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Abstract—The exceptional increase in the usage of smart-
phones has contributed to a massive increase in data traffic
from application servers to the smartphones, which not only
strains their computation capacities and batteries but also bogs
down the last hop in data transmission. For this problem, traffic
redundancy elimination (TRE) is an effective solution, in which
a chunk to be transmitted could be directly fetched from the
receiver’s cache. However, existing TRE solutions either cannot
be directly applied to or are not suitable for smartphones due to
high computing and energy overhead imposed on smartphones.
To address this problem, in this paper, we propose a novel TRE
system, called TailoredRE, which consists of three components.
First, each smartphone has a clone in the cloud that is responsible
for computation intensive tasks including parsing traffic and
detecting redundancy. Second, considering that each mobile user
has certain applications (e.g., YouTube) to use in daily life, each
smartphone’s clone selectively chooses the applications that are
most frequently used by the user and also have high redundancy
ratios to cache data. Third, considering that some users always
have common favorite applications, TailoredRE clusters their
clones together to cooperatively conduct the redundancy detec-
tion task in order to reduce the cache resource consumption in
the cloud. We collected traces from eleven applications including
Web Browser, YouTube, CNN, Quora, Instagram and Facebook,
and used the traces in simulation. We also implemented and open-
sourced TailoredRE and conducted prototype-based experiments.
Experiment results show that TailoredRE can achieve much
higher cache hit rate, end-to-end throughput, bandwidth saving
and energy efficiency compared with previous TRE methods.

Index Terms—Traffic redundancy elimination, Mobile device,
Smartphone

I. Introduction

Smartphones have been becoming increasingly popular in
recent years. People nowadays use smartphones as a primary
computing platform in their daily lives. The increasing capac-
ity and popularity of smartphones stimulate the rapid growth
of mobile applications. However, the increasing workload and
traffic of mobile applications strain the limited computation
capacity and battery on smartphones. Besides computation,
the wireless data communication is actually a more significant
source of power consumption on the smartphones [1, 2]. It is
pervasive for mobile users to use smartphones to browse web-
sites (Facebook, BBC, CNN), online videos (e.g., YouTube)
and so on. These user data accesses generate a large amount of
traffic, which not only strains the battery of the smartphones
but also bogs down the last hop wireless link in the data
transmission, resulting in reduced throughput of the network.

Previous studies [3–12] have found that, due to the access
to similar data objects from the users, the Internet traffic has

significant redundancy. Accordingly, several traffic redundancy
elimination (TRE) solutions [13–22] have been proposed.
However, existing TRE solutions either cannot be directly
applied to or are not suitable for smartphones due to high
computing and energy overhead imposed on smartphones
(smartphones, end-clients, receivers are interchangeable terms
in this paper). Because the smartphones have limited compu-
tation capacity and battery, TRE must be operation-efficient
and the energy cost of TRE on smartphones should be far less
than the cost saved from bandwidth usage reduction. Also,
considering the limited cache size of smartphones, it is critical
to increase the cache hit rate of redundancy detection, so
the bandwidth usage reduction can be maximized as much
as possible.

Existing TRE methods can be classified into three cate-
gories: in-network based, receiver side based and server side
based. In-network methods [13–17] cache all data chunks from
the flows that traverse network links and encode the chunks in
the future flows when they are found in the caches. However,
these methods cannot reduce the traffic redundancy over last-
hop links to smartphones since they do not conduct TRE at
the last hop.

In the receiver-based TRE methods [18–21], each end-client
sends to the sender its predicated data or the contents of its
cache so that the sender can conduct the TRE accordingly.
However, if we deploy such a method in smartphones, it will
incur a large amount of computation and up-link transmission
overheads on the smartphones as they need to constantly
conduct hash computing and make predictions to notify the
senders. In addition, as they do not employ fully synchronized
caches between the sender and the receiver, the sender is not
fully aware of the contents of receiver’s cache, which reduces
the redundancy hit ratio and the bandwidth savings attainable
by TRE.

The sender based TRE method [22] offloads most process-
ing effort and memory cost to servers. It requires tight cache
synchronization between the sender and the client, so that the
sender can be aware of all the chunks cached at the receiver
and does not need to send the chunks already in the cache.
However, it is costly for an application server to maintain the
cache synchronization with all of its clients. More importantly,
in practice, many application servers do not provide the TRE
service. Therefore, a solution that does not rely on the servers
but enables smartphones to conduct TRE is needed to reduce
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the energy consumption of smartphones without generating
much computation and energy overhead.

In all previous TRE methods, a client’s cache serves all of
its applications. That is, EndRE is agnostic to the applications
and conducts TRE against the traffic from any application.
However, since memory resource in smartphones is limited,
the chunks from mobile applications with lower redundancy
hit ratio may occupy the cache space, which will reduce
redundancy cache hit rate and the bandwidth savings caused
by TRE.

In order to reduce the computing and up-link bandwidth
overhead on the smartphones while increasing the redundancy
cache hit rate by making the best of the limited cache resource
at smartphones to improve the efficiency and effectiveness
of TRE, we propose a TRE system, called TailoredRE.
TailoredRE is novel in that it leverages cloud resource to
create clones to offload TRE overhead from smartphones and
leverages social network property to conduct TRE by tailoring
to individual user’s application activities. Social network
property here means that each user uses a certain number of
favorite applications in daily life and some users have common
favorite applications [23, 24]. TailoredRE incorporates three
components listed below.

Cloud clone assisted TRE. TailoredRE creates a clone
(i.e., a program running in a virtual machine) in the cloud
for a smartphone and offloads most operation cost from the
smartphone to its clone. A smartphone’s clone acts as its
proxy for all of its data accesses to the Internet. The clone is
responsible for computation intensive tasks in TRE operations,
including parsing traffic and detecting redundancy. The caches
in the clone and in the smartphone are synchronized, so
after the clone detects redundancy, it only needs to send
the location of the cache to let the smartphone to fetch the
redundant contents from its cache accordingly. Fundamentally,
our ”clone” is different the one in Byung-Gon [25]’s work,
which loaded the relevant data and codes to the cloud to
leverage the part of the execution on the smartpohone.

Personalized and application-adaptive TRE. Each user
usually has his/her preferred applications in daily life. For
example, a person may log in his/her Facebook and Gmail
accounts and turns on the YouTube music play in his/her
smartphone before starting to work, and may watch NetFlix
or YouTube, or play online game on his/her smartphone
after work. Also, traffics from different applications have
different redundancy hit ratios [18]. For instance, News sites
has 38.7% redundancy hit ratio, shopping sites have 45.5%,
social network has 51.5% and finance sites has 63.0% [18].
Therefore, TailoredRE caches the contents of a user’s preferred
applications that (s)he usually uses and have high redundancy
hit ratios to increase the redundancy cache hit rate. This is
a novelty of TailoredRE in comparison with the previous
TRE methods that are agnostic to the applications. As a
result, TailoredRE can always avoid the cache pollution from
applications with lower redundancy hit ratios, which improves
the cache hit ratio greatly.

Cache sharing among clones. Many users may share
similarly visited contents such as those who always watch
movies in the same category on NetFlix. Then, their clones

in the cloud may cache similar contents and a user may
visit new contents that are already in another user’s clone.
Therefore, in TailoredRE, the clones of the users that have
similar interests form a group can share their cached contents
between each other. As a result, a clone can quickly fetch
contents from another clone in its group rather than fetch
the contents from the application server, which reduces cache
resource consumption.

We used a smartphone to collect 142GB trace data in total
from eleven mobile applications, including CNN, Quora, and
Facebook, and analyzed the redundancy hit ratios in these
traces. We found that there are indeed considerable redundan-
cies in these traces. Driven by these real traces, we conducted
simulations to compare the performance of TailoredRE with
previous TRE methods. Experimental results show the superior
performance of TailoredRE in terms of redundancy hit ratio,
bandwidth savings and throughput. In addition, we conducted
a survey on real users’ preferred applications. Based on the
survey, we implemented TailoredRE clone in Amazon EC2
and TailoredRE client in an Android smartphone to carry out a
prototype-based test on the bandwidth savings and power con-
sumption. The experimental results show that TailoredRE can
greatly reduce the bandwidth and power consumption. We also
open-sourced our implemented TailoredRE in GitHub [26].

For privacy protection, TailoredRE will not profile a user’s
application preference without the user’s permission. The users
will be informed that such a permission can save the power of
their smartphones but at the cost of possible privacy risk. The
rest of this work is organized as follows. Section II discusses
related work. Section III describes our system design in detail.
Section IV and Section V present the experimental results from
the simulation and real implementation. Section VI concludes
this paper with remarks on our future work.

II. RelatedWork

The previous TRE methods can be classified into three
categories: in-network based, receiver side based and server
side based. In-network TRE solutions, such as Cisco’s Wide
Area Application Services (WAAS) [13] and RiverBed’s Steel-
Head [14], place a middle-box across bandwidth-constrained
links. Other in-network TRE solutions proposed in [15–
17] can remove the redundancy in the traffic by traversing
potentially duplicate packets in common routes. However, all
of these in-network TRE solutions cannot be used to reduce
the traffic redundancy over last-hop links to the smartphones.

Receiver-based TRE solutions [18–21] conduct TRE based
on the feedback sent from the receiver to the sender. The
feedback can be the predicted data that will be sent from the
sender or the contents of the receiver’s cache. Then, the sender
does not need to send the data shown in prediction or already
in the receiver’s cache. In Celleration [18], the gateway located
at the cellular network Internet entry point, stores the signature
of the flows, predicts individual mobile user’s future data, and
executes flow reduction mechanism for bandwidth savings. In
AC [19], the receiver sends the sender the feedback of the data
in its cache that is pertinent to the ongoing traffic flow in real
time, and the sender then performs RE operations based on its
feedback cache storing the received data and regular cache. In
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PACK [20], upon receiving the data stream, the receiver parses
it into chunks, computes their signatures and retrieves the
corresponding chunk chain if a matching signature is found in
its cache, and sends a prediction (PRED) message containing
the signature of the chunk to the server. The sender will verify
the signature of the chunk in the PRED message. If it matched
the corresponding range of the data, it replaces the chunk with
PRED-ACK. REfactor [21] leverages wireless overhearing to
perform sub-packet level redundancy elimination. It maintains
a reception probability vector for each chunk entry (stored in
access point (AP)’s hash table) that indicates the probability
that the receiver has the chunk, based on which, it estimates the
expected benefit for the receiver if the packet is encoded and
sends the receiver the encoded packet only when the expected
benefit is high. Though these receiver-based methods can be
deployed in the smartphones to improve the throughput over
last-hop link, they demand high computational and up-link
bandwidth resources at the receiver. In addition, the sender’s
cache and receiver’s cache are not fully synchronized and the
sender must rely on the receiver’s predictions to conduct TRE,
which will reduce the redundancy hit ratio and bandwidth
savings attainable by TRE.

EndRE [22] is a sender-based TRE solution. It keeps the
caches in the sender and receiver synchronized, so that the
sender is aware of all the chunks cached at the receiver and
does not have to send the chunks that are already in the
receiver’s cache. However, it is costly for an application server
to maintain the cache synchronization with all of its clients.
Though the sender-based TRE method can solve the problem
of limited computation and energy resources of the mobile
devices, many application servers do not provide the TRE
service in practice. Therefore, it is important to find a solution
for the smartphones to conduct TRE while consuming less
computation and energy resources on the smartphones.

III. System Design of TailoredRE

Our proposed TailoredRE system consists of three compo-
nents: cloud clone assisted TRE, personalized and application-
adaptive TRE, and cache sharing among clones. Below, we
introduce each component.

A. Cloud Clone assisted TRE

TailoredRE is a TRE service provided by the cloud to the
smartphones. As shown in Figure 1, each smartphone has a
clone in the cloud, which is a program running in a virtual
machine (VM) to conduct TRE for its belonged smartphone.
Note that multiple programs can run in one VM. The clone
functions as a proxy for its smartphone, and their caches are
synchronized. In order to use TailoredRE service, users need
to install the TailoredRE client on their smartphones, which is
transparent to user apps and works by intercepting the requests
sent out by each running app and transmitting them to the
clone. The clone then forwards these requests to application
servers. Upon receiving the data response from the application
servers, the clone performs TRE operations and sends the
compressed data to the TailoredRE client. Specifically, when
the traffic packets destining to a certain smartphone arrive at
the its clone, the clone stripes the header of the packet to get
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Fig. 1. The procedure in the TailoredRE system.

the application data, and then conducts redundancy detection.
That is, the clone partitions the data into chunks, computes
their hashes and check whether each chunk exists in its cache.
If yes, the clone replaces the chunk with its offset in the cache.
The clone also inserts a shim, which is a one-byte binary
number, between chunks to separate them in the transmission,
so that the client can distinguish chunks. At the client side, it
replaces the offset with the chunk in its cache. After removing
all the shims in the data stream, the recovered data will be sent
to the application process.

1) Redundancy Detection: The clone of a mobile user has a
list of applications that it should conduct TRE against in order
to increase the benefit of TRE. We will introduce how to deter-
mine these applications for a user in Section III-B. When the
clone receives data from an application in this list, it conducts
redundancy detection, which includes the following steps.

Chunk partitioning: The clone partitions the application
data into chunks with variable sizes by using the MAXP
algorithm [27] to find chunk boundaries. By searching the
relative maximum value in a range of bytes rather the fixed
content or position, MAXP can find much more redundant
chunks in the flow with lower computation cost.

Hash computing: After the data is partitioned into chunks,
the clone uses a hash function such as SHA1 [22] to compute
a 20-byte hash.

Chunk lookup in the cache: As shown in Figure 2, the clone
maintains a hash table that stores the previously partitioned
chunks and their offsets in the clone’s cache. For each chunk
of the received data from an application server, if the chunk
does not exist in the hash table, it stores the chunk to its own
cache and enters the chunk to its hash table along with its
offset in its cache. Otherwise, it replaces the chunk with the
offset before forwarding the received data to the client. Then,
the client can fetch the corresponding chunk from its own
cache based on the offset and restores the data.

An offset with 4 bytes can indicate 232 chunks, which is
large enough to indicate all the chunks in the cache. In the
receiver-based TRE methods [18–21], a duplicated chunk is
replaced by its SHA1 hash value, which takes 20 bytes. Thus,
by transmitting the chunk’s offset instead of the chunk’s hash,
TailoredRE reduces the transmission overhead to 20%.

Hash collision (i.e., two different chunks may have the same
hash) may result in incorrect data recovery at the client. In
order to avoid this problem, we can compare the chunks after
their hashes are matched. Only when both the hashes and
chunks match to each other, the clone ensures that a chunk
is redundant and replace the chunk with its offset.
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2) Chunking Algorithm: TailoredRE divides the payload
of a packet into chunks by a content-based chunking algo-
rithm [20, 22, 27–29]. This algorithm determines the chunk
boundaries using content instead of offset, so localized changes
in the data stream only affect chunks that are near the
changes, which enables efficient and robust duplicate content
identification across different data objects. TailoredRE chooses
MAXP [27] because it provides uniformly distributed chunk
boundaries across the payload and imposes a lower bound
on chunk length and low computational overhead. It can
find the local maxima in a range of bytes, without hashing
computation. MAXP selects a position as chunk boundary if
its value is the maximum (or minimum) over the p-byte region
centered at that position. The packet payload is divided into
chunks by these boundaries. The expected chunk size is p and
all chunks must have length at least bp/2c except the last one
at the end of payload [30]. The determination of chunk size
should consider the trade-off between prediction overhead and
bandwidth savings.

B. Personalized and Application-adaptive TRE

Different from previous TRE methods, TailoredRE clone
provides personalized TRE, for its smartphone user. That is,
each clone selectively chooses applications to conduct TRE
based on its mobile user’s regular application usage and the
different redundancy hit ratios of different applications, so that
the benefit of TRE can be increased.

Fig. 2. Cache table in clone.

Considering the limited
cache size in smartphones, we
aim to fully utilize the cache
to increase the redundancy hit
ratio to eliminate redundant
traffic as much as possible.
To this end, the clone of
a mobile user tries to give
higher priority to the data
of the applications that have
higher redundancy hit ratios
and that the mobile user access data more frequently to be
stored in the clone’s cache. Thus, there are two important
metrics that a user’s clone analyzes and profiles for the user.
The first metric is the redundancy hit ratio distribution over
different mobile applications, and the second one is the data
transmission volume distribution over the applications of a
mobile user.

When a user registers for the TailoredRE service, the
TailoredRE client will report to its clone the port number each
app uses, by which the clone can tell which traffic belongs
to which app. To measure the first metric, the clone records
applications user k uses, and maintains an application vestor
Uk = {app1, app2, ..., appn}, along with redundancy hit ratio
for appi (i = 1, 2, ..., n), denoted by ri. ri =

Vhiti
Vtotali

, where Vtotali
is the volume of the total transmitted data from application i
and Vhiti is the volume of the data that hit the clone’s cache
during a time window T . The clone periodically updates ri
after each T . TailoredRE has a supervisor in the cloud that
manages global operations among clones. Each clone reports
its measured redundancy hit ratio metric for different applica-

tions to the supervisor. The supervisor calculates the average
redundancy hit ratio metric for each application and sends the
average values to all clones. These global average values can
be used for mobile users who first use this TailoredRE service
to determine the applications to conduct TRE against (called
target applications).

A user’s preference or frequency of using different appli-
cations can be measured by the volume of data that the user
fetches from the applications. Then, we define another metric
called a user’s activity degree on application i, denoted as ai,
and measure it by the relative data volume of application i, that
is, ai = di∑

di
, where di is the data volume of each application

in the application vector.
With these two metrics, for application i, the clone calcu-

lates the benefit factor, vi = ri·ai. It reflects the benefit when the
clone conducts TRE against application i for its mobile user.
The application with higher redundancy hit ratio and higher
accessing activity degree has higher benefit factors, and then
has a higher probability to be selected as a target application.
We set a threshold of the benefit factor, vth. In selecting the
target applications, only when an application’s benefit factor
is larger than vth, the clone puts it into the target application
list and cache its chunks. Since users’ preferred applications
may change overtime, the target applications are updated
periodically (e.g., every month). With the application-adaptive
TRE design, our TailoredRE system can always conduct TRE
against the applications with highest TRE benefit factor, and
improves the redundancy hit ratio.

C. Cache Sharing Among Clones

Several previous studies [18, 31–33] show that there are two
types of redundancy exhibited in network traffic, i.e., intra-
user temporal redundancy and inter-user redundancy. Intra-
user temporal redundancy means the redundancy occurs when
a user accesses the same website repeatedly. Inter-user redun-
dancy occurs when a group of users frequently access the same
websites or applications due to their similar interests [23].

Each clone has a cache that is synchronized with the client’s
cache. Then, it requires tremendously high cache resource with
a large number of users (e.g., thousands, millions). In order to
reduce the total cache consumption in the cloud, we propose
to share the cache resource between clones. However, there are
two challenges we need to consider: i) how to group the clones
in order to make the cache sharing efficient, and ii) how to
share cache in the cloud while keeping the cache in cloud and
the cache in the smartphone synchronized. To handle the two
challenges, we propose a two-step clone grouping algorithm
and a two-layer cache sharing strategy.

1) Two-Step Clone Grouping Algorithm: Only the clones
that are i) on the same VM and ii) share similar application
interests are grouped into a cluster. Factor i) is to ensure
that the chunk sharing between the clones in a group can be
efficiently conducted since the clones share the cache space.
The cache sharing between the clones located in different
VMs will incur large latency and bandwidth overhead within a
physical machine or between physical machines. Factor ii) is
to ensure that the clones in one group tend to access the same
chunks and only one copy is needed to stored in the group
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Fig. 3. Cache sharing among clones.

to be shared by the clones, which can save cache resource
consumption.

TailoredRE’s supervisor in the cloud also manages clone
grouping. When a smartphone client k registers for the
TailoredRE, (s)he is asked to enter the frequently accessed
(i.e., preferred) applications to create Uk initially. Based on
these applications, its clone calculates its hashed interest
ID using min-wise independent permutation based locality
sensitive hash (LSH) scheme [34]. This scheme can quickly
and efficiently cluster similar data items together with low
overhead. We use the Jaccard set similarity measure [35]:
sim(Uk1 ,Uk2 ) =

|Uk1∩Uk2 |

|Uk1∪Uk2 |
. As a result, the clients with similar

preferred applications will have close interest IDs. Later on,
the clone updates the interest ID based on the client’s actual
behavior on application access. Suppose the hash ID space is
[1, L]. We evenly slit the ID space to a number of ID range,
and put the clones with IDs in the same ID range into a
group. The supervisor maintains a list of the clone groups
and the members in each clone group. After a newly joined
clone calculates its interest ID, it contacts the supervisor, and
then receives the clone group where it should join and the
members of the clones in the group that it should group with.
If a client un-registers the TailoredRE, his/her clone will
be removed from the cloud and accordingly, the supervisor
removes it from the clone group list. Below, we introduce
how to calculate the interest ID for a list of applications.

The similarity between users’ application preferences can
be calculated by the similarity between user’s application
vectors. In order to make the grouping operation fast, we use
an efficient locality sensitive hash function, called min-wise
independent permutation based LSH scheme [34]. We use this
hash function on each application vector, and then similar ap-
plication vectors will have close hash values, which facilitates
grouping clones with similar application vectors. We use the
Jaccard set similarity measure [35]: sim(Uk1 ,Uk2 ) =

|Uk1∩Uk2 |

|Uk1∪Uk2 |
.

For example, the similarity is 3
5 = 0.6 between Uk1=CNN |

YouTube | Quora | Facebook and Uk2=CNN | YouTube | Quora
| Twitter.

2) Two-Layer Caching Sharing Strategy: As the clones are
on the same VM, they use the same cache space. In this case,
when two clones receive the same chunk, only one copy of the
chunk needs to be stored in the cache in order to save the cache
space consumption. In TailoredRE, the cache in a client’s clone
is synchronized with the cache in the client to improve the
redundancy hit ratio. However, sharing cache among clones
(maintaining only one chunk copy in the clone group) will

break such synchronization.
In order to solve this problem, we design a two-layer cache

sharing strategy, in which there are two kinds of caches
as shown in Figure 3: logical cache for individual clones
and physical cache for all the clones in one cluster. The
information of each chunk accessed by each clone, including
chunk offset in the client’s cache, chunk hash and chunk
address in the physical cache, are stored in individual logical
cache. The real chunks accessed by all clones are stored in
the shared physical cache. The logical cache is used to keep it
synchronized with the cache in the client, while the physical
cache stores the raw chunks received from applications. The
supervisor maintains a cache table to show the information
of the chunks in the shared physical cache, as shown in the
right part of Figure 3. For each chunk, it records its physical
address in the shared physical cache, its hash value, the chunk
itself, and the clones that the chunk belongs to. For example,
for chunk 1, its entry stores the clone IDs of clone A, clone B,
and clone C that the chunk belongs to. Each operation in the
logical cache, such as chunk insertion and chunk deletion, will
incur the chunk update in the physical cache. We present the
operations in each clone’s logical cache and in the cluster’s
physical cache below.

Chunk insertion: If the received chunk does not exist in a
clone’s logical cache, the chunk may or may not exist in the
physical cache. First, the clone creates the entry of this chunk
in its logical cache, and checks whether the chunk is already
in the physical cache inserted by other clones. If the chunk
already exists, the physical cache adds this clone’s ID into this
chunk’s owner list. Otherwise, this chunk is inserted into the
physical cache and the cache table is also updated.

Chunk deletion: When the clone finds that a chunk is a new
chunk, if the clone’s logical cache is full, the least recently
used chunk in the clone’s logical cache will be removed,
according to LRU caching scheme [36]. The logical cache
finds the chunk in the cluster’s physical cache according to its
address and checks its owner list. If there are other clones in
the list, the supervisor removes this clone from the owner list,
otherwise the supervisor removes the chunk entry.

IV. Experimental Simulations

In this paper, we developed a pair of clone (sender) and
client (receiver) using Java to simulate our TailoredRE system.
All of our simulation experiments are driven by real traces
collected by ourselves.

We measured the following metrics in our experiment:
• Redundancy hit ratio. It is calculated by Vhit

Vtotal
, where Vtotal

is the total number of bytes (i.e., volume) of chunks of
accessed data by the client and Vhit is the total number of
the bytes of the chunks that hit the cache by the client.

• Bandwidth saving ratio. It is calculated by Vhit−Voverhead
Vtotal

, where
Voverhead is the data volume of chunk information including
hashes, offsets and shims, incurred by TRE operation and
Vtotal is the size of the total transmitted content data from
the sender to the receiver.

• Normalized throughput. It is computed by rRE
rNo−RE

in order
to show the final throughput improvement caused by RE,
where rRE and rNo−RE are the throughputs with TRE and
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TABLE I
Trace Pool

Number Traces Size (GB) Redundancy hit ratio
1 WebBrowser1 0.85 90.18%
2 Techcrunch1 1.11 76.10%
3 Techcrunch2 1.09 74.09%
4 Bloomberg1 1.28 69.47%
5 NYTimes1 1.40 52.60%
6 Bloomberg2 0.90 40.67%
7 Quora1 1.36 26.73%
8 Quora2 0.81 22.26%
9 Quora3 1.12 20.41%
10 Twitter1 1.03 20.10%
11 CNN1 0.98 20.01%
12 Instagram1 1.40 19.57%
13 Spotify1 1.01 18.17%
14 Twitter2 1.13 17.91%
15 Instagram2 0.84 17.68%
16 YouTube1 1.58 17.58%
17 YouTube2 1.02 16.31%
18 Facebook1 0.94 9.80%

without TRE respectively. The throughput is the amount of
data transmitted successfully from the cloud to the clients,
measured in bits per second (bps).

A. Trace Collection and Analysis

1) Trace Collection: We conducted our statistical data
analysis on the payloads of packets from real wireless traces.
To perform our data collection, we setup a Wi-Fi hotspot (i.e.,
AP) from a Windows 10 laptop equipped with 802.11ac Wi-
Fi cards through an application called mHotSpot [37]. We
then captured all the traffic corresponding to an AP connection
through Wireshark [38], a packet sniffing tool. We connected
a single user to the hotspot and generated traffic by browsing
into various popular multimedia and news applications. Then,
we segregated packet traces of various applications based on
their IP addresses and port numbers using Wireshark’s filtering
tool [38]. We preprocessed the traffic traces by stripping the
packet headers starting from physical, MAC, IP and transport
layer headers of each packets.

We used a smartphone to continuously access 18 applica-
tions to create two traces. In the first trace, each application
trace takes 98 hours to collect, and in the second one, each
application trace takes 10 hours to collect. Some of the traces,
such as Twitter and Facebook, are HTTPS traffic. We use the
first trace to simulate the performance of one clone, that is,
it accesses fewer applications and each has a large data size
(10GB-28GB). We use the second trace to test the caching
sharing method among a large amount of clones (i.e., 1000 in
total). For more details of the traces, please refer to [39].

2) Trace Analysis: We have run our simulator to analyze
the redundancy hit ratios of all the application data traces. In
the MAXP algorithm, we set the sampling parameter, p, to
256 bytes. We set the cache size as large as 10MB, which is
large enough to detect almost all the redundant chunks in the
data traces.

The redundancy hit ratios for different data traces are shown
in Table I. We see that different applications indeed have
different redundancy hit ratios. First, these results confirm
that there exists traffic redundancy in smartphone accessed
data [40]. Second, we see that some application data, such as
Web Browser and Techcrunch traces, have higher redundancy
hit ratios, while others, such as Facebook and Twitter, have

lower redundancy hit ratios because of HTTPS encryption.
The observations lay the foundation of the design of the
application-adaptive TRE in TailoredRE.

B. Trace-driven Simulation for RE Effectiveness

We first evaluate TailoredRE on one smartphone client and
then on multiple smartphone clients. The access probability
was set to 0.4, 0.2, 0.2, 0.1 and 0.1 for the applications. By
this way, we can simulate the activity degrees of applications
for a certain user. We compared TailoredRE with EndRE [22]
and Asymmetric Caching (AC) [19].

1) Performance Over Time: In this simulation, the cache
size was set to 2.5MB and there was no cache sharing module
since we only want to measure the effectiveness of redundancy
elimination. The client requested for 1MB data block each
time. We generated 100 requests in each time slot for 200
time slots.

From Figure 4(a), we see that in every time slot, the
redundancy hit ratio conforms TailoredRE>EndRE>AC. The
reason is that compared with the EndRE, TailoredRE always
chooses the applications with high redundancy hit ratio and
activity degree to conduct TRE against. Thus, TailoredRE can
more efficiently use the cache and generates higher cache hit
ratio than EndRE. Compared with EndRE, in AC, chunks from
different servers are stored in different chunk chains. The data
stream from a specific server will be checked only in the
chain of the server rather than in all existing chains. As a
result, with the same cache size at the receiver, AC can cache
fewer different chunks compared with EndRE, which reduces
hit ratio. In addition, because of the asynchronization between
the sender and receiver, AC’s redundancy hit ratio is lower than
EndRE’s.

Figure 4(b) shows that at each time slot, the bandwidth
saving ratio also conforms TailoredRE>EndRE>AC. In Tai-
loredRE and EndRE, the sender only needs to replace redun-
dant chunk with an offset (4 bytes) in data transmission. In
AC, the receiver needs to send hashes of the predicted chunks
to the sender, which needs to replace the correctly predicted
chunks with hashes. Each hash value takes 20 bytes, which
is much larger than the offset in TailoredRE and EndRE.
As a result, AC consumes much more bandwidth in data
transmission. Moreover, in AC, the receiver needs to send back
predication messages, which contain the future chunk hashes,
to the sender and consumes extra feedback overheads. As a
result, TailoredRE achieves the highest bandwidth saving, and
AC produces the lowest bandwidth saving.

Figure 4(c) shows that the normalized throughput also
conforms TailoredRE>EndRE>AC. This is because that
TailoredRE can eliminate the most redundant chunks during
data transmission, and reduce the highest transmission time,
so that it improves the throughput better than other methods.
Compared with AC, EndRE has a higher redundancy hit ratio,
which reduces more redundant data during transmission, and
hence reduces higher transmission time. As a result, EndRE
can achieve higher throughput than AC.

In addition, from Figure 4, we see that the results of
TailoredRE are stable, but the results of EndRE and AC
fluctuate. The reason is that, the cache in TailoredRE just
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Fig. 4. Performance over time.
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Fig. 5. Performance with different cache sizes.
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Fig. 6. Performance of cache sharing among clones.

caches the chunks from the applications with high benefit
factor, there are few chunk replacements among different
applications. However, in EndRE and AC, the cache can be
populated by the chunks from applications with low benefit
factor, which causes performance fluctuation.

2) Performance with Different Cache Sizes: We measured
the redundancy hit ratio, bandwidth saving ratio and normal-
ized throughput with cache size changing from 0.1MB to
2MB. The results are respectively shown in Figure 5(a), Figure
5(b) and Figure 5(c). We see that the results of each metric
are consistent with those in the previous subsection due to
the same reasons. In addition, we see that as the cache size
increases, the redundancy hit ratios, bandwidth saving ratios
and normalized throughputs of the three systems increase. This
is because with a larger cache size, more chunks can be cached
and the chunks in transmission have higher probabilities to hit
the cache.

C. Simulation of Shared Caching For Multiple Clones
At the initial phase, each user randomly chose 4 applica-

tions from the trace pool and their access probabilities are
{p1, p2, p3, p4}, where p1, p2, p3 and p4 are randomly chosen

and subject to
∑4

i=1 pi = 1. In the MAXP algorithm, we set the
sampling parameter, p, to 512 bytes. We set the cache sizes
at the receivers to 2MB and generated once request in each
time slot for 1000 time slots in this simulation.

In this simulation, we first created a clone, say clone i. Then,
we created other clones in the cluster that have similarity 0.4
with clone i and these clones are grouped with clone i into a
cluster. The cache saving factor is computed by

∑
Cclone−Ccluster

Cclone
,

where Ccluster denotes the total cache consumption (i.e., cache
size) in one cluster and Cclone denotes the cache consumption
for one clone. The simulation results are shown in Figure
6(a).

Figure 6(a) shows one cluster’s cache saving factor as a
function of time for the cluster with different cluster size. We
see that with the increase of the cluster size, the cache saving
factor increases. Since more clones sharing the cache will incur
more common chunks in the cache, which cause higher cache
saving factor.

In addition, we simulate the relationship between the av-
erage total cache consumption at the cloud side with the
number of clients changing from 1 to 1000. We assume that
all the clones are located in the same VM and just consider
the user interest for clone grouping. For each time slot, we
collected the total cache consumption of all the clusters in the
cloud, and finally we calculated the average of the total cache
consumption per time slot. We compare our method with both
the randomly grouping method and the method without clone
grouping, and the simulation results are shown in Figure 6(b).

Figure 6(b) shows that for a certain number of clients, the
aggregate cache consumption with our cache sharing algorithm
is always less than that with random grouping, and the cache
consumption without grouping always is the highest among
the three methods. The cache reduction can be expressed
by Cw/o−grou−Cw/−grou

Cw/−grou
, where Cw/o−grou and Cw/−grou represent the
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Fig. 7. prototype-based experimental results.

total cache consumption without clone grouping and with
clone grouping. Then, our proposed cache sharing method can
reduce cache consumption of the method without grouping by
more than 40%, while random grouping can reduce the cache
consumption of the method without grouping by about 20%.
Our proposed grouping method considers the user application
usage similarity, thus the cached chunks between two clones
in the same group will have much more common chunks and
share much more cache resource in the shared cache. We
can also see from Figure 6(b) that with the increasing of the
number of clients, the cache resource consumption increase
linearly. Also, the cache consumption reduction of our method
and of the random grouping method increases as the number
of clients increases. The results imply that when there are a
larger number of clients, our cache sharing method can reduce
more cache resource consumption in the cloud.

V. Prototype-based Performance Evaluation

A. Experiment Setup

We developed the Python-based TailoredRE clone and
Android-based TailoredRE client prototypes, and open-
sourced TaioredRE in GitHub [26]. We developed a test app
which mimics the real app to send out real application data
requests to the TailoredRE client directly. We deployed our
TailoredRE clone in Amazon’s EC2 virtual server instance
powered by Ubuntu 14.04 LTS operating system. TailoredRE
client ran on a smartphone named Asus Fonepad powered by
Android Version 4.1.2. We also conducted an online survey
about user’s application preferences in [41]. In this survey,
12 users on campus are randomly invited to select and enter the
applications they preferred and the time they spend regularly
on the applications in one week, which can roughly reflect
users’ daily application usage. We conducted our prototype-
based experiments on the bandwidth savings and the power
consumption with TailoredRE based on the users’ application
preferences from the survey. Power measurement includes the
power used for CPU and Wi-Fi components caused by the
test applications and the TRE method. We also implemented
EndRE and AC for performance comparison.

In the MAXP algorithm, we set the sampling parameter,
p, to 256 bytes. The cache size for the client was set to
2MB. We ran each experiment for 2 hours. In each minute,
the Android-based test applications sent 50 data requests and
receive 50 corresponding data responses in total. The data
request probability for each application is based on the user
entered times from the survey.

B. Prototype-Based Experiments Results
In this part, we first randomly picked one user

among all the users in the survey. We show
this user’s application preference in Figure 8.

Applications Time in one week (h)

YouTube 0.5-2

Facebook 0

CNN 2.0-4.0

Quora 0.5-2.0

Techcrunch 2.0-4.0

NYTimes 0.5-2.0

Twitter 2.0-4.0

Instagram 2.0-4.0

Spotify 2.0-4.0

Bloomberg 0.5-2.0

Browser 0.5

User application preference

Fig. 8. User application preference.

Figure 7(a) and Figure 7(b)
show the bandwidth saving
ratio and power consump-
tion for each minute over
time for this user, respec-
tively. From Figure 7(a), we
see that the bandwidth sav-
ing ratio conforms Tailore-
dRE¿EndRE¿AC, which is in
coordination with the simula-
tion results in Figure 4(b) due
to the same reasons. We can
see from Figure 7(b) that, the power consumption conforms
TailoredRE<EndRE<WithoutRE<AC. Both TailoredRE and
EndRE consume considerably lower power compared with
the case without TRE, since TRE causes less bandwidth
consumption and less transmitted data, thus it reduces the
power consumption caused by data transmission. TailoredRE
consumes lower power than EndRE, because TailoredRE has
higher bandwidth savings and higher reduction on the amount
of transmitted data. It is interesting to see that AC has slightly
higher power consumption than the case without TRE. The
reason is that AC conducts TRE operations, such as chunk
partitioning and hashing, which incur extra computation and
CPU consumption in the smartphone. Additionally, AC needs
to send back feedback messages to the sender, which incurs
extra wireless radio power consumption for the smartphone.

We then tested the bandwidth saving ratio and power con-
sumption for all of the 12 users in the survey by configuring
the test applications based on their application preferences.
Figure 7(c) and Figure 7(d) respectively show the average
bandwidth saving ratio and the average power consumption in
two hours for each user in the survey. From Figure 7(c), we see
that different users, with different application preferences, have
different bandwidth saving ratios, which indicate the necessity
to conduct personalized TRE for individual users. In addition,
for each user, the total bandwidth saving ratio conforms
TailoredRE¿EndRE¿AC. Specifically, TailoredRE conserves
15% − 29.7% more bandwidth compared with EndRE, and
24.5%−57.8% more bandwidth compared with AC. The reason
for the result is the same to that in Figure 4(b). We can
see from Figure 7(d) that with different user preferences, the
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power consumption of different smartphones are different. In
addition, for each user, both TailoredRE and EndRE consume
lower power than AC and the case without TRE. Moreover,
TailoredRE consumes much lower power than EndRE, for
the same reason as in Figure 7(b). Specifically, TailoredRE
conserves 14.1%−19.3% more energy compared with EndRE,
and 42.3% − 49.2% more energy compared with AC.

VI. Conclusion
In this paper, we proposed the TailoredRE system to provide

TRE service for smartphone users in accessing Internet ap-
plications. Different from previous TRE methods, TailoredRE
conducts the TRE against selected applications that a user
more frequently accesses and have high redundancy hit ratios
for each individual user. In this way, the limited cache resource
can always be better utilized to improve the redundancy hit
ratio and hence achieve higher TRE. In addition, in order
to conserve the cache resource in the cloud, TailoredRE
groups the clones in one VM based on user interests, and
let the clones share contents with each other. Trace-driven
simulation shows that our TailoredRE system greatly improves
the bandwidth savings and cache resource saving. Further-
more, prototype-based experiments show that TailoredRE can
conserve 14.1%− 19.3% more energy compared with EndRE,
and 42.3%−49.2% more energy compared with AC. We open-
sourced our prototyped TailoredRE.
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