
Machine Learning Based Workload Prediction in
Cloud Computing

Jiechao Gao, Haoyu Wang and Haiying Shen
Department of Computer Science

University of Virginia
Charlottesville, VA, USA

{jg5ycn, hw8c, hs6ms}@virginia.edu

Abstract—As a widely used IT service, more and more com-
panies shift their services to cloud datacenters. It is important
for cloud service providers (CSPs) to provide cloud service
resources with high elasticity and cost-effectiveness and then
achieve good quality of service (QoS) for their clients. However,
meeting QoS with cost-effective resource is a challenging problem
for CSPs because the workloads of Virtual Machines (VMs)
experience variation over time. It is highly necessary to provide
an accurate VMs workload prediction method for resource
provisioning to efficiently manage cloud resources. In this paper,
we first compare the performance of representative state-of-
the-art workload prediction methods. We suggest a method to
conduct the prediction a certain time before the predicted time
point in order to allow sufficient time for task scheduling based on
predicted workload. To further improve the prediction accuracy,
we introduce a clustering based workload prediction method,
which first clusters all the tasks into several categories and
then trains a prediction model for each category respectively.
The trace-driven experiments based on Google cluster trace
demonstrates that our clustering based workload prediction
methods outperform other comparison methods and improve the
prediction accuracy to around 90% both in CPU and memory.

Index Terms—Cloud Computing, Machine learning, Workload
Prediction

I. INTRODUCTION

Cloud computing is a widely used IT service, which pro-
vides various services under one roof. Multiple types of ser-
vices such as storage, computing and web hosting now can be
provided by one cloud service provider. Many businesses move
their services to clouds due to their flexible service model such
as pay-as-you-go business model [1]. Such elasticity of the
service model brings about cost saving for most businesses by
eliminating the need of developing, maintaining and scaling a
large private infrastructure [2].

Cloud computing plays an important role nowadays which
allows clients to use cloud resources in a pay-as-you-go
fashion. It can satisfy the cloud resource requirements of
the clients so that the clients need not to concern about the
overprovisioning of a service whose resource utilization does
not meet the predictions, and then wasting costly resources,
or underprovisioning of a service which turns into popular in
the future, and then missing potential revenue [3].

Using hardware virtualization, cloud service providers let a
physical machine (PM) run multiple virtual machines (VMs)
(i.e., tasks) with different resource allocations. A cloud hosts

multiple applications on the VMs. Since the load of each VM
on a PM varies over time, a PM may become overloaded, i.e.,
the resource demand from its VMs is beyond its possessed
resource. Such load imbalance in a PM adversely affects the
performance of all the VMs (hence the applications) running
on the PM. Insufficient resources provision to customer appli-
cations also violates the Service Level Agreement (SLA) [4].
An SLA is an agreement between a cloud customer and
the cloud service provider that guarantees the application
performance of the customer. In order to uphold the SLA, a
cloud service provider must prevent PM overload and ensure
VMs receive their demanded resources. As shown in Figure 1,
the prediction model can get the historical data from resource
manager and send back the predicted workload for each task to
resource manager. The resource manager then can arrange each
VM on PMs according to the predicted results respectively.

As cloud data centers are often oversubscribed, resources
such as CPU and bandwidth are stretched thin as they are
shared across many tenants. In particular, when VMs with
intense resource requirements are located on the same PM,
they compete for scarce resources, which may lead to poor
performance of applications. Much resource effort has been
devoted to developing strategies for resource provisioning in
the initial VM allocation and VM migration phases. Recently,
some methods [5]–[11] have been proposed to predict VM
resource demand in a short time for sufficient resources
provisioning or load balancing. In the proactive load balancing,
a PM predicts whether it will be overloaded by predicting its
VMs’ resource demands and moves out VMs when necessary.
In the previous research, statistical approaches [12]–[15], ma-
chine learning (ML) approaches [16]–[20] and deep learning
approaches [21]–[27] are used for the resource demand pre-
diction. There has been no effort that conducts the comparison
study on these prediction approaches.

To better understand these approaches, we compare the
representative methods in these approaches using the Google
cluster trace [28]. In the previous prediction methods, there
is 0 time gap between the input workload data points and
the predicted workload data point (we call 0-gap prediction).
Then, it may leave little time for task scheduling based on
predicted workload. We propose m-gap prediction that keeps
a gap of m time points between the input data points and
the predicted data point in order to leave enough time for

the task scheduling. Our experimental results show that m-
gap prediction does not compromise the prediction accuracy
performance of 0-gap prediction. Also, previous prediction
methods build one prediction model for all the tasks, which
may not catch the patterns of all the heterogeneous tasks for
more accurate prediction. In order to improve the accuracy
performance of the previous prediction methods, we propose
a clustering-based prediction method. It clusters tasks with
similar workload patterns into a group for training to create a
model, and uses the corresponding model of a task to predict
its workload.

Prediction Model

Predicted
Workload

Historical
Data

Clients
Resource
Manager

PM VM

…

PM VM

…
…

Fig. 1. Overview of workload prediction procedure.

Our contributions in this paper are as follows:
(1) We conduct experimental comparison on the predic-

tion accuracy performance of state-of-the-art prediction
methods from statistical approaches, machine learning
approaches and deep learning approaches respectively.

(2) We propose m-gap prediction that keeps a gap of m time
points between the input data points and the predicted
data point in order to leave enough time for the task
scheduling based on predicted workload.

(3) We also propose a clustering-based prediction method
for higher prediction accuracy and use two clustering
algorithms here. The method first clusters all the tasks
into several categories and then generates a model for
each task category. Since each model can capture the
different features in each task category, the accuracy
prediction performance is much better than the prediction
methods that have only one model for all the tasks.

(4) We implement our proposed methods and construct ex-
tensive experiments. The experimental results show that
m-gap prediction does not compromise the accuracy per-
formance of 0-gap prediction used in previous prediction
methods. Also, our clustering-based prediction method
achieves much better accuracy performance than all the
previous methods.

The rest of the paper is organized as follows. Section II
presents the related work. Section III presents the Google
cluster trace preparation and the measurement results for
state-of-the-art prediction methods. Sections IV presents our
clustering-based prediction methods and the performance eval-
uation of our methods. Section V concludes the paper with
remarks on our future work.

II. RELATED WORK

We classify all the previous resource demand (i.e., work-
load) prediction works into three parts: statistical approaches,
machine learning approaches and deep learning approaches.

Statistical approaches. The statistical approaches are pop-
ular ways in predicting workload. Khan et al. [12] discovered
the repeatable workload patterns of VMs, and then introduced
an approach based on Hidden Markov Modeling to character-
ize and predict workload patterns. Jiang et al. [13] presented
an online temporal data mining system called ASAP, which
is used to model and predict the cloud VM demand by using
Moving Average (MA) model. Morais et al. [14] proposed
a framework for the implementation of auto-scaling services
that are based on several CPU utilization prediction methods
including Auto Correlation (AC), linear regression (LR), auto
regression (AR), Auto Regression Integrated Moving Average
(ARIMA) and so on. Gong et al. [15] developed PRESS that
uses a pattern matching and state-driven approach to predict
workloads. It first employs signal processing techniques to
check if the CPU utilization in a VM exhibits repeating
patterns. If yes, the repeating patterns are used to predict future
workloads; otherwise, PRESS employs a statistical state-driven
approach, and uses a discrete-time Markov chain to predict
the demand for the near future. However, many datasets are
unstable (i.e., the variance between each two neighboring is
large or some points missed), but these time series prediction
approaches employ the linear prediction structure, which is
more suitable for stable dataset.

Machine learning approaches. Machine learning ap-
proaches are widely used for VM workload prediction as
well. Imam et al. [29] presented time delay neural network
(NN) and regression methods to predict the workload of each
VM. Farahnakian et al. [30] developed resource measurement
and provisioning strategies using NN and linear regression
to predict upcoming VMs’ demands. Bankole et al. [17]
developed a cloud client prediction model to predict the
resource demand of each VM using three machine learning
models: support vector regression, NN and linear regression.
Islam et al. [16] proposed an approach using NN and Linear
Regression algorithms to predict the future CPU load of a VM
and they have concluded that NN surpasses Linear Regression
in terms of accuracy. In addition, they have shown that the
accuracy of both algorithms depends on the input window
size. Nikravesh et al. [19], [20] have evaluated the Support
Vector Machine (SVM), NN and Linear Regression machine
learning prediction methods. They found that, if the resource
utilization of each VM changes periodically, SVM has better
prediction accuracy compared to the other methods. However,
when the size of the dataset is large (such as the Google
cluster trace, SVM cannot achieve high prediction accuracy
as indicated in [31]. Gopal et al. [32] proposed Bayesian
model for resource prediction of each VM and compared with
linear regression method and support vector regression. They
observed that by using Bayesian based model, the workloads
of approximately 75% of the servers in datacenter could be

predicted with accuracies over 80%.
Deep learning approaches. Deep learning approaches are

also applied for workload prediction in recent years. Qiu et
al. [21] presented a deep learning approach (that consists of
a Deep belief network (DBN) and a regression layer) for
the VM workload prediction in the cloud system. Zhang et
al. [24] presented an efficient deep learning model based
on the canonical polyatomic decomposition to predict the
workload of each VM. Their proposed model can achieve a
high training speedup since it utilizes the canonical polyatomic
decomposition to compress the parameters significantly with
a low classification accuracy drop. Zhang et al. [23] proposed
a DBN-based approach for cloud resource request prediction
of each task that can be used for long-term and short-term
prediction with improved accuracy compared with existing
methods. Kumar et al. [25] developed prediction models based
on Long Short Term Memory (LSTM) networks [33]. The
proposed model is tested on three benchmark datasets of web
server logs, and HTTP traces of NASA server, Calgary server,
and Saskatchewan server. Song et al. [26] applied a model
based on LSTM to predict the mean load over consecutive
future time intervals and actual load multi-step-ahead using
Google cluster trace, which achieves high prediction accuracy
in a traditional distributed system.

III. TRACE ANALYSIS AND MEASUREMENT

A. Google Cluster Trace

The Google cluster trace starts at 19:00 EDT on Sunday
May 1, 2011, and it records 29 days’ resource utilization of
CPU and memory usage of each task on the Google cluster of
about 12.5k machines. A job is comprised of one or more
tasks, each of which is accompanied by a set of resource
requirements. The trace contains 672,075 jobs and more than
48 million tasks in the 29 days. This trace is a randomly-
picked 1 second sample of CPU/memory usage from within
the associated 5-minute usage-reporting period for each task.
We use the entire trace to conduct the trace-driven experiments
and conduct measurement among the comparison methods.

We notice that in the Google cluster trace, the CPU usage
and memory usage of some tasks are zero for a period of time.
It doesn’t necessarily mean that the task is paused as indicated
in [28]. There could be many reasons for it. [28] indicates that
when the measurements occur while the monitoring system
or machine hosting the system is overloaded, memory and
CPU for a task may not be collected and then set 0. In
some cases, a task has no process for an extended period of
time. Also, the measurement records may be missing, thus
generating pathological data. These zero values make the data
non-linear so that it may be difficult to predict the resource
usage via statistical model. In this case, it is important to find
the prediction algorithms that can better deal with pathological
data.

B. Statistical and Machine Learning Methods

We implement the whole experiment on a local ma-
chine based on Tensorflow. Recall that the workload predic-

tion approaches can be classified to three groups: statistical
approaches, machine learning approaches and deep learn-
ing approaches. According to the performance, we choose
ARIMA [34] to represent the statistical approaches since
ARIMA can achieve an average prediction accuracy over 70%
compared with other statistical methods in [35]. We choose
Support Vector Regression (SVR) [36], [37] and Bayesian
Ridge Regression [32], [38] to represent the machine learning
approaches since these two methods are announced as the most
effective prediction algorithms for cloud system in [19], [20].
We choose LSTM [26], [33] to represent the deep learning
approaches since LSTM can achieve higher accuracy than
Autoregressive method, artificial neural network, ARIMA in
host load prediction in [26].

1) Auto Regression Integrated Moving Average (ARIMA):
ARIMA is widely used in time series analysis. It is a general-
ization of an autoregressive moving average (ARMA) model.
Both of these models are fitted to time series data either to
better understand the data or to predict future points in the
series. ARIMA model can be applied to the unstable datasets
via one or more differencing steps. The differencing step forms
data transformation which can be applied on the time-series
data to make the data more stable.

2) Bayesian Ridge Regression (BRR): Bayesian Ridge
Regression (BRR) has better performance when dealing with
pathological data. The BRR has a probabilistic model for
regression problems. When the pathological data occurs, the
prediction variances are large so they may be far from the
actual value. In BRR, by adding a degree of bias to the
regression, it can reduce the standard errors and then achieve
better prediction accuracy.

3) Support Vector Regression (SVR): SVR is based on
the computation of a linear regression function in a multiple
variables feature space where the input data can be used via
a non-linear regression function [39]. The model produced by
SVR depends only on a subset of the training data, because the
cost function of building the model doesn’t take into account
of any training data which is closer to the prediction results. In
another words, during the training of SVR model, it puts more
weights on the data points further to the previous predicted
value so that the model can consider more on further points
to capture more possible patterns in a dataset.

4) Long Short Term Memory (LSTM): LSTM is a neural
network model which is widely used in the field of deep
learning. It can be applied to fit the time-series data. For the
pathological data problem, it can void those pathological data
via forget gate and input gate and then achieve high prediction
accuracy.

In each method we mentioned above, we choose the
same experiment settings as the previous paper indicates. For
ARIMA, we implement the method with the same experiment
settings mentioned in [35]. For SVR, we implement the
method with the same experiment settings mentioned in [37].
For BRR, we implement the method with the same experiment
settings mentioned in [32]. For LSTM, we implement the
method with the same experiment settings mentioned in [26].

Then, we compare these methods under the circumstances of
0-gap prediction and m-gap prediction as follow.

C. Prediction Methods

1) 0-gap Prediction: This method is used in the previous
prediction methods. That is, the w data points before the nth

time point are used as inputs to predict the value at the nth

time point, denoted by Vn. w here means window size. For
each task, we use the first 80 percent time of the trace as the
training set and use the remaining 20 percent of the trace as
the testing set. We call it 0-gap prediction because there is no
time gap between the time of inputs and the time of the output
value.

1 2 3 4 t

P4

Input Real value

Output
(Prediction value)

Fig. 2. An example of 0-gap prediction.

Figure 2 shows a simple example for the training and
testing procedure of the 0-gap prediction. The numbers in the
squares mean the time sequence. Take the testing procedure
for instance, the red squares represent the input data of the
testing and the number of red squares means the window size
w. In this example, the w = 3. The blue square represents the
real value of one time point. The black square represents the
prediction value of the time point. Three data points (from the
1st to the 3rd time points) are used as input data to get the
prediction value of the 4th time point, and it is compared with
the real value of the 4th point to get the accuracy.

2) m-gap Prediction: In the above 0-gap prediction
method, since there is no time gap between the inputs and the
output. Then, the prediction model may output the predicted

1 2 3 4 t

P7

Input

Real value

Output
(Prediction value)

5 6 7

2 3 4 5 t

P8

6 7 8

Gap

Fig. 3. An example of m-gap prediction.

value of Vn after the real workload of Vn already occurs.
Even though the prediction can be completed before the real
occurrence, there may leave little time for the scheduling
before the real workload of Vn occurs. Therefore, we propose
a method called m-gap prediction. That is, the w data points
before the nth − m time point are used as inputs to predict
the value at the nth time point. For each task, we use the first

60 percent time of the trace as the training set and use the
remaining 40 percent of the trace as the testing set.

Figure 3 shows the training and testing procedure of the
m-gap prediction. Different from the 0-gap prediction, m-gap
prediction has a time window gap m between the last time
point of input data and the output time point, as shown by
gray squares. In this example, the window size w = 3 and
gap = 3. Three data points (from the 1st to the 3rd time
points) are used as input data to get the prediction value of
the 7th time point, and it is compared with the real value of
the 7th point to get the accuracy.

D. Metrics

To illustrate the performance of the above methods, we use
three metrics to determine the better results.

1) CDF for Accuracy: We use cumulative distribution
function (CDF) to show the performance of accuracy. As
in [40], the prediction accuracy is calculated by:

An = 1− |Pn −Rn|
Rn

(1)

where An is the prediction accuracy of nth prediction, Pn is
the predicted value of nth prediction and Rn is the real value
in nth prediction.

2) CDF for Accuracy with Different Window Sizes: To
show the influence of the window size on the accuracy
performance, we show the CDF for accuracy with different
window sizes for the best model in accuracy.

E. Experimental Results

1) 0-gap Prediction Results: We first evaluate 0-gap pre-
diction. Figure 4 shows the CDF of the prediction accuracy
of the CPU usage among the four comparison methods. The
result follows SVR< ARIMA≈ LSTM<BRR. SVR has worse
results than other methods. Since the size of Google cluster
trace is large, SVR cannot achieve high prediction accuracy as
indicated in [31]. ARIMA and LSTM have better performance
than SVR but worse than BRR. For ARIMA, as mentioned
previously that the Google cluster trace has some pathological
data, since ARIMA creats a liner prediction model, it does not
perform well for handling pathological datasets. For LSTM,
its neural network mode can fit the non-linearities of a dataset.
However, it does not perform well for short-term tasks that do
not many data points for training as indicated in [33]. So the
performance for LSTM is not good for the short-term tasks,
which leads to its worse performance than BRR. BRR has
the highest accuracy performance compared to other methods.
BRR uses Levenberg-Marquardt algorithm [41] which is for
non-linear datasets. Thus, BRR can achieve the best perfor-
mance among these four methods in spit of the pathological
dataset and the case of few training data points. Since the
performance of SVR is worse than other three methods, we
will not discuss this method in the rest of the experiments.

Figure 5 show the CDF of the prediction accuracy of
the CPU usage in different window sizes with 1, 10 and
50. For these three cases, the results follow that window

0

0.2

0.4

0.6

0.8

1
C
D
F

Accuracy

ARIMA

BRR

LSTM

SVR

0 20 40 60 80 100

Fig. 4. CDF of CPU accuracy for
0-gap prediction.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D

F

Accuracy

window size=1

window size=10

window size=50

(a) ARIMA

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D

F

Accuracy

window size=1

window size=10

window size=50

(b) BRR

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D

F

Accuracy

window size=1

window size=10

window size=50

(c) LSTM

Fig. 5. CDF of CPU accuracy with different window sizes for 0-gap prediction.

0

0.2

0.4

0.6

0.8

1

C
D
F

Accuracy

ARIMA

BRR

LSTM

SVR

50 60 70 80 90 100

Fig. 6. CDF of memory accuracy
for 0-gap prediction.

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100

C
D

F

Accuracy

window size=1

window size=10

window size=50

(a) ARIMA

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100

C
D

F
Accuracy

window size=1

window size=10

window size=50

(b) BRR

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100

C
D

F

Accuracy

window size=1

window size=10

window size=50

(c) LSTM

Fig. 7. CDF of memory accuracy with different window sizes for 0-gap prediction.

size=1<window size=10≈window size=50. Larger window
size can introduce more input values in the model and then
achieve more accurate results. However, the larger window
size leads to much longer training and testing time cost [42].
Since window size=10 has similar prediction accuracy but
lower overhead, we use window size=10 as unless otherwise
specified.

Similar to Figures 4 and 5, Figures 6 and 7 show the results
in memory prediction. The results follow the same trend and
order for all the comparison methods and the different window
sizes due to the same reasons.

2) m-gap Prediction Results: Figure 8 shows the CDF of
the prediction accuracy of the CPU usage in m-gap prediction.
The same as in 0-gap prediction, the result follows ARIMA≈
LSTM<BRR. Due to the same reasons, for ARIMA, it does
not perform well in handling pathological datasets. For LSTM,
its neural network model can fit the non-linearities of dataset,
but its performance is not good for the short-term tasks with
not many training data points, which leads to its worse perfor-
mance than BRR. BRR has the highest accuracy performance
compared to other methods as it can handle pathological
datasets and few training data points.

Figure 9 show the CDF of the prediction accuracy of the
CPU usage in different window sizes with 1, 10 and 50 for
m-gap prediction. For these three cases, even though the gap
m = 10, the results follow that window size=1<window
size=10≈window size=50 which is the same as in Figure 5.

Similar to Figures 6 and 7, Figures 10 and 11 show the
results in memory prediction. The results follow the same trend

and order for all the comparison methods and the different
window sizes due to the same reasons.

IV. CLUSTERING BASED PREDICTION METHODS

Since different tasks have different workload features, it
may be difficult for one model to capture the variable workload
features and then predict the resource utilization with high
accuracy. One prediction model can achieve higher accuracy
for the tasks with similar workload features. Therefore, in
order to overcome this problem for higher prediction accuracy,
we propose clustering based prediction methods which are
introduced below.

A. Clustering Methods

In the above, we build one model that is used for predicting
the workloads of all tasks. Different tasks have different
workload features. We would like to see if we build one
model for similar tasks, whether the prediction accuracy can
be improved. Therefore, we first cluster similar tasks to a
group, and then build one model for each task cluster with
the same machine learning algorithm. For a given task, we
choose corresponding model of the task’s category to predict
its workload. We use two clustering methods explained below.

1) Prototype-based Clustering Method: Prototype-based
clustering (PBC) is to find the shortest distance that between
every tasks to the center. The number of clusters N means that
the tasks (described by CPU and memory usage data) will
be divided into N parts and for each part the total distance
between each task description (or data point) to the center is
the shortest.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D
F

Accuracy

ARIMA

BRR

LSTM

Fig. 8. CDF of CPU accuracy for
m-gap prediction.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D

F

Accuracy

window size=1

window size=10

window size=50

(a) ARIMA

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D

F

Accuracy

window size=1

window size=10

window size=50

(b) BRR

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D

F

Accuracy

window size=1

window size=10

window size=50

(c) LSTM

Fig. 9. CDF of different window sizes in CPU for m-gap prediction.

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100

C
D
F

Accuracy

ARIMA

Bayes

LSTM

Fig. 10. CDF of memory accuracy
for m-gap prediction.

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100

C
D

F

Accuracy

window size=1

window size=10

window size=50

(a) ARIMA

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100

C
D

F
Accuracy

window size=1

window size=10

window size=50

(b) BRR

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100

C
D

F

Accuracy

window size=1

window size=10

window size=50

(c) LSTM

Fig. 11. CDF of memory accuracy with different window sizes for m-gap prediction.

The K-means [43] and Gaussian Mixture Clustering [44]
are the two main methods for PBC. K-means is a distance-
based iterative algorithm. It clusters the whole data points
observation instances into N clusters so that each observation
instance is smaller than the center point of the cluster in
which it is located, compared to other cluster center points. In
order to minimize the squared error, the K-means algorithm
uses iterative optimization to approximate the target. In Gaus-
sian Mixture clustering, it uses probability model to express
clustering prototype. The problem here is that the lengths of
all tasks are not exactly the same while the PBC clustering
methods require the same length of all data points. To solve
this problem, we append 0 in the end to make all the tasks
have the same length. In our experiment, we find out that
the performance of K-means is better than Gaussian Mixture
Clustering. So we use K-means in our prediction methods.
The input of the PBC method is all tasks in the dataset. We
cluster the tasks into different subsets. For each subset, we
use one of the three prediction algorithms (i.e., ARIMA, BRR
and LSTM) to build a model. As a result, N subsets lead
to N models. Larger N leads to high computation overhead
but lower N leads lower prediction accuracy since the lower
number of subsets may not capture the workload feathers. We
use N = 5 in default because we found it achieves a better
tradeoff between prediction accuracy and computer overhead
from our experiments.

2) Density-based Clustering Method: Density-based clus-
tering (DBC) method [45] is a density-based clustering non-
parametric method. It first finds the points within high density

area and then groups together points that are close. Meanwhile,
for the rest outliers points that lie alone in low-density area,
each point is assigned into the nearest group. Finally, all the
points are clustered. One difference between K-means and
DBC is that the number of groups, N, can be set manually
in K-means but is determined by DBC itself. DBC clusters all
the tasks into 5 groups.

Also since DBC discovers clusters by continuously con-
necting high-density points in the neighborhood, it only needs
to define the neighborhood size and density thresholds, so
clusters of different shapes and sizes can be found. We use
DBC in our prediction methods. The input of DBC is all the
tasks in the dataset. We cluster the tasks into different subsets
and directly use the previous prediction algorithms on each
subset. Using this method, we get the clustered tasks with same
pattern and train each subset for better prediction accuracy.

B. Prediction Procedure

Combining the different clustering methods and prediction
methods, we finally can get the methods denoted by PBC-
ARIMA, DBC-ARIMA, PBC-BRR, DBC-BRR, and PBC-
LSTM and DBC-LSTM. The clustering method clusters all the
tasks into several groups. Then, we use the data in each group
for training to build a model. To predict a task’s workload, we
map the task to a task group based on its features and then use
the model for the corresponding group to conduct prediction.

C. Experimental Results

Now we evaluate the performance of PBC and DBC based
prediction methods. Since there is no big difference for predic-

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D

F

Accuracy

PBC-ARIMA

PBC-BRR

PBC-LSTM

Fig. 12. CDF of CPU accuracy in
PBC-based prediction.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D

F

Accuracy

window size=1

window size=10

window size=50

(a) PBC-ARIMA

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D

F

Accuracy

window size=1

window size=10

window size=50

(b) PBC-BRR

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D

F

Accuracy

window size=1

window size=10

window size=50

(c) PBC-LSTM

Fig. 13. CDF of CPU accuracy with different window sizes in PBC-based prediction.

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100

C
D

F

Accuracy

PBC-ARIMA

PBC-BRR

PBC-LSTM

Fig. 14. CDF of memory accuracy
in PBC-based prediction.

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100

C
D

F

Accuracy

window size=1

window size=10

window size=50

(a) PBC-ARIMA

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100

C
D

F
Accuracy

window size=1

window size=10

window size=50

(b) PBC-BRR

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100

C
D

F

Accuracy

window size=1

window size=10

window size=50

(c) PBC-LSTM

Fig. 15. CDF of memory accuracy with different window sizes in PBC-based prediction.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D

F

Accuracy

 DBC-ARIMA

DBC-BRR

DBC-LSTM

Fig. 16. CDF of CPU accuracy in
DBC-based prediction.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D

F

Accuracy

window size=1

window size=10

window size=50

(a) DBC-ARIMA

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D

F

Accuracy

window size=1

window size=10

window size=50

(b) DBC-BRR

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D

F

Accuracy

window size=1

window size=10

window size=50

(c) DBC-LSTM

Fig. 17. CDF of CPU accuracy with different window sizes in DBC-based prediction.

tion accuracy between 0-gap prediction and m-gap prediction.
We use 0-gap prediction below for these clustering based
methods.

1) PBC-based Prediction: Figure 12 shows the CDF of the
prediction accuracy for the CPU usage using the PBC-based
prediction methods. The results follow PBC-ARIMA≈PBC-
LSTM<PBC-BRR. For PBC-ARIMA, as we discussed before,
ARIMA cannot achieve better performance when the data
is not stable. Since the pathological data randomly exists
in all the tasks [28], even after PBC that clusters similar
tasks for modeling, the performance of ARIMA is still worse
and similar to the performance of PBC-LSTM. PBC-LSTM’s
advantage is to predict the workload for long-term tasks (with
many training data points) because of the neural network
involved in LSTM, but it is not good in predicting the
workload of short-term tasks that do not have many data

points for training. Even after PBC, PBC-LSTM still performs
worse than PBC-BRR. For PBC-BRR, it can handle non-linear
datasets and few training datasets. After PBC, PBC-BRR can
achieve higher prediction accuracy than other two methods.
Thus, PBC-BRR still has the best performance among three
methods.

Figure 13 show the CDF of the prediction accuracy for
the CPU usage using different window sizes for all the three
methods. The results follow the same trend and order as in
Figure 5 due to the same reasons.

Figures 14 and 15 show the CDF of the prediction accuracy
in memory. These figures demonstrate that all the methods
achieves the similar prediction accuracy performance with
varied window sizes. The reason is that, after clustering, all the
methods can achieve similar prediction accuracy performance
even with smaller window size. Comparing these results with

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100

C
D

F

Accuracy

DBC-ARIMA

DBC-BRR

DBC-LSTM

Fig. 18. CDF of memory accuracy
in DBC-based prediction.

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100

C
D

F

Accuracy

window size=1

window size=10

window size=50

(a) DBC-ARIMA

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100

C
D

F

Accuracy

window size=1

window size=10

window size=50

(b) DBC-BRR

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100

C
D

F

Accuracy

window size=1

window size=10

window size=50

(c) DBC-LSTM

Fig. 19. CDF of memory accuracy with different window sizes in DBC-based prediction.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D
F

Accuracy

0-gap-ARIMA

m-gap-ARIMA

PBC-ARIMA

DBC-ARIMA

(a) ARIMA

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D
F

Accuracy

0-gap-BRR

m-gap-BRR

PBC-BRR

DBC-BRR

(b) BRR

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D
F

Accuracy

0-gap-LSTM

m-gap-LSTM

PBC-LSTM

DBC-LSTM

(c) LSTM

Fig. 20. CDF of CPU accuracy of enhanced prediction methods.

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100

C
D
F

Accuracy

0-gap-ARIMA

m-gap-ARIMA

PBC-ARIMA

DBC-ARIMA

(a) ARIMA

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100

C
D
F

Accuracy

0-gap-BRR

m-gap-BRR

PBC-BRR

DBC-BRR

(b) BRR

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100

C
D
F

Accuracy

0-gap-LSTM

m-gap-LSTM

PBC-LSTM

DBC-LSTM

(c) LSTM

Fig. 21. CDF of memory accuracy of enhanced prediction methods.

Figure 7, we notice that the accuracy of window size 1 is
greatly improved. Therefore, PBC can highly improve the
prediction accuracy.

2) DBC-based Prediction: Figure 16 shows the CDF of the
prediction accuracy for the CPU usage using the DBC-based
prediction methods. After DBC, the results follow the same
trend and order as in Figure 12 due to the same reasons.

Figure 17 show the CDF of the prediction accuracy for
the CPU usage using different window sizes for all the three
methods. The results follow the same trend and order as in
Figure 13 due to the same reasons.

Figures 18 and 19 show the CDF of the prediction accuracy
for the memory usage. These figures follow the same trend and
order as in Figures 16 and 17 due to the same reasons.

3) Comparison Performance Evaluation: In this section,
we compare our proposed clustering based methods and the
three state-of-art prediction methods in 0-gap prediction. We

also include the results of the comparison methods in m-gap
prediction for reference. Figures 20 and 21 show the CDF
of the prediction accuracy in the CPU and memory usage.
The results follow 0-gap prediction ≈ m-gap prediction <
PBC ≈ DBC where the improvement is from 75% to over
90% in CPU usage prediction and from 92% to 95% in
memory usage prediction. In the trace, since different tasks
have much different patterns, 0-gap prediction and m-gap
prediction cannot achieve better prediction performance using
only one model. PBC and DBC help the prediction methods
achieve better prediction performance since the clustering
methods cluster the tasks with similar patterns into a group for
training. Then, the model corresponding to the group of tasks
can capture the pattern easily and predict the performance
more accurately. The result indicates that clustering methods
can highly improve the prediction accuracy as much as 15%

compared with the previous prediction methods.

V. CONCLUSION

Accurate task workload prediction is crucial in cloud re-
source management. In this paper, we first measured and
compared the state-of-the-art statistical and machine learning
methods in the task workload prediction using the Google
cluster trace. Then, we suggested the m-gap prediction method
to do workload prediction a certain time before the predicted
time point to leave enough time for task scheduling based on
predicted workload. We further proposed a clustering based
workload prediction method for higher prediction accuracy.
This method clusters tasks with similar workload patterns,
builds a workload prediction model for each cluster, and
uses corresponding model to predict the upcoming workload
of a task. This method achieves higher prediction accuracy
compared to the traditional prediction methods. In the future
work, we will focus on improving the architecture of deep
learning algorithms with clustering based model to achieve
higher prediction accuracy.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
NSF-1827674, CCF-1822965, OAC-1724845, CNS-1733596,
Microsoft Research Faculty Fellowship 8300751, and AWS
Machine Learning Research Awards.

REFERENCES

[1] L. Vaquero, L.and Rodero-Merino and M. Caceres, J.and Lindner, “A
break in the clouds: towards a cloud definition,” in Proc. of SIGCOMM,
2008.

[2] H. Shen and L. Chen, “Distributed autonomous virtual resource man-
agement in datacenters using finite-markov decision process,” Trans. on
TON, 2017.

[3] A. Josep, R. Katz, A. Konwinski, L. Gunho, D. Patterson, and A. Rabkin,
“A view of cloud computing,” Communications of the ACM, 2010.

[4] C. Qiu, H. Shen, and L. Chen, “Probabilistic demand allocation for cloud
service brokerage,” in Proc. of INFOCOM, 2016.

[5] A. Beloglazov and R. Buyya, “Managing overloaded hosts for dynamic
consolidation of virtual machines in cloud data centers under quality of
service constraints,” Trans. on TPDS, 2013.

[6] H. Wang, H. Shen, and Z. Li, “Approaches for resilience against
cascading failures in cloud datacenters,” in Proc. of ICDCS, 2018.

[7] W. Wei, H. Fan, X.and Song, and J. Fan, X.and Yang, “Imperfect
information dynamic stackelberg game based resource allocation using
hidden markov for cloud computing,” Trans. on SC, 2018.

[8] M. Xu and R. Buyya, “Brownout approach for adaptive management
of resources and applications in cloud computing systems: A taxonomy
and future directions,” ACM Computing Surveys (CSUR), 2019.

[9] Y. Yu, F. Jindal, V.and Bastani, F. Li, and I. Yen, “Improving the
smartness of cloud management via machine learning based workload
prediction,” in Proc. of COMPSAC, 2018.

[10] M. Hassan, H. Chen, and Y. Liu, “Dears: A deep learning based elastic
and automatic resource scheduling framework for cloud applications,”
in Proc. of UBICOMP, 2018.

[11] H. Wang and H. Shen, “Proactive incast congestion control in a
datacenter serving web applications,” in Proc. of INFOCOM, 2018.

[12] A. Khan, X. Yan, S. Tao, and N. Anerousis, “Workload characterization
and prediction in the cloud: A multiple time series approach,” in Proc.
of NOMS, 2012.

[13] Y. Jiang, C. Perng, T. Li, and R. Chang, “Asap: A self-adaptive
prediction system for instant cloud resource demand provisioning,” in
Proc. of ICDM, 2011.

[14] A. Morais, V. Brasileiro, V. Lopes, A. Santos, W. Satterfield, and
L. Rosa, “Autoflex: Service agnostic auto-scaling framework for iaas
deployment models,” in Proc. of CCGrid, 2013.

[15] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic resource scaling
for cloud systems,” in Proc. of ICNSM, 2010.

[16] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models
for adaptive resource provisioning in the cloud,” Trans. on FGCS, 2012.

[17] A. Bankole and S. Ajila, “Cloud client prediction models for cloud
resource provisioning in a multitier web application environment,” in
Proc. of SOSE, 2013.

[18] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud
using predictive models for workload forecasting,” in Proc. of ICC, 2011.

[19] A. Nikravesh, S. Ajila, and C. Lung, “Measuring prediction sensitivity
of a cloud auto-scaling system,” in Proc. of CSAC, 2014.

[20] Y. Nikravesh, S. Ajila, and C. Lung, “Towards an autonomic auto-scaling
prediction system for cloud resource provisioning,” in Proc. of SEAS,
2015.

[21] F. Qiu, B. Zhang, and J. Guo, “A deep learning approach for vm
workload prediction in the cloud,” in Proc. of SNPD, 2016.

[22] J. Gao, H. Wang, and H. Shen, “Task failure prediction in cloud data
centers using deep learning,” Proc. of IEEE Bigdata, 2019.

[23] W. Zhang, P. Duan, L. Yang, F. Xia, Z. Li, Q. Lu, W. Gong, and S. Yang,
“Resource requests prediction in the cloud computing environment with
a deep belief network,” Software: Practice and Experience, 2017.

[24] Q. Zhang, L. Yang, Z. Yan, Z. Chen, and P. Li, “An efficient deep
learning model to predict cloud workload for industry informatics,”
Trans. on TII, 2018.

[25] J. Kumar, R. Goomer, and K. Singh, “Long short term memory recurrent
neural network (lstm-rnn) based workload forecasting model for cloud
datacenters,” Trans. on Computer Science, 2018.

[26] B. Song, Y. Yu, Y. Zhou, Z. Wang, and S. Du, “Host load prediction
with long short-term memory in cloud computing,” Journal of Super-
computing, 2018.

[27] J. Gao, H. Wang, and H. Shen, “Smartly handling renewable energy
instability in supporting a cloud datacenter,” Proc. of IPDPS, 2020.

[28] C. Reiss, J. Wilkes, and J. Hellerstein, “Google cluster-usage traces:
format+ schema,” Google Inc., White Paper, 2011.

[29] T. Imam, F. Miskhat, R. Rahman, and A. Amin, “Neural network and
regression based processor load prediction for efficient scaling of grid
and cloud resources,” in Proc. of ICCIT, 2011.

[30] F. Farahnakian, P. Liljeberg, and J. Plosila, “Lircup: Linear regression
based cpu usage prediction algorithm for live migration of virtual
machines in data centers,” in Proc. of EuroSEAA, 2013.

[31] T. Joachims, “Training linear svms in linear time,” in Proc. of SIGKDD,
2006.

[32] G. Shyam and S. Manvi, “Virtual resource prediction in cloud en-
vironment: a bayesian approach,” Journal of Network and Computer
Applications, 2016.

[33] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, 1997.

[34] S. Das, Time series analysis. Princeton University Press, Princeton,
NJ, 1994.

[35] R. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload
prediction using arima model and its impact on cloud applications’ qos,”
Trans. on CC, 2015.

[36] A. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statistics and computing, 2004.

[37] L. Chen, H. Shen, and K. Sapra, “Rial: Resource intensity aware load
balancing in clouds,” in Proc. of INFOCOM, 2014.

[38] T. Park and G. Casella, “The bayesian lasso,” Journal of the American
Statistical Association, 2008.

[39] D. Basak, S. Pal, and D. Patranabis, “Support vector regression,” 2007.
[40] “http://www.acheronanalytics.com/acheron-blog/how-to-measure-the-

accuracy-of-predictive-models, [Accessed in APR 2019].”
[41] J. Moré, “The levenberg-marquardt algorithm: implementation and the-

ory,” in Numerical analysis, 1978.
[42] C. Richard, J. Bermudez, and P. Honeine, “Online prediction of time

series data with kernels,” Trans. on SP, 2009.
[43] K. Krishna and N. Murty, “Genetic k-means algorithm,” Trans. on SMC,

1999.
[44] G. Celeux and G. Govaert, “Gaussian parsimonious clustering models,”

1995.
[45] J. Sander, M. Ester, H. Kriegel, and X. Xu, “Density-based clustering

in spatial databases: The algorithm gdbscan and its applications,” 1998.

