
Machine Learning based Timeliness-Guaranteed and
Energy-Efficient Task Assignment in Edge

Computing Systems
Tanmoy Sen and Haiying Shen
Department of Computer Science

University of Virginia
Email: {ts5xm, hs6ms}@virginia.edu

Abstract—The proliferation in the use of the Internet of
Things (IoT) and Machine Learning (ML) techniques in edge
computing systems have paved the way of using Intelligent
Cognitive Assistants (ICA) for assisting people in working, learn-
ing, transportation, healthcare, and other activities. A challenge
here is how to schedule application tasks between the three
tiers in the edge computing system (i.e., remote cloud, fog and
edge devices) according to several considered factors such as
latency, energy, and bandwidth consumption. However, the state-
of-the-art approaches for this challenge fall short in providing a
schedule in real time for critical ICA tasks due to complex cal-
culation phase. In this paper, we propose a novel ReInforcement
Learning based Task Assignment approach, RILTA, that ensures
the timeliness guaranteed execution of ICA tasks with high
energy efficiency. We first formulate the task-scheduling problem
in the edge computing systems considering timeliness and energy
consumption in ICA applications. We then propose a heuristic for
solving the problem and design the reinforcement model based
on the output of the proposed heuristic. Our simulation results
show that RILTA can reduce the task processing time and energy
consumption with higher timeliness guarantee in comparison to
other existing methods by 13− 22% and 1− 10% respectively.

I. INTRODUCTION

The rapid development of Internet of Things (IoT) de-
vices (e.g., smartphones, wearable smart devices, sensors,
autonomous vehicles) and the artificial intelligence (AI) and
machine learning (ML) techniques has paved the way to a
future of using Intelligent Cognitive Assistant (ICA) appli-
cations to assist people in working, learning, transportation,
healthcare and other activities. These ICA applications with
their adaptability will augment human performance and pro-
ductivity and, thus provide helpful digital hands in facing
everyday challenges. Alexa from Amazon, SARA (Socially
Aware Robot Assistant) from CMU, Siri from Apple, etc. bear
the testimony of the emergence of such ICA applications.

In many cases, ICA needs to assist people in real time,
and some even have life-or-death consequences that could put
their human counterpart at risk. For example, medical IoT
devices in a home must be able to predict a heart attack of
the residents in time and urge the patient or his/her doctor
quickly. An autonomous car must be able to detect a person
crossing the street in front of the car and decide to stop in real
time. Meanwhile, edge computing systems prove increasingly
crucial for such real-time or low-latency ICA tasks. Unlike

the cloud computing that stores and processes end-users’
data in remote and centralized datacenters, which generates
certain delay due to data transmission and network congestion,
edge computing can help process data from IoT devices and
provide real-time local data analysis. It brings the provision
of services closer to the end-users by pooling the available
resources at the edge of the network (e.g., smartphones, tablets,
smart cars, base station, and routers) to provide more user-
aware, resource-efficient, scalable and low-latency services [1].
Apple announced in 2017 that it would put machine learning
accelerators into its top-end iPhone [2] and based on this
announcement Gartner predicted that 80% of smartphones
would be AI equipped by 2022. It is also predicted that almost
50% of IoT-created data would be stored, processed, analyzed
and acted upon close to or at the edge of the network [3].

In spite of the many challenges in leveraging the edge
computing to realize the ICA future, one critical challenge
is achieving timeliness-guaranteed and energy-efficient edge
processing [4]. As indicated in [4], there are still gaps in
state-of-the-art edge system architectures that fail to address
information delivery overload for ICA due to lacking timeli-
ness. Moreover, IoT devices are constrained by limited power
resources while ICA tasks may involve intensive computation
and communication, which imposes formidable challenges of
achieving low-power edge processing. In the edge computing
domain, several task assignment schemes have been proposed
that decide which tier (remote cloud, fog, and edge devices) to
assign a task to reduce task latency and (or) energy consump-
tion. These methods can be categorized into two groups based
on their goals: (1) energy-aware task assignment [5–11] and
(2) bandwidth-aware task assignment [12–16]. However, these
schemes involve complex calculation (e.g., solving a dynamic
programming problem), which make them fall short in pro-
viding a schedule in real time (or with timeliness guarantee)
with energy efficiency for critical ICA tasks. Further, finding
an assignment schedule that simultaneously consider multiple
goals such as task latency and energy efficiency makes the
calculation more complex, which generates higher latency and
energy consumption in finding the assignment schedule.

To provide timeliness-guaranteed and energy-efficient edge
processing, in this paper, we use machine learning to find a
solution for the task-assignment problem for ICA applications.

We first formulate the task assignment problem considering
the timeliness and energy consumption related to the data
transmission and task computation for ICA applications. We
then propose a heuristic solution and finally based on the all
possible outcomes from that solution we devise a ReInforce-
ment Learning (RL) based Task Assignment approach (called
RILTA) depending on the features of data and the computation
environment. The features include the urgency of the compu-
tation tasks, the amount of the data, data transmission latency,
task computation latency and resource demand of a task. Based
on these features, RILTA determines the assignment locations
(edge, fog or cloud) for tasks with the objectives to ensure
timeliness guarantee and power efficiency in real time. Our
contribution in this paper is as follows:

• We formulate a task-assignment problem addressing the
issues of deadline awareness and energy efficiency as per
requirement for ICA applications.

• To solve the formulated task assignment problem, we
propose a heuristic solution where the nodes (edge, fog
or cloud) gain a profit for executing an ICA application.
This profit scheme ensures the node that gains the highest
profit is responsible for guaranteeing deadline aware
execution of the tasks with different priorities in an
energy efficient way.

• Finally, we propose a ReInforcement Learning system
RILTA based on the outcomes generated using our pro-
posed heuristic in a simulated environment. RILTA takes
advantage of independent learning of the environment by
multiple agents in RL to reduce the running time of the
assignment task itself.
To the best of our knowledge, this is the first task
assignment scheme in edge computing platform that uses
RL based approach for making task assignment decision
in near real time with high energy efficiency.

The rest of the paper is organized as follows. Section II
presents the related work of task assignment in fog/cloud
in edge computing. In Section III, we formulate the task
assignment into a mathematical problem focusing the features
of ICA applications. In Section IV, we propose our region
based deadline aware and energy efficient solution heuristics
for the formulated problem and RILTA. Section V presents
the experimental evaluation of RILTA in comparison with
other methods in a simulated environment. Finally, Section VI
presents conclusion and discusses the future work.

II. RELATED WORK

With the development of IoT and mobile-based application
systems in recent years, task offloading to fog/cloud has
received much attention. Many state-of-the-art works pro-
pose different task-offloading schemes with varying objectives
alongside reducing computational latency. Based on the objec-
tives, the previous works can be categorized into two groups
based on their goals: (1) Energy-aware task assignment [5–11],
(2) Bandwidth-aware task assignment [12–16].

A. Energy-aware Task Assignment

Chun et al. [5] proposed CloneCloud that uses a combina-
tion of static analysis and dynamic profiling to offload partial
applications from the edge devices while optimizing execution
time and energy use related to computation and communica-
tion in the edge-cloud environment. CloneCloud runs code
analysis on the incoming applications and then depending on
the expected workload and execution conditions (CPU speeds,
network performance) decide on the part of application’s
execution to be offloaded to the cloud. Similarly, Kao et al. [6]
formulated a task assignment problem among edge devices in
a network and provided an online learning based algorithm,
Hermes, to find the optimal strategy to minimize energy
consumption of the edge devices with a certain cost guarantee
which is defined as a function of execution and transmission
latency in the edge-cloud environment. Similarly in the edge-
cloud environment, Wang et al. [8] and Munoz et al. [7] pro-
posed schemes suitable for applications such as face-detection
which run over a fixed set of images where the amount of
data processed is known beforehand, and the execution can be
parallelized into multiple processes. In these schemes, they
consider part of the application is offloaded to the cloud,
with the objective of optimization of the amount of energy
consumed by the edge devices caused by transmission of an
application. Sardellitti et al. [9] studied application offloading
in multiple devices with multiple input-output systems to a
shared cloud server. The offloading scheme aims at minimizing
the energy consumption of edge devices under latency and
energy budget constraints in an edge-cloud scenario. For the
same environment, Lyu et al. [10] proposed an offloading
decision scheme to a nearby cloud server to maximize the
quality of experience (QoE) in perspective of task completion
time and energy reduction of the system. Furthermore, Dong et
al. [11] developed two offloading algorithms within an energy
efficient framework for smartphones, which decide the cloud
server for offloading the tasks to jointly optimize guaranteed
response time performance within a certain confidence interval
and energy efficiency. Although all of the above approaches
try to reduce task latency and (or) improve the energy effi-
ciency of the edge devices, they involve a significant amount
of computation in calculating the task assignment schedule
itself, which makes them unsuitable for the ICA tasks with
real-time and energy-efficiency requirements. The trade-off
between energy consumption for local computation and remote
communications is discussed in [17–19].

B. Bandwidth-aware Task Assignment

Messaoudi et al. [12] proposed a framework for offloading
computation tasks from a mobile edge to a fog node with
the objective of minimization of total task completion time
for low-latency computation-offloading based applications in
the edge-fog scenario. In their proposed decision mechanism
jointly consider estimated Round-Trip-Time (RTT) (which
measures available bandwidth) and energy consumption of
edge devices for offloading a task to a candidate fog node
with high CPU availability. Their system includes a service

2

that continuously estimates the expected RTT based on change
of bandwidth to feed the device decision to offload parts
of an applications computing tasks. Yang et al. [14] studied
optimizing task offloading decision for the tasks from multiple
edge devices and fog nodes to the cloud with consideration of
available bandwidth to achieve either high processing speed or
throughput. Fan et al. [13] proposed an offloading mechanism
for the edge-fog-cloud environment that calculates profit based
on the transmission delay of the nodes located in different
environment level with primary target to ensure completing
every task within its deadline. In this approach, the profit
is a revenue given to a computation entity (edge device,
fog node or remote datacenter) for executing a task within
its deadline and they define their transmission latency on
the available network bandwidth in different layers of their
environment. However, they used a pheromone value based
genetic algorithm for making the assignment decision which
does not ensure finding a solution in real time. Wang et al. [15]
proposed a task scheduling approach called HealthEdge that
sets different processing priorities for different tasks in an
edge-cloud environment based on the collected data on human
health status. In their proposed approach they estimate the
total waiting time in a queue and transmission delay as a
function of current available bandwidth of the network and try
to reduce the total processing time in the order of task priority.
Choudhari et al. [16] proposed a task scheduling algorithm
for the edge-fog environment that efficiently prioritize tasks
according to their delay tolerance levels, which results in
decreasing the average response time and the total cost of
task offloading. Here, they define the cost of data transfer
by dividing the amount of data transferred by the available
bandwidth in the assignment phase. However, none of these
approaches take both the deadline-awareness of a task and
limited energy of the edge devices into consideration.

III. TASK ASSIGNMENT STRATEGY FOR ICA
APPLICATIONS

ICA run intelligent applications to assist people in many
areas such as healthcare and intelligent transport [4]. These
applications usually are context-aware in a sense they need
to make decisions accordingly based on the gathered infor-
mation from the environment at a specific moment. Usually,
a collected data item is used for decision making in multiple
ICA applications. For example, road congestion data is used
by multiple ICA applications regarding route recommendation,
optimal velocity calculation and so on. Furthermore, data can
also be shared among multiple tasks within one application.
As an example, we can say in healthcare service, data from
breathing rate abnormality can be used for prediction of both
heart and asthma attack. For such data sharing, transferring
data among the devices will generate a massive amount of traf-
fic and increase task latency and energy consumption caused
by data transmission. However, depending on the decision-
making process most of these tasks demand a quick response.
To address these issues, we formulate a task assignment
problem with an objective to ensure timeliness guarantee with

power efficiency. Our proposed system considers a three-tier
cloud-fog-edge environment similar to [13] that includes a
client or edge device layer, fog layer and cloud layer. We
consider that each tier except the cloud layer is comprised
of multiple devices, which we term as nodes in this paper.
In this section, we present our task assignment problem using
Generalized Assignment Problem (GAP) [20] after introducing
the characteristics related to an incoming task and resources
considered for the problem formulation. In our approach, we
assume that the system has knowledge of:
• the mapping between bottom tier nodes and the upper-

tier nodes. That is, each edge node knows the list of
fog nodes or one cloud datacenter where it can offload
the tasks. Similarly, the fog nodes know the list of edge
nodes where they need to send the computation results
and so on.

• the existing network delays between nodes of different
tiers. Such knowledge can be obtained by deploying soft-
ware that monitors the state of the fog nodes, latencies,
and application instances, as proposed in [21].

A. Task Characteristics

In this subsection, we introduce the task characteristics
we consider for our problem. In the three-tier edge-fog-
cloud environment the tasks are generated from different ICA
applications running on edge devices at the bottom-tier. Most
of these tasks have a specific deadline because of providing
support to people in certain decision making as per their
service level agreement (SLA). Each task has the following
characteristics:

1) Arrival time of the task.
2) Deadline of the task.
3) Data size. The data size refers to the amount of data each

edge node needs to process. It is used for calculating
the estimated time and energy consumption for both
computation and transmission of a task.

4) Energy consumption demand
5) Demand for the processor of a task for execution.

B. Resource Characteristics

In our task allocation system, we only consider three types
of resources: processor, network-bandwidth, and battery life.
Each node keeps track of its processor to decide whether,
with its available processing resources, it can execute a task.
Furthermore, the node estimates the required energy to execute
or transmit a task to make the processing energy efficient.
Each node also keeps track of the available bandwidth and
the reliability of the path connecting it to the fog or the cloud.
This resource information is used to estimate the transmission
delay for both the data and the task. If we have the individual
failure probability for the network link between a node to the
fog or cloud as Pfail, then the reliability (denoted by RNet)
of the network link in case of the existence of n nodes and
links is Rnet = 1− Pnfail.

In our model, we distinguish the path from the edge node to
fog as one network and from fog to cloud as another network.

3

The path reliability of these two networks is denoted with RF
and RC respectively. The concept of path reliability is helpful
for both capturing any sort of jitter in the network and any
noise introduced due to the mobility of the edge devices.

C. Task Assignment Problem

In this section, we formulate timeliness guaranteed and
energy efficient computation task assignment problem for the
ICA applications. Based on different characteristics introduced
regarding tasks and resources, we formulated a problem to
decide whether a task should be executed by edge device itself
or it should be offloaded to any of the fog node/cloud.

D. Task Assignment Model

Profits Estimation Recall that our task assignment system
considers both timeliness guarantee and energy efficiency.
Based on the importance of these two factors, the system can
give different weight denoted by β and 1 − β, respectively.
Here, β (0 ≤ β ≤ 1) stands for the reward weight associated
for an node for ensuring timeliness guarantee. In general terms,
β controls the tradeoff between delay and energy efficiency.
The trade-off between the delay and energy efficiency is based
on the assumption that edge devices are more energy con-
strained than the fog nodes and the cloud datacenter. If a task
is to be executed within its deadline, it is better to be executed
in the edge node itself as it avoids the transmission latency.
However, if a task is executed in the edge node consumes
significant energy due to the computation. Moreover, as only
the edge nodes are constrained by the energy, we define
a parameter ntype. ntype represents whether the node, n is
constrained by energy, i.e., n is a cloud or fog dataceneter or
not. We consider ntype = 0 if n is a cloud or fog datacenter,
otherwise ntype = 1. Consequently, ntype decides the factor
of 1− β should be considered while calculating the profit.

If task, t arrives at time a(t) with deadline d(t) then on the
basis of estimated end time of the task (

∼
T end(t)), estimated

energy consumption of node n for running the task (
∼
E(t, n))

and energy stored in a node at the beginning of the task
(Estored(n)), the profit of task t for its assignment on node n
is calculated as:

p(t, n) = (β × (d(t)−
∼
T end(t))

d(t)− a(t)
+(1− β)× ntype ×

Estored(n)
∼
E(t, n)

)
(1)

Here, β is a reward factor for the nodes to finish a task in the
earliest possible time. d(t)−

∼
T end(t) means the time duration

task t finishes before its deadline. The larger the difference, the
better in terms of the timeliness guarantee. The denominator
d(t)− a(t) means the total allowed duration to complete task

t. The ratio
(d(t)−

∼
T end(t))

d(t)− a(t)
refers how much faster task t

is executed by node n relative to its limited allowed duration.
Estored(n)
∼
Eexe(t, n)

refers to the how much energy is consumed by

a node n for a task t relative to the node’s stored energy.
The lower the estimated energy consumption

∼
Eexe(t, n), the

higher the reward for energy efficiency. And, the higher the
stored energy Estored(n), the higher the reward in order not
to drain the node’s energy.

The estimated time
∼
T end(t) is dependent on three factors:

task t’s arrival time a(t), task t′s estimated execution time
∼
T exe(t) and the estimated transmission time

∼
T trans(t, n):

∼
T end(t) = τc +

∼
T exe(t) +

∼
T trans(t, n) (2)

Here, τc is the current timestamp whereas
∼
T exe(t) and

∼
T trans(t, n) represents estimated execution time of task t and
estimated transmission time interval of task t from or to node
n respectively.

According to [13],
∼
T exe(t) can be calculated using execu-

tion time for processing one unit of data based on the one unit
of computing resource (Texe(1)) and CPU demand by the task
t (c(t)) as per follows:

∼
T exe(t) =

Texe(1)×D(t)

c(t)
(3)

Here, D(t) indicates the t’s dataset size which needs to be
transmitted during task execution after the assignment to a
node of any layer.

The estimation of transmission delay,
∼
T trans(t, n) is the

round-trip time required to transmit the task itself and its as-
sociated dataset from task-generator node to the task-assigned
node, and to transmit the computation result from the latter
to the former node. This estimated time is dependent on the
dataset size, bandwidth and path reliability of the network
between the source and destination nodes and associated
transmission path delays induced by the routers or switches of
the network [22]. We consider the bandwidth and reliability
of the network between the edge nodes and fog nodes as BF
and RF respectively. Furthermore, considering the bandwidth
and reliability of the network between the fog and cloud as
BC and RC respectively we adopt the equation for calculating
the transmission delay in [13].

∼
T trans(t, n) =

0; if n is the task-generator edge node
D(t)

BF
× 1

RF
+ TF , if n is fog

D(t)

BF
× 1

RF
+
D(t)

BC
× 1

RC
+ TF + TD,

if n is cloud
(4)

where the delay between edge to fog and fog to cloud layer are
represented by TF and TC respectively. If a task is assigned
to a second-tier fog, it needs to be transmitted to the fog node
and the transmission time is primarily dependent on the size of
the data (D(t)) and the available bandwidth of the link from
edge node to the fog (BF) subject to the reliability (RF) of the
network. Besides, it considers the path delay (TF) induced by
the network devices, e.g., routers and switches. In the three-
tiered edge-fog-cloud environment, any transmission from an

4

edge node to the cloud needs to pass through the second-tier
fog [13, 23]. As a result, while n is a cloud datacenter, we need
to take into account both the path delay and data transfer delay
from an edge node to fog and from fog to the cloud [13, 23,
24]. Therefore, when a task is transferred from the edge node
to the cloud, we need to additionally consider the transmission
time from fog to cloud dependent on the available bandwidth
of the link from fog to the cloud (BC) subject to the reliability
(RC) with additional path delay (TD) induced by the network
devices.∼
Eexe(t, n) is only dependent on two factors: the transmis-

sion time of the dataset and the execution time of a task.
∼
E(t, n) =

∼
T trans(t, n)×Etrans(1)+

∼
T exe(t)×Eexe(1)) (5)

In the Equation above, Etrans(1) and Eexe(1) represents en-
ergy consumption for transmitting for one unit time and energy
consumption for processing one unit of data based on the one
unit of computing resource respectively. In Equation (1), we
try to maximize the overall profit gained for assigning a task,
t to a node and the profit should be reflective of our goal of
timeliness guarantee and energy efficiency. The first fractional
part ensures the assigned node is responsible for finishing a
task before the deadline. A higher task estimated value

∼
T end(t)

than the deadline d(t) will end-up assigning a node negative
profit which means penalizing a node for violating a timeliness
guarantee. By dividing by the d(t) −

∼
T end(t) the node gets

higher profit for finishing a task early as possible. Similarly, in
the second fraction of Equation (1), we ensure the node which
ensures higher energy efficiency gets higher profit. The lower
energy a node, n consumes for executing a task, t in respect
to its current stored energy it means the more energy efficient

these nodes for this task. Consequently,
Estored(n)
∼
Eexe(t, n)

ensures

the node, n receives higher profit for being energy efficient.
Problem Formulation The objective of this task assignment

is to maximize the profits by ensuring timeliness guarantee
with energy efficiency. Given three sets i) nodes working at
the bottom layer (Nedge) ii) nodes working at the fog layer
(Nfog) and iii) a datacenter in the cloud Ncloud we can define
a larger Node Set, N = {Nedge}∪{Nfog}∪{Ncloud}. Now for
pending task sets (Tp) and running task sets (Tr) using GAP,
our task assignment problem can be formulated as follows:

Maximize
∑
t∈Tp

∑
n∈N

p(t, n)× x(t, n) (6)

Subject to: ∀t ∈ Tp,∀n ∈ N x(t, n) ∈ {0, 1} (7)

∀t ∈ Tp ∪ Tr,
∑
n∈N

x(t, n) = 1 (8)

∀n ∈ N,
∑
t∈Tp

c(t)× x(t, n) +
∑
t∈Tr

c(t) ≤ C(n) (9)

∀t ∈ Tr ∩ n ∈ N ∩ x(t, n) = 1,
∼
T end(t) ≤ d(t) (10)

Among the Equations (6) to (10), x(t, n) = 1 if task t is
assigned to node n otherwise it is set to zero. And C(n)
represents the amount of computing resources of any node
n ∈ N (Nedge, Nfog, Ncloud) Finally, Equation (6) represents
the GAP problem formulation to our required scenario for ICA
applications. Equation (7) and (8) cumulatively denotes the
constraint that each task is assigned to only one node. Equation
(9) assures that after the task assignment no node exceeds its
available resources. Our goal is to provide timeliness guarantee
for type of tasks which need both tight-time bound and flexible
time bound. Equation (6) ensure this by providing a profit for
timeliness guaranteed task assignment. In this case, we add
an additional constraint from GAP problem as Equation (10)
to ensure that estimated time never exceeds the deadline of a
task to ensure the term d(t)−

∼
T end(t) to be non-negative.

IV. PROPOSED PROBLEM SOLUTION

A. Profit based Assignment

As this task assignment problem is NP-hard [13], in case of
large-scale applications involving lots of nodes, the problem-
solving time may be unacceptable. Considering the urgency
of some ICA applications, the task assignment must be done
in near-realtime. To reduce the cost of profit calculation, we
consider partitioning the problem based on the geographical
region. After partitioning the region, the centralized cloud uses
the proposed heuristic for profit estimation from the possible
set states and actions to generate a centralized table using
ReInforcement Learning. Later this table distributed among
the edge nodes which they use for making the assignment
decision of an incoming task. As a first step of building
the RL model, we estimate the profit for all the possible
task assignment nodes for an incoming task. Based on the
deadline and resource requirement of the task it estimates the
task processing time and energy consumption of each option
using Equation (2) and (5) respectively. After the estimation,
it calculates the profit that can be achieved by the node as per
Equation (1), and it assigns the task to the node that gives the
maximum profit which can be the edge node itself, fog or the
cloud. We consider this profit-based assignment as an optimal
solution to the task assignment problem.

B. Machine Learning based Task Assignment

For making real-time assignment decisions, we propose RL
based Task Assignment approach (RILTA). We use the profit
as the reward to build the RL model using Q-learning [25].
RL considers a general setting in which an agent interacts with
an environment. At each time step τ , the agent observes some
state sτ and chooses an action aτ . After applying the action,
the state changes to sτ+1 and the agent receives a reward rτ .
This process forms a Markov Dynamic Process (MDP). The
goal of this learning is to maximize the expected cumulative
reward by maintaining a policy. In RILTA, a centralized server
in the cloud trains the RL model using the collected state
and reward information from individual edge nodes for their
decisions on task assignment. Finally, RILTA builds a Q-
value table that stores the cumulative reward achieved by an

5

edge node for taking action dependent on its foreseen state
space following the policy at each state. The Q-value table
is distributed to the edge nodes, which they use for task
assignment to itself, fog within their regions or the cloud
based on the state. The cloud server keeps updating the Q-
value table based on the task assignment activities of the edge
nodes. Figure 1 illustrates the adaption of RL for our task
assignment problem.

Fig. 1: Applying RL to task assignment

The mapping between Q-learning elements to our task
assignment for ICA applications is as follows:
• State space (S): When an edge node has a task, the

state includes all node resource characteristics (including
available bandwidth, processor capacity, stored energy)
of the edge node itself, the fog and the cloud, and
task characteristics (Section III-A). For this purpose, the
system discretize the continuous space of node resource
characteristics (e.g., processor capacity and available
bandwidth) by dividing their value range in different equi-
width levels. For simplicity, assume the state space only
consists of processor capacity and available bandwidth,
if we consider l different levels of processor capacity
and m levels for available bandwidth, the state space for
task, t can be represented as a vector in the form as:
s(i,j) = {s(1,1), s(1,2) . . . s(1,m), s(2,1), s(2,2), . . . s(2,m),
. . . s(l,1), s(l,2), . . . s(l,m)} ∈ S, where s(i,j) express the
state by i and j that represents the level of CPU capacity
and available bandwidth.

• Action space (A): Action space is the set of actions an
edge node performs based on the state. The action space
of a task can be represented by a vector in the form of
aτ = {a1, a2, a3} ∈ A, which means that an edge node
assigns a task to itself, fog within its region or the cloud.

• Immediate reward: A reward function defines the im-
mediate reward that is gained by an edge node for
performing an action depending on its observation of the
state. In RILTA, an edge device gains a reward (calculated
by Equation (1)) from one of the chosen actions upon
observation of the states at the arrival of a task.

• Policy model: Upon observing a node’s state sτ , an edge
node needs to take an action aτ that corresponds to the
action of assigning an incoming task to itself, fog or the

cloud. By referring to the Q-value table, the edge node
selects the action based on a policy following distribution
over actions defined as Q : Q(sτ , aτ) that returns the
future expected reward of that action at that state [25].
That is, the node selects the action that leads to the
maximum future expected reward. Based on the MDP
built from the environment observation, Q-learning finds
the optimal action for each specific state that maximizes
the cumulative rewards using the following function:

Q(sτ , aτ) = Q(sτ , aτ) + α× [rτ+1 + γ
×maxaτ+1

Q(sτ+1, aτ+1)−Q(sτ , aτ)]
(11)

where α is a learning rate parameter that facilitates
convergence to the true Q-values in the presence of
noisy or stochastic rewards and state transitions, and the
discount rate denoted by γ guarantees the updated reward
convergence for all the incoming tasks for an edge node.

This policy model is used to generate the Q-value table
in the training phase. In the training phase, each edge node
chooses an action on the observation of the current state based
on the current Q-value estimates Q(sτ , aτ). That is, it chooses
the action corresponding to the highest Q(sτ , aτ) value. It
performs the chosen action and observe the outcome state
(sτ+1) and the reward rτ+1. Based on these observations, the
Q-value table is updated.

1) Q-value Table Creation in RILTA: In RILTA, the cloud
server gathers information regarding the incoming task and
node resource characteristics from all the edge nodes men-
tioned in Section III. Using the information, the cloud does
the RL training by deriving the state corresponding to the task
and node resource characteristics and calculates the reward
associated with the actions for the state to build the Q-
value table. The cloud server distributes this Q-value table
to each edge node. Upon arrival of a task, at an edge node, it
checks the state sτ and finds the cumulative maximum reward
Q(sτ , aτ) from its Q-value table for that particular state and
chooses action aτ . That is, the edge node decides where to run
its task: itself, fog or cloud using this mapped action. The edge
nodes report the task assignment activities to the cloud server,
which keeps updating the Q-value table. By using RILTA, for
each edge node, upon observing the state, the task assignment
problem gets limited to lookup the Q-value table and assign the
task to the node with the highest reward. This lookup operation
reduces the complexity of the task assignment problem and
reduces the solution time to near real-time.

2) Generating the Q-Value Table in Experiments: The Q-
value table should be created based on the edge nodes’ real
task assignment activities initially. In our experiment, in the
whole Q-value table formation process, for each task, we
derive the states and rewards regarding all possible task assign-
ment locations calculated offline. For building the best possible
policy to be adapted by the edge nodes using Q-learning, we
create a simulated environment with 100 edge nodes, 12 fog
nodes, and one cloud data center. The details of the settings
for the node resource capacity and task characteristics are
presented in Section V. Next, each edge node creates 100 tasks

6

sequentially with an interval of 5 seconds. The Q-value table
is initialized with zero. When an incoming task in an edge
node, initially, we calculate the reward (using Equation (1))
for the task assignment to the edge node itself, fog and the
cloud respectively. Based on the states, actions and rewards
in the task assignments, using the policy formulation by
Equation(11) with learning rate α = 0.01, we build and update
a Q-value table. After the Q-value table is formed, rather than
trying all possible task assignment locations, observing the
state at that timestep, we choose an action using ε-greedy
policy [25] where ε is the exploration rate. Using this policy,
we either select a random action with ε probability or select an
action with 1− ε probability that gives the maximum reward
in the given state. Based on the chosen action, we calculate
the immediate reward using Equation (1) for performing the
action. We also track the change of state for performing this
action to build the MDP in Q-learning. Accordingly, in our
training process, initially, we set the value of ε to 1 because
we do not know anything about the values in the Q-value
table. Then we reduce its value progressively as we get more
Q values with the incoming tasks. Ultimately, this Q-value
table records the maximum expected future reward an edge
node can achieve for a certain action taken at a certain state.
By referring to the Q-value table, when a task arrives, an
edge node observes the current state and chooses the action
corresponding to the highest cumulative reward. This whole
Q-value table generation process is run off-line.

V. PERFORMANCE EVALUATION

A. Experiment Setup

We conducted our experiments on iFogSim [26] for testing
the performance of our task assignment system. iFogSim is
a toolkit that models and simulates IoT and Fog Computing
environments together with the cloud. This simulator considers
parameters such as network latency, bandwidth utilization, cost
measurement, and energy consumption.

We conducted all our experiments using a three-tier edge-
fog-cloud architecture. To simulate the nodes located in dif-
ferent tiers using iFogSim, we differentiated the processor
capacities of the nodes in different tiers by setting the unit rate
per MIPS of the processor as 1, 2.1 and 3.9 GHz to mimic edge
devices, fog, and cloud respectively. In our experimentation,
we used one cloud data-center, 12 fog nodes and varied the
number of edge devices from 100 to 500.

In our experimentation, we assumed that edge devices could
generate tasks at a certain arrival rate following a Poisson
distribution [13]. Here, task arrival rate defines the number of
tasks generated by an edge device in a unit time. Besides, the
deadlines of the arriving tasks were set by adding a random
value from Uniform distribution, U(5, 125), to the arrival time
of the individual tasks. For each set of experiment, we varied
the processor demands of a task following a uniform distri-
bution U(50, 250) [13]. For preparing the state space of our
proposed model RILTA, we divided the available bandwidth
between different layers into three equi-width levels for the
bandwidth value mentioned for each tier in Table I. Similarly,

TABLE I: Simulation parameters.

Parameters Values
Bandwidth from edge nodes to
fog

512 Mbps

Bandwidth from fog to cloud 1024 Mbps
Network delay between edge
nodes to fog

50 milliseconds

Network delay between fog to
cloud

100 milliseconds

Deadline of a task Ta + U(5, 125) in seconds
Dataset size of a task Uniform distribution:

U(100,1000) bytes
Failure probability of a node
link

0.01

Texe(1) 5 milliseconds
Eexe(1) 1.17 Joules
Etrans(1) 0.63 Joules
Reward Factor, β Uniform distribution:

U(0.2, 0.8)

we divided the processor capacity for different nodes into three
equi-width levels dependent on the different MIPS value of
the nodes mentioned above. In general, all other simulation
parameters are set according to the Table I. In our evaluation,
we varied the number of tasks generated from each node in the
range [100,500]. The execution of a task is halted whenever
the task processing time exceeds its deadline. The whole
simulation stops when there are no more tasks to execute in
each edge node. The default values for the number of edge
nodes, the number of tasks generated by each edge node, and
the task arrival rate are 100, 500 and 200, respectively, unless
otherwise specified.

B. Metrics

To evaluate our task assignment scheme, we used the
following metrics:

1) Timeliness guarantee ratio: This is the percentage of
tasks that finish within their deadlines.

2) Percentage of deadline misses due to task assignment:
This is the percentage of the tasks that have higher task
assignment time than their deadlines. This metric is used
to show the performance of fast task assignment.

3) Average energy consumption: This is the average
energy consumed by an edge device at the bottom-tier
of the edge-fog-cloud architecture calculated from the
statistics of total energy consumption using iFogSim.

4) Task running time: We calculate the running of all the
tasks throughout the simulation process. We track the
run time by the total simulation time starting at arrival
of the first task and end of completion of the last task.

5) Task allocation time: This is the time spent on task
allocation. We calculate the individual allocation time
for each of the incoming tasks.

C. Compared Methods

We compared the performance of our proposed RILTA with
two recently proposed assignment approaches SpanEdge [27]
and Suspension-and Energy-Aware offloading algorithm

7

(SEA) [11]. We also show the performance of our heuristic
solution as the optimal solution for reference.
• SpanEdge divides all the tasks into two groups: local

and global tasks. A local task refers to the task which
needs data only from its local edge node while a global
task refers to the task that requires data from a set of
local tasks spread among multiple edge nodes. Spanedge
focuses on reducing the bandwidth consumption and
response latency by assigning local tasks to the edge node
or fog while assigning the global tasks in the distant
cloud. Only when an edge node does not have enough
resources to run the assigned task, the task is assigned to
the fog. Spanedge identifies global tasks by processing a
task dependency graph, which takes a long time, and also
energy-efficiency is not its focus.

• The primary objective of SEA is to reduce energy con-
sumption alongside guaranteeing bounded response time.
This algorithm profiles on network and energy and de-
cides on offloading the task to a cloud server or execute
it on the edge device itself. For this purpose, SEA first
finds various combinations of offloading decisions (that
offloads different amount of workload in a task) with
different energy consumptions, and then find the optimal
solution that consumes lower energy over a period of
time. However, the task assignment process has long
latency.

D. Experimental Results

For recording the experimental plots, we run each set of
experiment ten times. In each set of the run, we keep the
simulation environment and parameters the same for all the
compared methods. For each plot of our experiments, we show
lower and upper error bar at 10th and 90th percentile.

1) Timeliness Guarantee: Figure 2 plots the timeliness
guarantee ratio with the change of task arrival rate. For each
task arrival rate, β is set based on a uniform distribution:
U(0.2, 0.8). From the figure, we observe in terms of ensuring
timeliness guarantee ratios, the order of performance fol-
lows Optimal > RILTA > SEA >SpanEdge. RILTA performs
13−22% better than SEA and SpanEdge and it performs 2−3%
worse than the optimal solution. The percentage is calculated
by |RILTA−method|/method. RILTA performs better than
others due to having lower task allocation time as it is limited
to only finding an entry in the Q- value table. SpanEdge
offloads all the global tasks to the cloud which contributes
to its increased task completion time. The increase in task
completion time occurs due to high transmission delay from an
edge node to the cloud. SEA involves a complex computation
phase as it needs to find a solution with different combinations
to find the optimal solution. The optimal solution only needs
to calculate the profits for allocating a task to the edge node,
fog, and the cloud and chooses the option with the highest
reward, which has lower computational complexity than SEA.
However, its reward calculation process still contributes to
its higher timeliness guarantee ratio than RILTA. However,
RILTA cannot always find the optimal solution in all the

cases due to the limitation in finding the best policy using
Q-learning, which also causes its high variance in the error
bars. From Figure 2, we can also observe that timeliness
guarantee ratios decrease with the increase of task arrival rate.
With the increase in the arrival rate, more tasks cannot be
scheduled with limited resource constraints. However, RILTA
still shows better performance than SEA and SpanEdge with
the increasing arrival rate. In our evaluation, we also plot the
percentage of tasks that missed their deadline due to high task
allocation time. Figure 3 shows the percentage of the tasks
missing deadlines out of all the tasks due to task assignment.
From the figure, we can observe that RILTA performs 63−68%
better than SpanEdge and SEA. However, RILTA only performs
4−12% better than the optimal solution. High task allocation
time or decision-making time contributes to missing deadline
of tasks in most of the cases for SEA and SpanEdge. RILTA is
more efficient than other methods due to having task allocation
time limited to finding an entry in the Q-value table to find
the optimal task assignment action. SpanEdge has higher task
allocation time because it needs to wait for the completion
of the task dependency graph processing. On the other hand,
SEA first finds various combinations of offloading decisions
with different energy consumptions, and then find the optimal
solution that consumes lower energy over a period of time,
which contributes to its high task allocation time. On the
contrary, the relatively lower allocation time of the optimal
solution is caused by low computation complexity of the
approach as explained previously. In Figure 3 we also see
the increase in the percentage of deadline misses due to task
assignment with the increase of arrival rate. This is caused
by the same reason that more tasks cannot be scheduled with
limited resource constraints. The lower task allocation time of
RILTA leads to a lower percentage of deadline misses due to
task assignment, thus enhancing the timeliness guarantee.

Fig. 2: Guarantee ratio.
2) Energy Consumption: Figure 4 shows the performance

of RILTA with other methods in terms of average energy
consumption versus the number of edge nodes. We decompose
the result into two parts which are marked in the bar chart
with different colors and patterns. The bottom part of each
bar represents average energy spent by the edge nodes in
the decision-making phase, and the upper part shows the
amount of energy consumed in the task running phase. In
terms of energy consumption, the result order is as follows:
RILTA <Optimal < SEA <SpanEdge. In RILTA, an edge node

8

Fig. 3: Percentage of the tasks that missed the deadline due
to task assignment.

consumes 0.5 to 1 Megajoules less energy on average than
the other methods for overall simulation time. For SpanEdge,
the energy consumption increases as the number of tasks
increases because the ICA applications sometimes require data
from different nodes; as a result, many of the tasks (25%
of the total tasks) are scheduled to the cloud. It causes an
increased network load and causes higher transmission time,
which ultimately increases energy consumption as we see in
Figure 4. Other three methods have a smaller consumption of
energy for the edge nodes in comparison to SpanEdge due to
considering the energy consumption in making the offloading
decision. RILTA performs better than both SEA and the optimal
solution because of having lower energy consumed at the
decision making phase as it can be seen from the lower part of
each bar in the figure, which is due to reduced computation in
decision making. Finally, we can also observe that the average
energy consumed by the edge nodes increase as the number of
nodes increases. This phenomenon occurs due to an increase
in candidate nodes which means more energy is consumed
in the task allocation phase as the number of computation
rises. As a conclusion, RILTA shows better performance than
the other methods in terms of the amount of average energy
consumption for each edge node.

Fig. 4: Average energy consumption.

3) Task Running Time: Figure 5 shows the total task
running time with respect to the number of tasks generated
by each edge node. In the figure, we mark the amount of time
spent on making the task assignment decision (lower part) and
the actual task running time (upper part) in different colors
and patterns. From the figure, we can see that the total task
running time of all the methods are similar and only the time

spent on decision makings for each method is different. To
make the difference of decision making performance clear,
we also drew Figure 6 to only show the time spent in task
allocation. The figure shows that the order of performance in
terms of task allocation time is: RILTA < Optimal < SpanEdge
< SEA. RILTA is comparatively 34−51% faster than all other
methods in terms of task allocation time. This is because
RILTA only needs to decide by picking up the optimal action
in the Q-value table. SEA spends more time on task allocation
as they require multiple computation steps for finding the
combinations of offloading decisions with different energy
consumptions. Although SpanEdge makes the task allocation
only depending on whether the task is local or global, it has
a higher allocation time because the allocation of the global
tasks is dependent on task dependency graph processing. How-
ever, SEA and Optimal generate longer assignment decision
time but reduced total task running time because they ensure
the time-bound response time of an incoming task. For both
Figure 5 and 6, their corresponding Y-value changes with the
increase of the number of tasks because with an increasing
number of tasks generated from each edge device, both the
task allocation and task running require more time.

Fig. 5: Task running time.

Fig. 6: Task allocation time.

VI. CONCLUSION

With the popularity of Intelligent Cognitive Assistants (ICA)
using the edge computing systems, it is essential to solve
the task assignment problem that determines the allocation of
ICA application tasks to the three tiers in the edge computing
system (i.e., remote cloud, fog and edge devices) considering

9

task timeliness guarantee and energy constraints of the edge
nodes. Despite many works on the task assignment, they fail
to maintain timeliness guarantee due to complex computation
phase of the task assignment process. In this paper, we present
RILTA, a ReInforcement Learning based algorithm that can
make the task assignment decision in significantly quick time
Extensive evaluation results manifest that RILTA performs
better than methods like the Spanedge and SEA algorithms
in terms of timeliness guarantee and energy consumption
alongside making the assignment decision in near real-time.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
NSF-1827674, CCF-1822965, OAC-1724845, ACI-1719397
and CNS-1733596, and Microsoft Research Faculty Fellow-
ship 8300751. We would like to thank Mr. Liuwang Kang for
his valuable discussions and comments.

REFERENCES

[1] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr,
“Coding for distributed fog computing,” CoRR, vol.
abs/1702.06082, 2017.

[2] K. Fogarty, “Semiconductor engineering, low power-
high performance, processing moves to the edge,” https:
//semiengineering.com/processing-moves-to-the-edge,
2018.

[3] A. Zone, “Is artificial intelligence a booster
for edge computing?” https://dzone.com/articles/
is-artificial-intelligence-a-booster-for-edge-comp, 2018.

[4] J. Oakley, “Intelligent cognitive assistants (ica) workshop
summary and research needs - collaborative machines
to enhance human capabilities,” Semiconductor Research
Corporation (SRC), 2018.

[5] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“Clonecloud: Elastic execution between mobile device
and cloud,” in Proc. of EuroSys, 2011.

[6] Y. H. Kao, B. Krishnamachari, M. R. Ra, and F. Bai,
“Hermes: Latency optimal task assignment for resource-
constrained mobile computing,” IEEE Trans. on Mobile
Computing, 2017.

[7] O. Muoz, A. Pascual-Iserte, and J. Vidal, “Optimiza-
tion of radio and computational resources for energy
efficiency in latency-constrained application offloading,”
IEEE Trans. on Vehicular Technology, 2015.

[8] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li,
“Mobile-edge computing: Partial computation offloading
using dynamic voltage scaling,” IEEE Trans. on Commu-
nications, 2016.

[9] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint opti-
mization of radio and computational resources for multi-
cell mobile-edge computing,” IEEE Trans. on Signal and
Information Processing over Networks, 2015.

[10] X. Lyu, H. Tian, C. Sengul, and P. Zhang, “Multiuser
joint task offloading and resource optimization in prox-
imate clouds,” IEEE Trans. on Vehicular Technology,
2017.

[11] Z. Dong, Y. Liu, H. Zhou, X. Xiao, Y. Gu, L. Zhang, and
C. Liu, “An energy-efficient offloading framework with
predictable temporal correctness,” in Proc. of SEC, 2017.

[12] F. Messaoudi, A. Ksentini, and P. Bertin, “On using
edge computing for computation offloading in mobile
network,” in Proc. of GLOBECOM, 2017.

[13] J. Fan, X. Wei, T. Wang, T. Lan, and S. Subramaniam,
“Deadline-aware task scheduling in a tiered iot infras-
tructure,” in Proc. of GLOBECOM, 2017.

[14] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A
framework for partitioning and execution of data stream
applications in mobile cloud computing,” SIGMETRICS
Perform. Eval. Rev., 2013.

[15] H. Wang, J. Gong, Y. Zhuang, H. Shen, and J. Lach,
“Healthedge: Task scheduling for edge computing with
health emergency and human behavior consideration in
smart homes,” in Proc. of IEEE Big Data, 2017.

[16] T. Choudhari, M. Moh, and T.-S. Moh, “Prioritized task
scheduling in fog computing,” in Proc. of the ACMSE
Conference, 2018.

[17] W. Zhang, Y. Wen, and D. O. Wu, “Collaborative task
execution in mobile cloud computing under a stochastic
wireless channel,” IEEE Trans. on Wireless Communica-
tions, 2015.

[18] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload
or not to offload? the bandwidth and energy costs of
mobile cloud computing,” in Proc. of INFOCOM, 2013.

[19] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey
of computation offloading for mobile systems,” Mobile
Networks and Applications, 2013.

[20] D. R. Morales and H. E. Romeijn, The Generalized
Assignment Problem and Extensions, 2005.

[21] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the
suitability of fog computing in the context of internet of
things,” IEEE Trans. on Cloud Computing, 2018.

[22] R. Ramaswamy, N. Weng, and T. Wolf, “Characterizing
network processing delay,” in Proc. of GLOBECOM,
2004.

[23] A. Venčkauskas, N. Morkevicius, K. Bagdonas,
R. Damaševičius, and R. Maskeliūnas, “A lightweight
protocol for secure video streaming,” Sensors, 2018.

[24] P. G. V. Naranjo, Z. Pooranian, S. Shamshirband, J. H.
Abawajy, and M. Conti, “Fog over virtualized iot: New
opportunity for context-aware networked applications
and a case study,” Applied Sciences, vol. 7, 2017.

[25] R. S. Sutton, A. G. Barto et al., Reinforcement learning:
An introduction. MIT press, 1998.

[26] H. Gupta, A. VahidDastjerdi, S. K. Ghosh, and R. Buyya,
“iFogSim: A toolkit for modeling and simulation of
resource management techniques in the internet of things,
edge and fog computing environments,” Software: Prac-
tice and Experience, vol. 47, no. 9, 2017.

[27] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and
V. Vlassov, “Spanedge: Towards unifying stream process-
ing over central and near-the-edge data centers,” in Proc.
of SEC, 2016.

10

