
Task Failure Prediction in Cloud Data Centers
Using Deep Learning
Jiechao Gao, Haoyu Wang and Haiying Shen

Computer Science Department
University of Virginia

Charlottesville, VA, USA
{jg5ycn, hw8c, hs6ms}@virginia.edu

Abstract—A large-scale cloud data center needs to provide high
service reliability and availability with low failure occurrence
probability. However, current large-scale cloud data centers still
face high failure rates due to many reasons such as hardware
and software failures, which often result in task and job failures.
Such failures can severely reduce the reliability of cloud services
and also occupy huge amount of resources to recover the service
from failures. Therefore, it is important to predict task or job
failures before occurrence with high accuracy to avoid unexpected
wastage. Many machine learning and deep learning based meth-
ods have been proposed for the task or job failure prediction
by analyzing past system message logs and identifying the
relationship between the data and the failures. In order to further
improve the failure prediction accuracy of the previous machine
learning and deep learning based methods, in this paper, we
propose a failure prediction algorithm based on multi-layer Bidi-
rectional Long Short Term Memory (Bi-LSTM) to identify task
and job failures in the cloud. The goal of Bi-LSTM prediction
algorithm is to predict whether the tasks and jobs are failed or
completed. The trace-driven experiments show that our algorithm
outperforms other state-of-art prediction methods with 93%
accuracy and 87% for task failure and job failures respectively.

I. INTRODUCTION

Nowadays, cloud computing service has been wildly used
because it provides high reliability, resource saving and also
on-demand services. The cloud data centers include proces-
sors, memory units, disk drives, networking devices, and
various types of sensors that support many applications (i.e.,
jobs) from users. The users can send requests such as store
data and run applications to the cloud. Each cloud data center
is composed with physical machines (PMs) and each PM can
support a set of virtual machines (VMs). The tasks that are
sent from users are processed in each VM. Such a large scale
cloud data center can host hundreds of thousands of servers
which often run tons of applications and receive work requests
every second from users all over the world. A cloud data
center with such heterogeneity and intensive workloads may
sometimes be vulnerable to different types of failures (e.g.,
hardware, software, disk failures). Take software failures as an
example [1], Ya-hoo Inc. and Microsoft’s search engine, Bing,
crashed for 20 mins in January 2015, which cost about $9000
per minute to reboot the system. Previous research [2]–[6]
found that hardware failure, especially disk failure, is a major

contributing factor to the outages of cloud services. These
many different types of failures will lead to the application
running failures. Thus, accurate prediction for the occurrence
of application failures beforehand can improve the efficiency
of recovering the failure and application running.

A job is comprised of one or more tasks, each of which
is accompanied by a set of resource requirements. A job fails
when one of its tasks fails. The previous works [3], [7]–[13]
use statistical and machine learning approaches such as Hidden
Semi-markov Model (HSMM) and Support Vector Machine
(SVM) to predict the task and job failures in cloud data
centers. They use CPU usage and memory usage, unmapped
page cache, mean disk I/O time and disk usage as inputs
and the task failure or job failure as the output. However,
HSMM and SVM assume that all their inputs are stationary
and independent of each other which are not true in the cloud
data centers. Thus, they cannot handle the sequence data or
high dimensional data, in which data in time points or different
features may be dependent to each other. In the cloud data
centers, the input features and noisy data are diverse in nature
and have dependencies on the past events. Thus HSMM and
SVM can’t handle the failure prediction in cloud data centers.

Meanwhile, some other researchers applied deep learning
approaches such as Recurrent Neural Network (RNN) and
LSTM for the failure prediction [14]–[19]. They use CPU
usage, memory usage, unmapped page cache, mean disk I/O
time and disk usage as input and the task or job failure as
output. However, the traditional RNN has a serious drawback
for the data that has long-term dependencies [20], which
means the past events can influence future events and a
temporary memory of events that happened a while ago may
be essential for producing a useful output action. Since the
error signals are back-propagated through time, they may
exhibit decay [21]. To overcome this issue, deep learning
approaches such as LSTM can be used to better handle the
failure prediction problem which can capture the long term
dependencies. Some of the recent research papers [15]–[17]
have already shown that LSTM performs better than HSMM,
SVM and RNN in terms of accuracy in task or job failure
prediction in cloud data centers.

However, the LSTM based prediction methods still have a
few shortcomings. First, the methods [15]–[17], [19] only con-
sider CPU usage, memory usage, cache memory usage, mean978-1-7281-0858-2/19/$31.00 ©2019 IEEE

disk I/O time, and disk usage as input features. More input
features may further increase the prediction accuracy. Second,
the LSTM based prediction model used single-layer LSTM
construction which can not handle multiple input features well
compared to multi-layer construction [21]. Third, in the cloud
data center, input features like CPU usage and memory usage
are highly related over time. For a given time for prediction,
the LSTM based prediction model always sets higher weights
on the data closer to the time, and lower weights on the data
further away from the time, with the assumption that the data
further away from the time always has lower impact to the
prediction. However, such settings cannot accurately reflect the
impact degree as the further data may still have higher impact
on the failure (e.g., failures in long term jobs). The perfor-
mance can be better if the weights of data items are determined
based on the real data trace. Thus, a new prediction model is
needed to build to implement failure prediction in the cloud
data center in order to achieve better accuracy in prediction.

To overcome the shortcomings, in this paper, we build a
failure prediction model based on multi-layer Bidirectional
LSTM and name it as Bi-LSTM. First, Bi-LSTM has more
input features than previous methods, which include task
priority, task resubmissions and scheduling delay. Second,
Bi-LSTM has multi-layer structure which can better handle
multiple input features for higher accuracy. Multi-layer
construction can narrow the number of parameters in the
calculating functions but still with the same number of
neurons which can reduce the calculation time [21]. Third,
Bi-LSTM can determine the weights of data items based
on their real impact to the failure rather than simply setting
higher weights to data item closer to the given time for
prediction than the data items further away from the time.
We perform the trace-driven failure prediction study by using
Google cluster trace and we compare the performance of
Bi-LSTM with other state-of-art prediction methods.

Our contributions in this paper are as follows:

(1) We present a deep learning based prediction model named
Bi-LSTM for task and job failures prediction. We first
input the data into forward state and backward state in
order to adjust both the weight of both closer and further
input features. We find that the further input features is
essential to achieving high prediction accuracy.

(2) We compare Bi-LSTM with other representative models
including statistical models, machine learning models and
deep learning models in terms of accuracy, F1 score,
precision, and recall. The results show that our algorithm
detects task failures and job failures with an accuracy of
93% and 87% respectively.

The rest of the paper is organized as follows. Section II
presents the related work. Section III presents the trace study.
Section IV presents our proposed prediction method and exper-
iment process. Section V presents the performance evaluation
of our methods. Section VI concludes the paper with remarks
on our future work.

II. RELATED WORK

We classify the previous related work into two parts: failure
analysis in cloud data centers and failure prediction methods.
Failure analysis in cloud data centers. Ford et al. [22]
studied the impact of correlated failures on availability of
distributed storage systems for Google clusters. They found
that although disk failures can result in permanent data loss,
the major reason for most unavailability in the Google cloud
storage system is transitory node failures. Birke et al. [23]
conducted a failure analysis on physical machines (PMs) and
virtual machines (VMs) hosted on commercial data centers
in IBM, using one-year-long data collected over 10K servers.
Their analysis highlights the differences and similarities of PM
and VM failure patterns. They found that VMs have lower
failure rates than PMs, and show a surprising trend that, in
contrast to PMs, increasing the computation intensity by VM
unit does not increase failure rate.
Failure prediction methods. We further classify the failure
prediction methods to three categories: statistical approaches,
machine learning approaches and deep learning approaches.
For these approaches, they use input features such as CPU
usage, memory usage, mean disk I/O time, and disk usage.

Statistical approaches: Amin et al. [24] proposed a fore-
casting approach based on Autoregressive-Integrated-Moving-
Average (ARIMA) and Generalized Autoregressive Condi-
tional Heteroscedastic (GARCH) models to predict response
time and time between failures in the web services. Zhao et
al. [8] used HMM and Hidden Semi-markov Model (HSMM)
to predict disk failures in cloud storage systems. They consid-
ered various features such as memory usage, disk usage and
disk I/O time measured at consecutive time intervals for a disk
drive as time series and modeled such time series to classify
failed disks and good disks. However, statistical approaches
such as HSMM assume that all their inputs are stationary and
independent of each other which are not true in the cloud data
centers. Thus, they cannot handle the sequence data or high
dimensional data, in which data in time points or different
features may be dependent to each other.

Machine learning approaches: Guan et al. [11] applied
supervised learning based on Bayesian classifiers and decision
tree classifiers to forecast future system failure occurrences in
the cloud. Pitakrat et al. [12] proposed a hierarchical online
failure prediction approach called Hora. Hora employed a
combination of a failure propagation model and software sys-
tem failure prediction techniques based on Bayesian networks.
Zhang et al. [13] designed and implemented a new tool based
on Random Forest (RF) called PreFix, for accurately predict-
ing whether there will be a switch failure in the near future.
However, machine learning approaches such as SVM have
the same shortcomings just like statistical approaches, so they
cannot handle the sequence data well in cloud data centers.

Deep learning approaches: Chen et al. [18] used RNN for
predicting failures via various features and performance time
series data in the Google cluster traces. Islam et al. [19]
performed a failure characterization study of the Google

cluster workload trace and presented LSTM to predict the
task failures. However, deep learning approaches such as
RNN and LSTM also have several shortcomings. For RNN,
it cannot handle the data with long-term dependency. For
LSTM, it overcomes the drawback in RNN. But LSTM still
has drawback that it sets higher weights on the data closer to
the time, and lower weights on the data further away from the
time, with the assumption that the data further away from the
time always has lower impact to the prediction.

To overcome all the above shortcomings, we propose a
deep learning based failure prediction model: Bi-LSTM, for
task and job failures prediction which can adjust the weights
of both closer and further input features to achieve better
prediction performance.

III. TRACE ANALYSIS

The Google cluster trace [25] starts at 19:00 EDT on Sunday
May 1, 2011, and it records the resource utilization of CPU
and memory usage of each task on the Google cluster of about
12.5k machines for 29 days. The trace contains 672,075 jobs
and more than 48 million tasks in the 29 days. This trace is a
randomly-picked 1 second sample of CPU and memory usage
from within the associated 5-minute usage-reporting period for
each task. Each job is composed of one to tens of thousands of
tasks which are shown with information such as CPU usage,
memory usage, cache memory usage, mean disk I/O time, disk
usage, task priority, the number of task resubmissions, task
scheduling delay and etc. The priorities are classified into five
categories: lowest, low, middle, high and highest priority by
task scheduler and ranging from 0 to 11 which is set by cloud
service provider [26].

Termination status means whether certain task is finished
or not. Each job and task has several possible termination
statuses. These are: (1) evicted, (2) killed, (3) failed (due
to an exception or abnormal condition), and (4) finished
(successfully terminated). We found that around 42% of the
jobs and 40% of the tasks are not finished. In the unfinished
jobs and tasks, 41% of the jobs are failed and 39% of the tasks
are failed. This is because evicted and killed jobs and tasks
are very rare termination status. Therefore, we focus mainly
on finished and failed jobs and tasks in our work. Specifically,
we consider two kinds of failures: job failure and task failure.
The job failure means the job is descheduled due to task
failures. Because in the trace, a job consists of at least one
task, and each task is constrained by scheduling and resource
usage limits. The task failure means the task is descheduled
due to a task failure such as software bugs.

1) Data Preprocessing: In order to build a reliable pre-
diction system with high accuracy performance, we should
understand the trace data and extract the relevant features. The
previous research on Google cluster trace [25], [26] indicate
that in addition to the resource usage, the following features
are also correlated with job and task failures. Therefore, our
prediction model additionally use these features to leverage
the prediction performance.

Task priority decides whether a task is scheduled on a
machine. The work in [26] indicates that that the highest and
the lowest priority jobs experience higher rate of failures than
the middle priority batch jobs.

Task resubmissions means that the tasks can be resubmitted
multiple times after abnormal terminations during the life cy-
cle of a job. We observe that the number of task resubmissions
for the failed jobs is much higher than the task resubmissions
for the finished jobs. The ratios of jobs with tasks that execute
more than once for failed and finished jobs are 35.8% and
0.9% respectively and about 75% of the jobs have tasks that
are resubmitted at most four times which is the maximum
resubmission time for certain tasks.

Scheduling delay means the waiting time for certain task.
We found that tasks which cannot be finished have a significant
long scheduling delay compare to the finished tasks.

2) Input Feature Determination: In the training phase, the
previous research [18] built the prediction model in cloud by
using five classes of resource usage measures which are CPU
usage, memory usage, cache memory usage, mean disk I/O
time, and disk usage. In our training phase, we enlarge the set
of input dimensions to improve the failure prediction accuracy.
So we additionally add the following features to the inputs:
task priority, the number of task resubmissions, and scheduling
delay. We set all the measures of these features as a feature
vector so we can put them together at any single time point as
an input. For job failure prediction, we consider that a job is
predicted to be failed when any of its tasks is predicted to fail.

IV. MAIN DESIGN

Next, we will introduce how we use Bi-LSTM to predict
task and job failures. There are two phases: training and
testing. In the training phase, we input the time series data
for each task one by one to the model. Each task is labeled
by failed or finished. We adjust the parameters of the model
according to the comparison between the label and predicted
output. In the testing phase, for a given set of time series
input data of one task, the model will calculate the failure
possibility of one task from the end time of the input data to
the task completion time.

A. Model Architecture

The architecture of Bi-LSTM model contains one input
layer, two Bi-LSTM layers, one output layer and the Logistic
Regression (LR) layer to classify whether the tasks and jobs
are failed or finished. As mentioned earlier, our Bi-LSTM
based method is more advantageous than the LSTM based
prediction methods in the following aspects. First, Bi-LSTM
has more input features than previous methods, which include
task priority, task resubmissions and scheduling delay. Second,
Bi-LSTM has multi-layer structure which can better handle
multiple input features for higher accuracy. Third, Bi-LSTM
can determine the weights of data items based on their real
impact to the failure rather than simply setting higher weights
to data item closer to the given time for prediction than the
data items further away from the time, which helps achieve

higher prediction accuracy. Below we introduce the input layer
and output layer.

1) Input Layer: Given a dataset, we divide it into training
set (e.g., 90% tasks) and testing set (e.g., 10% tasks). The
training set is used to learn the Bi-LSTM model, and the
testing set is used to predict whether a task will be failed or
finished in the next time point. Each input is a feature vector
at a time point. There are 100 inputs from time point t− 100
to time point t − 1. The output is whether the task is failed
or finished at time point t. For each task, we got its data for
the last 101 time points for training and testing. If the number
of time points for a certain task is less than 100, we set the
feature vector input as 0.

Input data

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8

Termination Status

Input data

Termination Status

Task 1

Task 2

Fig. 1. An example of prediction procedure.

Figure 1 shows a simple example of training and testing
procedure. Each axis means the time sequence of one task.
Take the testing procedure for instance, the black brackets
represent the input data of the testing and the number of the
data points in the brackets means the number of input data w.
In this example, in task 1, the input data is the value of time =
3 to the value of time = 11, so the total number of input data
is w = 9. The black part that is not in the bracket represent the
data points that are not used in the testing process. In task 2,
the input data is the value of time = 0 to the value of time = 8,
so the total number of input data is w = 9 as well. However,
task 2 is finished or stopped at time = 5. To ensure the input
data is in the same format, we expand the input data in task 2
from time = 5 to time = 8. So the total number of input data
can be w = 9 as well, and we set the value of time = 5 to time =
8 as 0. The blue part in the bracket represents that the task has
less than 9 time points, so it is expanded by value = 0. Task 1
represents the tasks that have more data points than input data,
and task 2 represents the tasks that have less data points than
input data. The squares represent the predicted termination
status, which represents the task is failed or finished.

2) Bi-LSTM Layer: In the structure of Bi-LSTM layer, the
hidden states are divided into two parts: forward state and
backward state. The basic idea is to present each sequence of
inputs forwards and backwards to two separate hidden states to
capture information, respectively. Then the two hidden states
are concatenated to form the final outputs to the logistic
regression functions. The forward state consists of the memory
cells connecting adjacent neurons form cycles that are self-
connections of a neuron to itself across time. The input of
memory cells includes the data xi (i = 1, 2, ...m) from the
previous layer as well as the data ni−1 (i = 1, 2, ...m) from
themselves of the previous position. Different from the forward
status, in backward state, ni−1 (i = 1, 2, ...m) are from the
next position. Therefore, the output of the Bi-LSTM layers

can adjust the weights of data items from closer data point
to the given time for prediction than the data items further
away from the time . The structure of memory cell in Bi-
LSTM is very suitable for processing data with sequential and
time dependencies on multiple scales since the connections
pass state information across time steps allowing previously
processed data to affect subsequent data.

3) Output Layer: In the output layer, from an input se-
quence {x1, x2 ... xm}, the memory cells in the Bi-LSTM
layers will produce a representation sequence {h1, h2 ... hm}.
We define the mean of these outputs as the mean pooling,
which is expressed as follows:

ĥ =
1

m

m∑
i=1

hi (1)

where hi is the ith element in the representation sequence.
4) Logistic Regression Layer: In the logistic regression

layer, the result from output layer is fed to the logistic
regression functions whose target is the class label (i.e., failed
or finished) associated with the input sequence. It means that
the termination statuses generated in the Bi-LSTM model are
produced based on the input features. We set up a threshold for
the probability value of the failure to determine the termination
statuses. Based on ĥ, the logistic regression functions calculate
the probability value of failure. If it is smaller than the thresh-
old, it classifies as the termination statuses into failed, and
otherwise, it classifies the termination statuses into finished.

V. PERFORMANCE EVALUATION

A. Experiment Setting

The experiments are deployed in our local server with a
GTX 1080 GPU. The trace is originally stored in separated
files of approximate size 200GB, and the data features are
represented by key-value pairs. We load these data into a
MySQL database for ease of analysis. The prediction method
is applied based on Tensorflow in Python. According to our
experiment, to achieve better performance, we set 17 memory
cells in each layer. We chose 555555 tasks in total in our
experiments, in which 50,000 tasks are for training and 55555
tasks are for testing.

The batch size is set as 100 which means we use 100 tasks
for one training step. We have 5000 training steps for each
epoch, and the number of training epochs was set to 1000,
which means we used the 500000-task dataset 1000 times for
training. For each training and testing, we used the data of
the first 100 time points of a task since many tasks are longer
than 100 time points [27], [28]. The threshold we select for
Figure 2(a), 2(b), 3(a) and 3(b) is 0.8.

We compared our Bi-LSTM model with the prediction
models used in previous research, which are HSMM [8],
SVM [10], RNN [18] and LSTM [19].

1) Hidden Semi-Markov Models (HSMM) [8]: HSMM is
an extended model of HMM. Different from HMM, HSMM
considers the state-resident probability distribution as explicit.
It adds time components to the structure of the defined HMM

A
c
c
u

ra
c
y

HSMM SVM RNN LSTM Bi-LSTM

0.5

0.6

0.7

0.8

0.9

1

1 2

Test number
3 4 5 6 7 8 9 10

(a) Accuracy

F
1

 s
c
o

re

Test number

HSMM SVM RNN LSTM Bi-LSTM
1

0.8

0.9

0.7

0.6

0.5
1 2 3 4 5 6 7 8 9 10

(b) F1 score
Fig. 2. Task failure prediction.

and overcomes the limitations of HMM which is the prediction
only depends on nearby state.

2) Support Vector Machine (SVM) [10]: SVM is also
widely used in such failure prediction according to previous
research. It has better performance when dealing with high-
dimensional problem [29]. Also, it basically does not involve
probability measures and laws of large numbers, so it is
different from existing statistical methods. In essence, it avoids
the traditional process from induction to deduction.

3) Recurrent Neural Network (RNN) [18]: RNN is recently
used in this topic. RNN can not only deal with stationary input
and output patterns but also with pattern sequences of arbitrary
length [30] which means RNN can achieve better performance
when handles the time series data.

4) Long Short Term Memory (LSTM) [19]: LSTM is also
recently used in this topic. It is a deep learning model which
is developed from Recurrent Neural Network (RNN). Since
the error-signals could exhibit exponential decay as they are
back-propagated through time, which leads to long-term signal
being effectively lost as they are overwhelmed by undecayed
short term signals. LSTM can overcome the drawback for
data with long-term dependencies also capable of modeling
the temporal connections between hidden states.

We keep the same input features as they mentioned which
are CPU usage, memory usage, unmapped page cache, mean
disk I/O time and disk usage.
B. Metrics

To illustrate the performance of the our method, we use
three metrics to determine the better results.

1) Accuracy and F1 score: We determine the performance
of different models by using accuracy and F1 score. The
prediction accuracy is calculated by:

An = 1− |Pn −Rn|
Rn

(2)

where An is the prediction accuracy of nth prediction, Pn is
the predicted value of nth prediction and Rn is the real value
in nth prediction. The Y axis value is prediction accuracy (An)
for each method. The F1 score is calculated by:

PPV = TP/(TP + FP)

TPR = TP/(TP + FN)
(3)

F1 =
2 · PPV · TPR

PPV + TPR

=
2 · TP

2 · TP + FP + FN

(4)

A
c
c
u

ra
c
y

Test number

HSMM SVM RNN LSTM Bi-LSTM

1 2 3 4 5 6 7 8 9 10

1

0.9

0.8

0.7

0.6

0.5

(a) Accuracy

F
1

 s
c
o

re

Test number

HSMM SVM RNN LSTM Bi-LSTM

1 2 3 4 5 6 7 8 9 10

1

0.9

0.8

0.5

0.6

0.7

(b) F1 score
Fig. 3. Job failure prediction.

where TP is true positive value, FP is false positive value,
FN is false negative value. PPV is the positive predictive
value, which is also known as Precision, TPR is the true
positive rate, which is also known as Recall. The F1 score
takes a balance that both precision and recall rates can reach
the highest point at the same time.

C. Experimental Results

Now we evaluate the performance of our method and
compare with previously proposed prediction methods [8],
[10], [18], [19].

1) Task Level Failure Prediction: We first evaluate the task
level failure prediction. At the task level, we classify the
termination statuses of task submissions based on the attributes
and performance data. In all the target classes, the status finish
is considered as one class, and the status failed is considered
as other class.

Figure 2(a) shows the accuracy of each prediction
method in each test among tasks. The result follows
HSMM<SVM<RNN<LSTM<Bi-LSTM. For HSMM, as we
discussed before, HSMM only depends on each state and
its corresponding observation object. It cannot handle the
sequence data in the whole trace or the high dimensional
data well. SVM has better accuracy performance than HSMM
because SVM can handle the data which has high dimension.
However, the performance of SVM is worse than RNN and
LSTM. The reason is that in data center, dataset such as
Google cluster trace has a huge among of data. SVM only
has better performance when the dataset is not so big [31].
For LSTM, it overcomes the drawback from RNN, which is
for data with long-term dependencies. However, as we discuss
before, LSTM cannot adjust the weight of further data point
for a given time in the time series dataset. For Bi-LSTM, it has
the forward and backward states which can more accurately
determine the weights of data items that are closer and further
to the given time in the prediction. We can observe that LSTM
can achieve 85% of accuracy and Bi-LSTM can achieve 93%
of accuracy which is higher than LSTM.

Figure 2(b) shows the F1 score of each prediction method
in each test among tasks. The results follow the same trend
and order as in Figure 2(a) due to the same reasons. The result
shows that LSTM can achieve 84% of F1 score and Bi-LSTM
can achieve 92% of F1 score which is higher than LSTM.

2) Job Level Failure Prediction: At the job level, we
classify the termination statuses of task submissions based on

the attributes and performance data. In all the target classes,
the status finish is considered as one class, and the status failed
is considered as other class.

Figure 3(a) and 3(b) show the accuracy and F1 score of each
prediction method in each test among jobs. The results follow
the same trend and order as in Figure 2(a) and 2(b) because of
the same reasons. We can observe that LSTM can achieve 81%
of accuracy and 80% of F1 score. Bi-LSTM can achieve 87%
of accuracy and 86% of F1 score which are higher than LSTM.

VI. CONCLUSION

In cloud data centers, high service reliability and availability
are crucial to application QoS. In this paper, we proposed
a failure prediction model multi-layer Bidirectional LSTM
(called Bi-LSTM). Bi-LSTM can more accurately predict the
termination statuses of tasks and jobs using Google cluster
trace compared with previous methods. In our method, we first
input the data into forward state and backward state in order to
adjust the weight of both closer and further input features. We
then find that the further input features is essential to achieving
high prediction accuracy. Secondly, in the experiments, we
compare Bi-LSTM with other comparison methods including
statistical, machine learning and deep learning based methods
and evaluate the performance with three metrics: accuracy and
F1 score, receiver operating characteristic and time cost over-
head. The results show that we achieved 93% accuracy in task
failure prediction and 87% accuracy in job failure prediction.
We also achieved 92% F1 score in task failure prediction
and 86% F1 score in job failure prediction. Our prediction
method Bi-LSTM also have low FPR which can also indicate
the proactive failure management based on prediction results
become more effective. We also observe that the time cost
overhead for Bi-LSTM is almost the same compared with
RNN and LSTM, which means Bi-LSTM can achieve higher
prediction performance with no further time cost.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
NSF-1827674, CCF-1822965, OAC-1724845, CNS-1733596,
Microsoft Research Faculty Fellowship 8300751, and AWS
Machine Learning Research Awards.

REFERENCES

[1] “https://techcrunch.com/2015/01/02/following-bing-coms-brief-outage-
search-yahoo-com-goes-down-too/, [Accessed in APR 2019].”

[2] M. Sedaghat, E. Wadbro, J. Wilkes, S. De Luna, O. Seleznjev, and
E. Elmroth, “Diehard: reliable scheduling to survive correlated failures
in cloud data centers,” in 2016 16th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), 2016.

[3] T. Chalermarrewong, T. Achalakul, and S. See, “Failure prediction of
data centers using time series and fault tree analysis,” in 2012 IEEE 18th
International Conference on Parallel and Distributed Systems, 2012.

[4] S. Mitra, M. Ra, and S. Bagchi, “Partial-parallel-repair (ppr): a dis-
tributed technique for repairing erasure coded storage,” in Proceedings
of the eleventh European conference on computer systems, 2016.

[5] H. Wang, H. Shen, and Z. Li, “Approaches for resilience against
cascading failures in cloud datacenters,” in Proc. of ICDCS, 2018.

[6] H. Wang and H. Shen, “Proactive incast congestion control in a
datacenter serving web applications,” in Proc. of INFOCOM, 2018.

[7] R. Baldoni, L. Montanari, and M. Rizzuto, “On-line failure prediction
in safety-critical systems,” Future Generation Computer Systems, 2015.

[8] Y. Zhao, X. Liu, S. Gan, and W. Zheng, “Predicting disk failures with
hmm-and hsmm-based approaches,” in Industrial Conference on Data
Mining, 2010.

[9] J. Murray, G. Hughes, and K. Kreutz-Delgado, “Machine learning
methods for predicting failures in hard drives: A multiple-instance
application,” Journal of Machine Learning Research, 2005.

[10] I. Fronza, A. Sillitti, G. Succi, M. Terho, and J. Vlasenko, “Failure
prediction based on log files using random indexing and support vector
machines,” Journal of Systems and Software, 2013.

[11] Q. Guan, Z. Zhang, and S. Fu, “Ensemble of bayesian predictors and
decision trees for proactive failure management in cloud computing
systems,” Journal of Communications, 2012.

[12] T. Pitakrat, D. Okanović, A. van Hoorn, and L. Grunske, “Hora:
Architecture-aware online failure prediction,” Journal of Systems and
Software, 2018.

[13] S. Zhang, Y. Liu, Z. Meng, W.and Luo, J. Bu, P. Yang, S.and Liang,
D. Pei, J. Xu, and Y. Zhang, “Prefix: Switch failure prediction in
datacenter networks,” Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 2018.

[14] C. Xu, G. Wang, X. Liu, D. Guo, and T. Liu, “Health status assessment
and failure prediction for hard drives with recurrent neural networks,”
IEEE Transactions on Computers, 2016.

[15] Y. Cheng, H. Zhu, J. Wu, and X. Shao, “Machine health monitoring
using adaptive kernel spectral clustering and deep long short-term
memory recurrent neural networks,” IEEE Transactions on Industrial
Informatics, 2019.

[16] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2017.

[17] A. Das, F. Mueller, C. Siegel, and A. Vishnu, “Desh: Deep learning for
system health prediction of lead times to failure in hpc,” in Proceedings
of the 27th International Symposium on High-Performance Parallel and
Distributed Computing, 2018.

[18] X. Chen, C. Lu, and K. Pattabiraman, “Failure prediction of jobs in com-
pute clouds: A google cluster case study,” in 2014 IEEE International
Symposium on Software Reliability Engineering Workshops, 2014.

[19] T. Islam and D. Manivannan, “Predicting application failure in cloud:
A machine learning approach,” in 2017 IEEE International Conference
on Cognitive Computing (ICCC), 2017.

[20] P. Angeline, G. Saunders, and J. Pollack, “An evolutionary algorithm
that constructs recurrent neural networks,” IEEE transactions on Neural
Networks, 1994.

[21] F. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual
prediction with lstm,” Neural Computation, 1999.

[22] D. Ford, F. Labelle, F. Popovici, M. Stokely, L. Truong, V., C. Grimes,
and S. Quinlan, “Availability in globally distributed storage systems,”
Procdings of USENIX Symposium on Operating Systems Design and
Implementation, 2010.

[23] R. Birke, I. Giurgiu, L. Chen, D. Wiesmann, and T. Engbersen, “Failure
analysis of virtual and physical machines: patterns, causes and charac-
teristics,” in 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, 2014.

[24] A. Amin, A. Colman, and L. Grunske, “An approach to forecasting qos
attributes of web services based on arima and garch models,” in 2012
IEEE 19th International Conference on Web Services, 2012.

[25] C. Reiss, A. Tumanov, G. Ganger, R. Katz, and M. Kozuch, “Hetero-
geneity and dynamicity of clouds at scale: Google trace analysis,” in
Proceedings of the Third ACM Symposium on Cloud Computing, 2012.

[26] X. Chen, C. Lu, and K. Pattabiraman, “Failure analysis of jobs in
compute clouds: A google cluster case study,” in 2014 IEEE 25th
International Symposium on Software Reliability Engineering, 2014.

[27] J. Kumar, R. Goomer, and A. Singh, “Long short term memory recurrent
neural network (lstm-rnn) based workload forecasting model for cloud
datacenters,” Procedia Computer Science, 2018.

[28] H. Wang, H. Shen, and G. Liu, “Swarm-based incast congestion control
in datacenters serving web applications,” in Proc. of SPAA, 2017.

[29] T. Joachims, “Making large-scale svm learning practical,” Technical
report, Tech. Rep., 1998.

[30] Z. Lipton, J. Berkowitz, and C. Elkan, “A critical review of
recurrent neural networks for sequence learning,” arXiv preprint
arXiv:1506.00019, 2015.

[31] J. Suykens and J. Vandewalle, “Least squares support vector machine
classifiers,” Neural processing letters, 1999.

