Approaches for Resilience Against Cascading Failures in Cloud Datacenters

Haoyu Wang, Haiying Shen and Zhuozhao Li
University of Virginia

2018 IEEE ICDCS, Vienna, Austria
Presented by Cole Miles
Software Bug, Cascading Failures Caused Amazon Outage

It was a stormy week in the cloud, as an outage at Amazon Web Services
Outline

• How Cascading failures happen
• Previous work
• Main design of CFRS (Cascading Failure Resilience System)
• Evaluation of CFRS in simulation
The most common cause of Cascading failure is overload. [1]

Outline

- How Cascading failures happen
- Previous work
- Main design
- Evaluation in simulation
Previous work

VM migration:
- Zhang SIGCOMM’12, Bodik EuroSys’12, Bila INFOCOM’14
- Only consider a time point rather than a time period.

VM backup
- Yeow SIGCOMM’11
- Only for single point failure.

Failure mitigation
- R3 SIGCOMM’11, Netpilot SIGCOMM’12
- Cost of failure repair is very high.
Outline

• How Cascading failures happen

• Previous work

• Main design of CFRS
 - Overload-Avoidance VM Reassignment (OAVR)
 - VM Backup Set Placement (VMset)
 - Dynamic Oversubscription ratio Adjustment (DOA)

• Evaluation of CFRS in simulation
Main design of CFRS

- Overload-Avoidance VM Reassignment (OAVR)

Three rules:

1. VMs with higher workloads should be scheduled first.

2. Migrate VMs with the highest workload on some resource types to the most underloaded PMs on the resource types.

3. A VM should be migrated to its best-fit PM.
• Main design of CFRS

- VM Backup Set Placement (VMset)
• Main design of CFRS

➢ VM Backup Set Placement (VMset)

For instance, assume the datacenter has the following parameters: $R = 3$, $N = 12$, and $W = N-1 = 11$.

\[
\frac{\# \text{ vmsets}}{C_N^R} = \frac{220}{123} = 100\%.
\]

(6)

If $W=4$.

\[
\frac{\# \text{ vmsets}}{C_N^R} = \frac{72}{123} = 32.7\%.
\]

(8)

Using a lower spread width (W) can decrease the probability of VM backup loss from correlated failures.
• Main design of CFRS

- VM Backup Set Placement (VMset)

For instance, assume the datacenter has the following parameters: N = 5000, R = 3, W = 10, when 1% of the PMs fail simultaneously.

\[
\frac{\# VM sets}{\binom{N}{R}} = \frac{8}{12} = 4\%,
\]

(10)

\[
\frac{\# VM sets}{\binom{N}{R}} = \frac{10}{3-1} \cdot \frac{5000}{3} = \frac{8333}{2.01 \times 10^{10}} = 0.000042\%,
\]

(11)
• Main design of CFRS

➤ Dynamic Oversubscription Ratio Adjustment (DOA)
Outline

• How Cascading failures happen
• Previous work
• Main design
• Evaluation in simulation
• Evaluation

➢ Simulation Setup

1. Google Cluster trace

2. 19200 PMs are connected through 240 Top-of-Rack switches. 80 PMs are in one rack, each power station supplies 20 racks.

3. 240 network failure domains and 12 power failure domains.

4. The failure rate was randomly chosen from [0.000022, 0.000032] per hour for a network failure domain and 0.4*10e-6 per hour for a power failure domain. The failure rate of overloaded PM is 0.0001 per minute.
• Evaluation

➤ Results

Number of domain failures
Number of failed PMs
• Evaluation

 Results

SLO violations

Computing time
Conclusion

1. CFRS aims to achieve long-term load balance by VM migration, which can avoid cascading failures for long-term.

2. CFRS places VM backups to PMs to increase the backup reliability in failures.

3. CFRS dynamically adjusts oversubscription ratio.

4. The trace simulation shows the superior performance of CFRS in cascading failure avoidance.
Thank you!

Questions?