as follows. In Section II,
we provide an overview of the related work. We describe the
main design of our scheduler in Section III and present our
experiment evaluation in Section IV. Section V concludes this
paper with remarks on our future work.

II. RELATED WORK

Several efforts [3], [4], [17] aim to achieve fairness among
jobs or users for the map tasks. Fair scheduler [4] is most
widely used in real clusters to achieve fairness among jobs,



i.e., each job occupies approximately the same amount of re-
sources. Dominant Resource Fairness scheduler [17] achieves
a max-min fairness for multiple resources (e.g., CPU, memory
and I/O). Delay scheduler [39] reduces network traffic by solv-
ing the tradeoff between fairness and map input data locality.
When the job selected based on fairness cannot launch a local
task, Delay scheduler delays the job a small amount of time
and launches a local task instead to maintain high data locality.
Quincy [21] calculates the cost of each assignment of map
tasks and nodes based on locality and fairness, and uses a min-
cost flow algorithm to find the optimal scheduling assignment.
However, the above schedulers mainly focus on the scheduling
of map tasks but do not consider the shuffle phase, which is
the major network traffic source in MapReduce clusters [5].
We focus on reducing the shuffle traffic and avoiding cross-
rack network congestion to improve the cluster performance
within certain data locality and fairness constraints.

Some previous studies (e.g., [19], [32], [35]) consider the
scheduling of reduce tasks to improve the cluster performance.
Guo et al. [19] presented ishuffle that actively pushes map
output data to nodes and flexibly schedules reduce tasks
considering workload balance. Coupling scheduler [35] grad-
ually launches reduce tasks based on the progress of map
tasks rather than using a greedy algorithm to launch reduce
tasks like Fair scheduler [4]. However, the above works do
not reduce the cross-rack network traffic or avoid cross-rack
network congestion. Tan et al. [34] formulated the reduce
task scheduling that minimizes the shuffle data transfer cost
to a classic stochastic assignment problem to find out the
optimal reduce task placement. Jiang et al. [23] designed
Symbiosis, which identifies and corrects unbalanced utilization
of multiple resources during runtime to improve the resource
utilization such as computing and network resources. Purlieus
[30] aims to improve locality of MapReduce in a cloud by
carefully placing virtual machine and data. These works can
avoid cross-rack network congestion by reducing cross-rack
traffic but do not handle the cross-rack congestion. Our work
not only reduces the cross-rack traffic to avoid congestion
but also handles cross-rack network congestion, which greatly
improves the performance of MapReduce clusters.

ShuffleWatcher [5] reduces the cross-rack congestion by
delaying all the reduce tasks and tries to place the map tasks
into one or a fewer racks. However, it sacrifices the intra-
job concurrency to achieve higher shuffle locality. Moreover,
ShuffleWatcher increases the cross-rack traffic introduced by
reading map input data. Compared to ShuffleWatcher, NAS
improves both data-locality and intra-job concurrency with its
three mechanisms.

Several flow-level techniques [11], [12], [20], [29], [31],
[33], [37] have been proposed to decrease the communication
time of data-parallel frameworks. The flow-level techniques
leverage the Coflow abstraction (i.e., a collection of flows
that follow the same objectives such as shuffling for the
same job) in data-parallel framework and design flow-level
techniques to optimally schedule the flows to improve the
Coflow completion time (i.e., the completion time of the last

flow in the shuffle phase). These studies are orthogonal to
our work and can be combined with our work for better
performance.

III. THE DESIGN OF NAS

In this section, we first introduce the shuffle data size
predictor and then introduce each mechanism in NAS.

A. Shuffle Data Size Predictor

Our mechanisms need to learn the shuffle data size before-
hand to schedule the map and reduce tasks and distinguish
shuffle-heavy and shuffle-light jobs. We utilize a predictor [36]
to estimate the map output data size of each map task to be
shuffled. The predictor leverages the fact that the map tasks
from the same job have similar map output/input ratios. The
map output/input ratio of a job is obtained from the completed
map tasks for the same job. Then, the predictor extrapolates
the map output data size of a map task in the job by:

MapOutput = (map output/input ratio) ∗MapInput (1)

where MapOutput and MapInput are the output and input data
size of the map task, respectively.

It is worth mentioning that the shuffle data size can be
provided by the users, if it is known in advance, or obtained
from previous runs. Many previous studies [7], [16], [22],
[24]–[28] indicate that most of the jobs in production clusters
are recurring, whose characteristics can be estimated with a
low error. For a newly submitted job without knowing its map
output/input ratio, the map output/input ratio of the job can be
initialized to 1 [5]. We call this kind of jobs as unpredicted
jobs, otherwise, predicted jobs. Once a map task of the job is
completed, this task’s map output/input ratio can be calculated
by MapOutput/MapInput. Then, the ratio of this job is
updated by calculating the average of all the completed map
tasks.

Based on the predicted shuffle data size of a job, we
can classify the jobs to shuffle-heavy jobs, shuffle-medium
jobs and shuffle-light jobs. For example, in the experiment
in Section IV, we define shuffle-light, shuffle-medium and
shuffle-heavy jobs as the jobs with shuffle data size smaller
than 1MB, in the range of (1-100)MB and larger than 100MB,
respectively.

Algorithm 1 Pseudocode of NAS scheduler, which is called
when a worker node requests for a task.
Inputs: Current network condition of the rack of this worker node

NetState
1: if request for a map task then
2: call MTS
3: else if request for a reduce task then
4: if NetState < CogestionThreshold then
5: call CA-RTS
6: else
7: call CR-RTS



B. Overview of NAS

The overall procedure of NAS is illustrated in Algorithm
1. When a node requests for a map task, MTS is invoked
to schedule the map task (lines 1-2). The scheduler keeps
monitoring the network conditions of the cluster and returns
the network condition periodically (e.g., each heartbeat). When
a node requests for a reduce task, the network condition is
checked (lines 4 and 6). If the network is not congested (lines
4-5), CA-RTS is called to schedule the reduce task. Otherwise
(lines 6-7), CR-RTS is called to schedule the reduce task.

C. Map Task Scheduling (MTS)

In this section, we introduce the map task placement (MTS)
mechanism. It balances the cross-node network traffic gener-
ated by the shuffle phase.

MTS aims to balance the cross-node network load and shape
the total cluster network traffic and hence the cross-rack traffic.
Specifically, it constrains the shuffle data size generated on
each node under its pre-determined threshold. We will explain
how to determine the threshold later.

We build MTS upon Delay scheduler [39], which attempts
to achieve high data locality while maintaining fairness among
users in resource sharing. Accordingly, MTS creates a user
list based on fairness, where the users with less resource
have higher priority to be allocated with resources. MTS first
predicts map output data sizes of all the map tasks running on a
worker node, and calculates its available space for map output
based on the threshold. Next, from the user list, MTS finds a
map task that has output size no larger than the available space
(namely shuffle-qualified map task) and also meets the data-
locality requirement (i.e., the data block of a task is stored on
the same node where the task runs). MTS skips a user if the
user does not have a qualified map task.

To achieve fairness between users to a certain degree, as
in Delay scheduler [39], MTS sets a maximum skip count
Dm. Once a user has been skipped for Dm times, the user’s
task can be scheduled without satisfying the data-locality or
shuffle-qualified requirement. Skipping users will not greatly
deviate the fairness requirement. This is because in a large
cluster, thousands of tasks run in the cluster, and the containers
that enable the tasks of the skipped user to meet the shuffle-
qualified and data-locality requirements will be freed in a few
seconds [39]. We will present this analysis later.

Algorithm 2 shows the pseudocode of the MTS mechanism.
First, MTS searches the tasks of the first user in the user list
and tries to find a map task that meets the shuffle-qualified
and data-locality requirements. If the user has such a map
task, MTS selects this map task (lines 3-4). If the user has
several such map tasks, the map task for an unpredicted job
has higher priority so that the job can become predicted earlier
later on. Then, the map task whose map output data size is the
closest to the available space is preferred so that the available
shuffle data space can be fully utilized. Once the user’s task is
scheduled, its map skip counter is set back to 0. When MTS
cannot find such a map task from the first user, if the map
skip counter equals Dm, MTS identifies a shuffle-qualified

map task without the data-locality in the first user (lines 7-
12); otherwise, MTS skips the first user, increases its map
skip counter by 1 (lines 17-18), and checks the second user
in the same manner.

Without data-locality, we give a higher priority to the map
tasks from small-input jobs than large-input jobs considering
that large-input jobs have more input data blocks throughout
the cluster and hence have a higher possibility to launch a
local map task later on. Accordingly, we classify the jobs to
different categories based on the input data size (first priority)
and whether a job is a predicted job (second priority). Take
two levels as an example, we categorize the jobs into four
categories to select map tasks from as shown in lines 9-12.
Note that the categorization of small-input and large-input
jobs can be different from clusters to clusters. The cluster
operators can define their own thresholds (the same as many
other parameters in current Hadoop) to categorize the jobs. For
example, in the experiment in Section IV, we classify the jobs
with input data size smaller and larger than 10MB as small-
input jobs and large-input jobs, respectively. In each category,
we further evaluate the data transfer cost of each map task to
determine the priority to select a map task. The data transfer
cost is calculated by: MapCost = γ ∗MapInputSize, where
γ is equal to 0 if the map input data is on the local node (data
locality); equal to 1 if the map input data is on the local rack
(rack locality); and equal to 2 if the map input data is on a
remote rack (rack remote). If there are several map tasks with
the same MapCost, we select the map task whose map output
data size is the closest to the available space in order to fully
utilize the available shuffle data space.

Algorithm 2 Pseudocode for MTS.

Inputs: Initialize skip count of the ith user Dm
i = 0

maximum number of skips Dm

1: Calculate the available map output data size on the worker node.
2: for user i in the user list do
3: if the user has data-local and shuffle-qualified map task then
4: launch this map task on this node, set Dm

i = 0
5: else
6: if Dm

i == Dm then
7: if we can find shuffle-qualified map tasks of this user

then
8: launch a map task in the following order:
9: (1) map task from small-input unpredicted job

10: (2) map task from small-input predicted job
11: (3) map task from large-input unpredicted job
12: (4) map task from large-input predicted job
13: else
14: launch a map task in the following order:
15: (1) data-local map task
16: (2) map task with the smallest map output data size
17: else
18: Dm

i ++

When there is no map task that is shuffle-qualified from all
the users (lines 13-16), if there exist data-locality map tasks,
MTS selects the one with the smallest shuffle data size since it
exceeds TrafficThreshold the least; otherwise, MTS just selects



the map task with the smallest shuffle data size among all map
tasks (lines 15-16) in order to reduce map output data.

Node traffic threshold determination. Now, we explain
how the threshold for the shuffle data size of each node is de-
termined, denoted by TrafficThreshold. When all the containers
in the cluster are assigned and freed one time, it is called one
wave of map (reduce) tasks. All submitted map (reduce) tasks
cannot be scheduled to the clusters simultaneously and hence
they are scheduled through several continuous waves. The
shuffle data transfers of the tasks in one wave are conducted
in approximately the same time. We set a threshold on each
node for two purposes.
• First, it avoids scheduling many map tasks that generate
large shuffle data on each node, which balances the cross-node
network load.
• Second, it avoids scheduling many map tasks that generate
large shuffle data simultaneously in the cluster (i.e., in one
wave), which potentially constrains the network traffic gen-
erated in the cluster at a time and hence avoids cross-rack
network congestion.

We assume that {J1, J2, ..., Jn} are the n submitted jobs
currently in the cluster. Job Ji has Si shuffle data size and
contains Ki map tasks. We assume that in the cluster, there
are N nodes, each of which has m containers and hence there
are Nm containers in total. The map tasks generate

∑n
i=1 Si

shuffle data size in total in the cluster. Then,
∑n

i=1Ki map
tasks are processed in

∑n
i=1Ki/Nm waves. We divide the

total shuffle data of all the jobs evenly into several waves.
The average size of shuffle data generated in each wave is:∑n

i=1 Si∑n
i=1Ki/Nm

=
Nm

∑n
i=1 Si∑n

i=1Ki
(2)

Keeping approximately the same amount of shuffle data in
each wave in the cluster prevents scheduling many map tasks
with large shuffle data sizes at the same time and hence avoids
cross-rack congestion.

To achieve a balanced cross-node traffic, we set the thresh-
old for the shuffle data size on each node TrafficThreshold as
the average size of shuffle data generated on each node in each
wave:

Nm
∑n

i=1 Si

N
∑n

i=1Ki
=
m

∑n
i=1 Si∑n

i=1Ki
(3)

TrafficThreshold is updated periodically. The cluster oper-
ators can change TrafficThreshold dynamically (the same as
many other parameters in current Hadoop) that serves their
own clusters more accurately. For example, in some clusters,
there are fewer shuffle-heavy jobs and then TrafficThreshold
can be set to a smaller value.

Analysis of the map skip counter strategy. We analyze the
probability of launching a map task with the data-locality and
shuffle-qualified constraints. When a worker node requests for
a map task, we assume that user i is the first one in the user
list and it has mi submitted jobs denoted by {J i

1, J
i
2, ..., J

i
mi
}.

Let pJ be the fraction of nodes that have job J’s required

data and qJ be the probability that the map tasks of job J are
shuffle-qualified. Note that qJ is easy to adjust by the cluster
operators by setting an appropriate TrafficThreshold. Then, the
probability that user i cannot launch a map task that meets the
data-locality and shuffle-qualified requirements after skipping
Dm times is

∏mi

k=1(1−pJi
k
qJi

k
)D

m

. This probability decreases
exponentially as Dm decreases. For example, assume that a
user has 3 jobs, 10% of nodes have the jobs’ input data (i.e.,
pj = 0.1) and the probability that the map tasks of the jobs
are shuffle-qualified is qJ = 0.5. Then, this user has a 78.5%
probability to launch a map task within 10 skips and a 99.8%
probability to launch a map task within 40 skips. In Facebook
cluster [39], 27 containers are freed every second on average,
which means that there is 99.8% probability to take less than
2 seconds for the user to launch a data-locality and shuffle-
qualified map task.

D. Congestion-avoidance Reduce Task Scheduling (CA-RTS)

In this section, we introduce the CA-RTS mechanism, which
aims to avoid traffic congestion and reduce the cross-rack
network traffic in reduce task scheduling.

We define a threshold of desired upper bound of network
utilization CogestionThreshold (e.g., 90% of cross-rack band-
width is used). As in [5], we utilize some network monitor
tools (e.g., NetHogs) to monitor the cross-rack network load
in the cluster. When a worker node requests for the next reduce
task to process, if CogestionThreshold is not yet reached, it
means that the cross-rack network is not congested and CA-
RTS is used for reduce task scheduling. Otherwise, CR-RTS
(Section III-E) is used for reduce task scheduling.

Cross-rack traffic reduction method. It is indicated in
[8] that for a job that has evenly distributed map output
data on several racks, the best placement of reduce tasks
to avoid cross-rack congestion on one rack is to evenly
distribute the reduce tasks among these racks. Therefore, for
each job, keeping the distribution of its reduce tasks the
same as the distribution of its shuffle data among the racks
can minimize cross-rack traffic and hence avoid cross-rack
congestion because placing more reduce tasks of a job on a
rack may congest its downlink, while placing fewer reduce
tasks of this job on a rack may congest its uplink. That is, for
a job, if x% (called MapOuputPortion) of its total map output
data is generated in rack Ri, scheduling x% of its total reduce
tasks (denoted by TotalReduceNum) in rack Ri can minimize
the cross-track network traffic for shuffle data transfer of the
job. We define:

ReduceNum = TotalReduceNum ∗MapOutputPortion, (4)

where ReduceNum denotes the preferred number of reduce
tasks on rack Ri in order to reduce the cross-rack traffic in
transferring shuffle data.

When CA-RTS handles a reduce task request from a worker
node on a rack Ri, it first predicts the shuffle data size (Shuf-
fleSize) (as introduced in Section III-A), and then calculates
MapOuputPortion and ReduceNum of each job on rack Ri.



Algorithm 3 shows the pseudocode of CA-RTS. From
the first user in the user list (line 1), CA-RTS selects the
reduce tasks from the jobs that run fewer reduce tasks than
ReduceNum on rack Ri (lines 3-5). In addition, CA-RTS also
considers i) whether it is delayed in CR-RTS, ii) whether the
percentage of completed map tasks of a job, MapProgress-
Rate=100%, and iii) ShuffleSize to achieve high performance.
CA-RTS gives a higher priority to the reduce tasks marked
as “delayed” by CR-RTS in order not to delay some reduce
tasks for too long. Next, CA-RTS gives a higher priority
to the reduce tasks of the jobs with fully completed map
tasks (i.e., MapProgressRate=100%) in order to start them as
early as possible. Finally, CA-RTS prefers the reduce tasks
from the jobs with larger shuffle data sizes in order to fully
utilize available bandwidth when the cross-rack network is not
congested.

Algorithm 3 Pseudocode for CA-RTS.
1: Select a user from the user list based on fairness.
2: Launch reduce task from a job that satisfies map comple-

tion threshold in the following order (a job with delayed or
MapProgressRate = 100% has higher priority in the same
category):

3: (1) Shuffle-heavy jobs whose ReduceNum is not reached
4: (2) Shuffle-medium jobs whose ReduceNum is not reached
5: (3) Shuffle-light jobs whose ReduceNum not reached
6: (4) Shuffle-light jobs whose ReduceNum is reached
7: (5) Shuffle-medium jobs whose ReduceNum is reached
8: (6) Shuffle-heavy jobs whose ReduceNum is reached

If CA-RTS cannot find the reduce tasks from the jobs that
have the number of reduce tasks less than ReduceNum on rack
Ri, CA-RTS then gives a higher priority to the reduce tasks
from the jobs with smaller shuffle data size because such tasks
causes a smaller amount of cross-rack traffic (lines 6-8). As a
result, CA-RTS reduces the cross-rack traffic generated from
shuffle data transfer.

E. Congestion-reduction Reduce Task Scheduling (CR-RTS)
In this section, we introduce the CR-RTS mechanism, which

aims to mitigate the cross-rack network congestion caused by
shuffle data transfer.

If CogestionThreshold is reached, the bandwidth is highly
utilized. Delaying scheduling all reduce tasks to reduce the
congestion sacrifices intra-job concurrency and compromises
performance. To reduce the network congestion while main-
taining the overlap between the map and shuffle phases, CR-
RTS schedules reduce tasks and map tasks that will not
generate a large amount of shuffle data traffic. Specifically,
CR-RTS has three strategies. First, it selects the shuffle-light
jobs to schedule and delays scheduling the reduce tasks of
shuffle-heavy and shuffle-medium jobs until the network is
not congested. Second, CR-RTS stops scheduling the map
tasks of shuffle-heavy and shuffle-medium jobs. Then, the map
completion threshold cannot be reached and the shuffle data
of these jobs will not be transferred.

Algorithm 4 shows the pseudocode of CR-RTS. Again, there
is a sorted user list created based on Delay scheduler. CR-RTS

checks the users in the user list in the top-down manner. From
the first user, CR-RTS tries to find a reduce task of shuffle-
light job to schedule and delays the reduce tasks of shuffle-
medium and shuffle-heavy jobs (lines 1-8). If the first user
does not have a reduce task from shuffle-light jobs, CR-RTS
searches the next user until it finds a matched reduce task.
The reduce skip counter is handled in the same manner as the
map skip counter. For the reduce tasks of shuffle-heavy and
shuffle-medium jobs, each reduce task has a delay tag. CR-
RTS changes the delay flag to “delayed”. These delayed tasks
will have a higher priority to be scheduled when the network
is not congested as explained in Section III-D. Further, CR-
RTS notifies MTS not to schedule shuffle-heavy and shuffle-
medium map tasks until the network is not congested.

Algorithm 4 Pseudocode for CR-RTS.

Inputs: Initialize skip count of the ith user Dr
i = 0

maximum number of skips Dr

1: for user i in the user list do
2: if Dr

i < Dr then
3: if this user has shuffle-light jobs then
4: Select a reduce task from shuffle-light jobs, set Dr

i = 0
5: else
6: Dr

i ++ and skip this user
7: else
8: Select a reduce task from any jobs

Analysis of the reduce skip counter strategy. We assume
that user i has mi submitted jobs. Let fJ denote the probability
that job J is a shuffle-light job. Therefore, the probability that
user i does not have a shuffle-light job is (1 − fJ)mi . Thus,
the probability that top u users in the user list do not have a
shuffle-light job is (1− fJ)miu. Take the Facebook trace [10]
as an example. According to our definition of shuffle-light
jobs in Section IV, we find that 68.7% of the jobs (fJ=0.687)
are shuffle-light jobs. Assume that each user has only one
job (mi = 1). Therefore, skipping 3 users (u = 3) has a
97% probability of launching a shuffle-light job and skipping
5 users (u = 5) has a 99.7% probability of launching a shuffle-
light job. When the cross-track network is congested, there
should be a large amount of users and jobs in the cluster.
Hence, it is very likely to launch a shuffle-light job. Then,
CR-RTS needs to skip only a few users or even no users if a
user has several jobs, which maintains a high fairness.

F. Complexity of NAS

Similar to current schedulers [4], [39], NAS has very simple
computations such as finding shuffle-qualified and data-local
map tasks, which are in O(n) complexity (n is the number
of jobs in the list). These computations are quite simple and
generate negligible overheads. Also, the network monitor is
low-overhead. Therefore, NAS has the same scalability as the
state-of-the-art schedulers [4], [39].

IV. PERFORMANCE EVALUATION

In this section, we evaluate NAS in comparison with
other schedulers through trace-driven simulation. We also



implemented our scheduler in Hadoop on a real cluster for
performance evaluation.

A. Facebook Trace and Experimental Environment

Trace-driven simulation. We used the Facebook day-long
workload FB-2010 trace [10] in our simulation. The trace
provides detailed information of 24442 jobs. We considered
the small-input jobs and large-input jobs as the jobs with
input data size smaller and larger than 10MB, respectively.
We considered the shuffle-light jobs, shuffle-medium jobs and
shuffle-heavy jobs as the jobs with shuffle data size smaller
than 1MB, in the range of (1-100)MB, and larger than 100MB,
respectively. Figure 2 shows the percentage of jobs of each
type in the workload.

Map phase

Reduce phase

Reduce phase
Shuffle phase

Execution time

(a) Shuffle-light jobs

Map phase

Reduce phase

Reduce phaseShuffle phase

Execution time

Execution time

(b) Shuffle-heavy jobs

Fig. 2: Demonstration of shuffle-light and shuffle-heavy jobs.
the cross-rack traffic generated from shuffle data transfer while
improving the performance.

D. Congestion-reduction Reduce Task Scheduling (CR-RTS)

In this section, we introduce the CR-RTS mechanism,
which aims to handle the cross-rack network congestion caused
by shuffle data transfer. Before a reduce task can start, the
shuffle data required by the reduce task must be transferred
to the node of the reduce task. The transferring of shuffle
data sometimes requires a large amount of network bandwidth,
which may lead to cross-rack network congestion and hence
degrades the performance of all the running jobs.

We define a threshold of desired upper bound of network
utilization CogestionThreshold (e.g., 90% of full bisection
bandwidth is used). As in [5], we utilize some network monitor
tools (e.g., NetStat or NetHogs) to monitor the cross-rack
network load in the cluster. When a worker node completes a
reduce task and requests for the next reduce task to process,
first the monitor returns the utilization of the cross-rack net-
work to JobTracker. If CogestionThreshold is not yet reached,
it means that the cross-rack network is not congested and CA-
RTS is used directly for reduce task scheduling. Otherwise,
CR-RTS is employed for reduce task scheduling.

If CogestionThreshold is reached, the full bisection band-
width is highly utilized. Then, if we still schedule the reduce
tasks of shuffle-heavy jobs, the network condition becomes
even more congested, which leads to slow shuffle data transfer
and degrades the performance. Though ShuffleWatcher delays
scheduling all reduce tasks to reduce the congestion, it sac-
rifices intra-job concurrency and compromises performance.
Recall that when the map completion threshold (e.g., 5%)
of the map tasks of a job complete, the reduce tasks of the
job can be scheduled. Once a reduce task is scheduled to a
node, the transferring of its shuffle data can start. Thus, to
reduce the network congestion, CR-RTS can schedule reduce
tasks and map tasks that will not generate a large amount
of shuffle data traffic. This way, the overlap between the map
and shuffle phases can be maintained and the performance will
not be compromised. Note that shuffle-heavy jobs generate a
large amount of shuffle data while shuffle-light jobs generate
a negligible amount of shuffle data [5]. Accordingly, CR-
RTS has three strategies. First, it schedules the shuffle-light
jobs in the available reduce slots and delays scheduling the
reduce tasks of shuffle-heavy and shuffle-medium jobs until the
network is not congested. Second, CR-RTS stops scheduling
the map tasks of shuffle-heavy and shuffle-medium jobs. Then,
the map completion threshold cannot be reached and the
shuffle data of the shuffle-heavy and shuffle-medium jobs will
not be transferred.

Below, we present the details of CR-RTS. Again, a sorted
user list is created based on the Delay Scheduler. CR-RTS
checks the users in the user list in the top-down manner. From

the first user, CR-RTS tries to schedule a reduce task of a
shuffle-light job on the reduce slot and delays the reduce tasks
of shuffle-medium and shuffle-heavy jobs. If the first user does
not have a shuffle-light reduce task, CR-RTS skips the first
user, increments the user’s reduce skip counter and moves to
the next user until it finds a matched reduce task. The reduce
skip counter is handled in the same manner as the map skip
counter for fairness. For the reduce tasks of shuffle-heavy and
shuffle-medium jobs, each reduce task has a delay tag. CR-
RTS changes the delay flag to the “delayed”. These delayed
tasks will have a higher priority to be scheduled when the
network is not congested anymore as indicated in Section III-C.
Further, CR-RTS notifies MTS not to schedule shuffle-heavy
and shuffle-medium map tasks. When the network is not
congested anymore, CR-RTS notifies MTS to schedule the
delayed shuffle-heavy and shuffle-medium map tasks.

Analysis of the reduce skip counter strategy. We assume
that user i has mi submitted jobs. Let fJ denote the probability
that job J is a shuffle-light job. Therefore, the probability that
user i does not have a shuffle-light job is (1 − fJ)mi . Thus,
the probability that top u users in the user list do not have a
shuffle-light job is (1−fJ)miu. Take the Facebook trace [9] as
an example. According to out definition of shuffle-light jobs,
68.7% of the jobs (fJ=0.687) are shuffle-light jobs. Assume
that each user has only one job (mi = 1). Therefore, skipping
3 users (u = 3) has a 97% probability of launching a shuffle-
light job and skipping 5 users (u = 5) has a 99.7% probability
of launching a shuffle-light job. When the cross-track network
is congested, there should be a large amount of users and jobs
in the cluster. Hence, it is very likely to launch a shuffle-light
job. Then, CR-RTS only needs to skip a few users or even
does not need to skip users if a user has several jobs, which
maintains a high fairness.

IV. PERFORMANCE EVALUATION

In this section, we evaluate NAS in comparison with other
schedulers through trave-driven simulation. We also imple-
mented our scheduler in Hadoop on a real supercomputing
cluster for performance evaluation.

A. Facebook Trace and Experimental Environment

Trace-driven simulation. We used the Facebook day-long
workload FB-2010 trace [9] in our simulation. The trace
provides detailed information of 24442 jobs, including job ID,
job submission arrival time, job input data size, job shuffle
data size, and job output data size. We considered the small-
input jobs and large-input jobs as the jobs with input data
size smaller or larger than 10MB, respectively. We considered
the shuffle-light jobs, shuffle-medium jobs and shuffle-heavy
jobs as the jobs with shuffle data size smaller than 1MB, in
the range of (1-100)MB, and larger than 100MB, respectively.
Table I shows the percentage of jobs of each type in the
workload. We see that there are nearly the same amount of
small-input jobs and large-input jobs in the workload, and the
majority of jobs (i.e., more than 65%) are shuffle-light jobs.

TABLE I: Distribution of each job type.
Job type Percentage

Small-input 50.02%
Large-input 49.98%
Shuffle-light 68.70%

Shuffle-medium 12.58%
Shuffle-heavy 18.82%

6
Fig. 2: Distribution of each job type.

In the simulation, we set the number of users to 200 and the
number of nodes to 600 in the cluster, which are consistent
with the Facebook cluster reported in [10], [39]. The job
arrival time strictly follows the trace. Since there is no user
information in the trace, we assigned each job randomly to
a user. In the 600-node cluster, we assume that there are
30 racks, each of which has 20 nodes. Each node has 6
containers [39]. The block size was set to 128MB [39]. The
replication factor was set to 3. In a commercial cluster, it
is common that the cross-rack bandwidth for each node is
much lower than the within-rack bandwidth for each node [1],
[14], [21], [39]. Like [5], we set the cross-rack bandwidth
to 1Gbps (i.e., 50Mbps per-node, which is a typical per-
node bisection bandwidth [13], [14]). We set the within-rack
bandwidth for each node to 250Mbps, so that the ratio of
within-rack and cross-rack bandwidth for each node follows
5:1. Typical oversubscription ratio ranges from 5:1 to 20:1
[1], [14], [39] and with a higher oversubscription ratio than
the setting, NAS can achieve more performance improvement
than our reported experimental results.

We built an event-based simulator as in [15] to evaluate
the performance. The FB-2010 trace does not provide any
information about the execution time of each map and reduce
task, which is important in our simulation. In order to obtain
the trace information about the execution time of each map
and reduce task, we used the synthesized execution framework
[10] to generate 24442 corresponding jobs based on the trace
and ran the jobs on a single node cluster. We carried out
experiments on a single-node because it allows us to collect
the execution time of each map and reduce task without
considering the network. We collected the execution time of
each map and reduce task from Hadoop logs. We compared
NAS with Fair scheduler (Fair) [4], Delay scheduler (Delay)

[39] and ShuffleWatcher based on the Delay scheduler (SW-
delay) [5]. Fair is the default and the state-of-the-art scheduler
for Hadoop. It achieves fairness among jobs, i.e., each job
occupies approximately the same amount of resources. De-
lay is built upon the Fair scheduler and is another default
scheduler in Hadoop. It achieves high data locality of map
tasks by delaying the jobs that cannot launch a local map
task. ShuffleWatcher can be based on either Fair or Delay. We
simulated ShuffleWatcher on top of Delay since it achieves
the best throughput in [5]. For both ShuffleWatcher and NAS,
we set the network congestion threshold to 80%. We set the
maximum map (reduce) skip count Dm = Dr = 135.
Real cluster experiment. We generated a workload consisting
of 200 jobs using the Facebook workload synthesized exe-
cution framework [10] and the distribution of job types is
the same as shown in Figure 2. As in [39], the job arrival
time of these 200 jobs follows an exponential distribution
with a mean of 14 seconds, which makes the process of
all submissions 45 minutes long. We implemented NAS in
Hadoop and conducted the evaluation on a 40-node cluster.
The 40 nodes were organized in 8 racks with interconnection
of 1Gbps Ethernet. Each rack contains 5 nodes and each
node has 1Gbps Ethernet interconnect, resulting in a 5:1
oversubscription ratio. The number of containers on each node
was set to 16. The replication factor was set to 3 as default.
Other settings are the same as the simulation.

In order to implement NAS in Hadoop, we modified the
source codes including ResourceManager, ApplicationMaster,
RMAppManager, AMLauncher, and etc. We compared NAS
with Fair and Delay schedulers, which are open-source in
Hadoop. As in [39], rather than using the maximum skip count
Dm and Dr, we set a maximum wait time of 5 seconds,
i.e., a user cannot be skipped more than 5 seconds to launch
tasks. Other settings are the same as the simulation and other
configuration parameters of Hadoop are the same for all the
methods.

B. Experimental Results

In order to show the results more clearly, we normalize the
experimental results by the Fair scheduler. In the figures of
simulation, we also show the performance of MTS, MTS+CA-
RTS and MTS+CA-RTS+CR-RTS (i.e., NAS) in order to show
the effectiveness of different mechanisms in NAS.

We first compared the throughput of different schedulers,
which is calculated by the number of jobs (i.e., 24442)
divided by the total time to run all the jobs. Figure 3(a)
shows the normalized throughput of different schedulers in
the simulation. We see that NAS achieves improvement over
Fair, Delay, and SW-delay with 56.9%, 45.8%, 34.8% higher
throughput. Figure 4(a) shows the normalized throughput of
different schedulers in the real cluster experiment. We see that
NAS achieves improvement over Fair and Delay with 62.5%
and 52.1% higher throughput. We then measured the average
job execution time of all the jobs, which is calculated by the
sum of job execution time of all the jobs divided by the total
number of jobs. Figure 3(b) shows the normalized average job
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Fig. 3: Simulation results comparing NAS with other schedulers.

execution time of different schedulers. We see that the average
job execution time of NAS is lower than Fair, Delay and SW-
delay by 44.3%, 33.9%, and 25.4%, respectively. Figure 4(b)
shows the normalized average job execution time of different
schedulers in the real cluster experiment. We see that the
average job execution time of NAS is 44.6% and 32.1% lower
than Fair and Delay, respectively.

SW-delay and NAS outperform the Fair and Delay scheduler
because they reduce the cross-rack shuffle network traffic,
which greatly expedites shuffle data transfer. NAS produces
higher throughput and lower average job execution time than
SW-delay. This is because i) NAS balances the shuffle data
transfer load on each node, while SW-delay does not, and
ii) SW-delay sacrifices the map and reduce phase overlap to
achieve higher shuffle locality (i.e., most shuffle data of a
reduce task is located on the same rack where this reduce task
is run). When the network is saturated, SW-delay delays all the
reduce tasks including the shuffle-light jobs, while NAS does
not delay the shuffle-light jobs, which are the majority of the
jobs in the workload (i.e., 60%). From Figures 3(a) and 3(b),
we see that MTS, CA-RTS, and CR-RTS all show great impact
on the improvement of throughput and execution time in
NAS. The experimental results indicate that NAS outperforms
other schedulers on improving the throughput and average job
execution time, which demonstrates the effectiveness of the
mechanisms in NAS.

Figure 3(c) shows the normalized cross-rack traffic in the
simulation, which is measured by the total amount of data
transferred cross-rack in the cluster. Figure 4(c) shows the
normalized cross-rack shuffle data traffic in the real cluster
experiment. We see that SW-delay and NAS produce less

cross-rack traffic than Fair and Delay. SW-delay and NAS
try to reduce cross-rack shuffle data traffic upon the cross-
rack network congestion while Delay and Fair do not address
cross-rack network congestion caused by shuffle data transfer.

Figure 3(c) shows that MTS achieves similar cross-rack traf-
fic as Delay, since both MTS and Delay attempt to guarantee
data locality for the map tasks. Using CA-RTS with MTS, the
cross-rack traffic is decreased, since CA-RTS places the reduce
tasks proportional to the map output distribution to minimize
the cross-rack traffic. The additional use of CR-RTS does not
further decrease the cross-rack traffic. This is because CR-RTS
does not reduce cross-rack traffic in the system and it actually
shapes the cross-rack traffic (i.e., delays the transfer of heavy
shuffle data until the network is uncongested) to reduce cross-
rack congestion, which improves the throughput and average
job execution time, as shown in Figures 3(a) and 3(b).

In order to show the degree of the overlap sacrifice because
of the delay scheduling for the reduce tasks, we draw Figure
3(d), which shows the average MapProgressRate for all the
jobs when the first reduce tasks of these jobs are scheduled.
The MapProgressRate of a job equals the fraction of com-
pleted map tasks of the job. A lower MapProgressRate means
more overlap between the map and shuffle phases. We see
that the results follows SW-delay>NAS>Delay≈Fair. Since
both NAS and SW-delay delay the reduce task scheduling
when the network is congested, their overlaps between map
and reduce phases are smaller than those of Fair and Delay.
Moreover, NAS has a lower average MapProgressRate than
SW-delay. This is because when the network is congested, SW-
delay delays all the reduce tasks, while NAS keeps assigning
shuffle-light jobs rather than delaying them, resulting in a
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Fig. 4: Real cluster experimental results comparing NAS with other schedulers.

lower average MapProgressRate.
Figure 3(e) shows the percentage of nodes that have map

output data size higher than TrafficThreshold (i.e., congest-
ed nodes). We see that NAS has a very small percentage
of congested nodes, while Fair, Delay and SW-delay have
relatively higher percentage of congested nodes. In NAS,
MTS tries to constrain each node’s map output data below
TrafficThreshold. Some nodes become congested because their
map skip counter reaches the maximum value and then their
map tasks are scheduled without the shuffle-qualified or data-
locality constraint. The figure shows that this situation happens
only a few times, which means that the cross-node traffic
are constrained below TrafficThreshold most of the time. In
Fair and Delay schedulers, the scheduling of map tasks is
only based on fairness without considering cross-node traffic,
leading to a large number of congested nodes. SW-delay
generates even more congested nodes than Fair and Delay
because SW-delay schedules map tasks on the containers when
the network is congested, which may result in reading remote
input data and hence more congested network. This figure
demonstrates the effectiveness of MTS in NAS on constraining
cross-node traffic.

Figure 3(f) shows the total number of occurrences of cross-
rack congestions in the simulation. Figure 4(d) shows the total
number of occurrences of cross-rack congestions in the real
cluster experiment. We see that NAS and SW-delay generate
fewer cross-rack congestions than Fair and Delay. This is
because when the network is close to saturation, SW-delay
delays the scheduling of all reduce tasks and NAS delays the
scheduling of reduce tasks from shuffle-medium and shuffle-
heavy jobs to reduce congestion, while Fair and Delay do not
have mechanisms to deal with the network congestion. This
figure indicates the effectiveness of NAS on reducing cross-
rack congestion.

Recall that setting of TrafficThreshold in MTS helps avoid
the cross-rack network congestion. To verify this, we tested the
performance of NAS without the setting of TrafficThreshold
in MTS (w/o TT), and NAS without the both methods (w/o
both). Figure 3(g) shows the total number of occurrences
of cross-rack congestions during the entire experiment time
of these methods compared with NAS. The total numbers
of occurrences of w/o TT, w/o both, and NAS are 3901,
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Fig. 5: Throughput improvement for different jobs.

4197, and 3198, respectively. This result demonstrates that the
setting of TrafficThreshold can help avoid cross-rack network
congestion.

The performance of NAS may vary if the number of jobs per
user changes. Figure 3(h) shows the normalized throughput of
NAS with different number of users in the cluster comparing
with Fair with 200 users. Note that when the number of users
decreases, the number of jobs per user increases. We varied
the number of users for NAS as 25, 50, 100, 200, and 400 in
the cluster. We see that NAS achieves higher throughput with
fewer users. This is because each user has more jobs when
the number of users decreases, which provides more choices
for scheduling the appropriate task to the container and hence
decreases the needs to skip a user in task searching in MTS
and CR-RTS.

We further evaluate how NAS improves the performance of
jobs with different shuffle data size. Figures 5(a) and 5(b) show
the throughput improvement (i.e., with NAS

without NAS ) for shuffle-
light, shuffle-medium, and shuffle-heavy jobs in simulation
and real cluster experiment, respectively. We see that all kinds
of jobs achieve significant improvement in both simulation
and real cluster experiments. Specifically, shuffle-light jobs
achieve the highest throughput improvement, followed by
shuffle-medium and then shuffle-heavy jobs. This is because
the shuffle-light jobs tend to have shorter execution time than
shuffle-heavy jobs. Without NAS, the short execution time of
shuffle-light jobs are severely degraded by shuffle-heavy jobs
when the network is congested, since the shuffle-heavy jobs
need to wait for the shuffle data transfer and do not release the
container resources for a long time. NAS significantly reduces



the network congestion and hence reduces the impact from
shuffle-heavy jobs on shuffle-light jobs, which results in the
most throughput improvement for shuffle-light jobs.

V. CONCLUSION

Shuffle data transfer is the dominant source of cross-
node/rack network traffic, which greatly affects the perfor-
mance of MapReduce clusters. However, few previous sched-
ulers handle the network traffic caused in the shuffle phase.
Therefore, we proposed a new network-aware MapReduce
scheduler (NAS). NAS consists of three mechanisms: Map
Task Scheduling (MTS), Congestion-reduction Reduce Task
Scheduling (CR-RTS) and Congestion-avoidance Reduce Task
Scheduling (CA-RTS). These three mechanisms jointly work
to constrain the cross-node network traffic and reduce cross-
rack network traffic. We implemented NAS in Hadoop on
a supercomputing cluster. Through large-scale trace-driven
simulation based on the Facebook workload and real Hadoop
cluster experiment, we showed that NAS greatly improves
cluster throughput and reduces average job completion time
compared with the Fair, Delay and ShuffleWatcher schedulers.
In the future, we will extend NAS to schedule the jobs consid-
ering the dependency between jobs in which, a job’s output
is the input of another job. For example, we will consider
the placement of dependent jobs to reduce the network traffic
generated from input data reading among the dependent jobs.
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