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Abstract—The effectiveness of dispatching rescue teams under
a flooding disaster is crucial. However, previous emergency
vehicle dispatching methods cannot handle flooding disaster
situations, and previous rescue team dispatching methods cannot
accurately estimate the positions of potential rescue requests or
dispatch the rescue teams according to the real-time distribution
of rescue requests. In this paper, we propose MobiRescue, a
human Mobility based Rescue team dispatching system, that
aims to maximize the total number of fulfilled rescue requests,
minimize the rescue teams’ driving delay to the rescue requests’
positions and also the number of dispatched rescue teams. We
studied a city-scale human mobility dataset for the Hurricane
Florence, and found that the disaster impact severities are
quite different in different regions, and people’s movement was
significantly affected by the disaster, which means that the
rescue teams’ driving routes should be adaptively adjusted.
Then, we propose a Support Vector Machine (SVM) based
method to predict the distribution of potential rescue requests
on each road segment. Based on the predicted distribution,
we develop a Reinforcement Learning (RL) based rescue team
dispatching method to achieve the aforementioned goals. Our
trace-driven experiments demonstrate the superior performance
of MobiRescue over other comparison methods.

I. INTRODUCTION

Flooding disasters (e.g., Hurricane Florence (September 12-
15, 2018) and Hurricane Michael (October 7-16, 2018)) occur
around the world almost every year and kill much population
and cause injuries. Dispatching rescue teams (usually carried
by vehicles) to fulfill the pick-up requests of the people that
need rescue and deliver them to a safe hospital is crucial
for decreasing the number of deaths under flooding disasters.
Recent studies [1], [2] have verified that the number of deaths
generally increases significantly during and after disaster if the
affected population are not rescued timely. Therefore, efficient
and effective dispatching of rescue teams under a flooding
disaster is important. In this paper, we focus on rescue teams
that use vehicles as people carriers.

Many traditional methods that focus on determining the
driving routes of emergency vehicles to reduce the vehicles’
driving delay to the target emergency event positions under
normal situations have been proposed [3]–[6]. The driving
delay of a rescue team or a vehicle is defined as the time from
its current position to the end of its dispatched destination.
Generally, these methods use different models (e.g., integer
programming, Markov Decision Process) to consider multiple
factors (e.g., traffic status, vehicle availability) in determining
the emergency vehicles’ driving routes to maximally cover

the emergency requests and minimize the vehicles’ driving
delay in serving the requests. However, these methods aim to
serve appearing emergency requests on demand under normal
situations but are not applicable for flooding disaster situations
since they cannot predict the appearance of rescue requests and
proactively guide the rescue teams to timely serve the requests.
Long time in solving the integer programming problem further
prevents the timely rescue serving.

Generally, the appearance of people’s rescue requests is
closely related with their mobility in a disaster. To timely
serve the rescue requests, the rescue team dispatching center
needs to consider the movement of the people that are likely
to generate rescue requests when dispatching rescue teams.
Several methods that focus on dispatching rescue teams to
pick up the people under disaster (e.g., flooding, earthquake)
also have been proposed [1], [2], [7]–[9]. These methods
apply different stochastic models (e.g., time series analysis)
on the distribution of historical rescue request appearances to
estimate the future appearance of people’s rescue requests, and
formulate and solve integer programming problems to guide
the rescue teams to a certain destination road segments to
rescue the people trapped in disaster with the minimum driving
delays. However, these methods do not consider the factors
(e.g., precipitation, wind speed, altitude) that reflect the danger
level of people’s surrounding environment, and thus may have
insufficient accuracy in estimating the positions of potential
rescue requests since some factors of a position may change
in different disasters and even dynamically change in one
disaster. The people staying in a more dangerous environment
should have a higher priority to be rescued. For example, in a
flooding disaster, compared with people living in high-altitude
places, the people that are trapped in low-altitude places should
be more immediately rescued since the flooding is more likely
to endanger their basic living; and people living in an area
with strong winds are more likely to need rescue. Also, though
time is critical for rescuing people in a flooding disaster, the
integer programming problem based dispatching methods are
time-consuming and cannot efficiently guide rescue teams in
real time to serve rescue requests. Therefore, it is challenging
to more accurately predict the distribution of potential rescue
requests (i.e., the number of persons that need to be rescued
on each road segment) in a flooding disaster, and optimize
the dispatching of the rescue teams in real time to maximize
the total number of rescued people with the minimum driving
delay and minimum number of serving rescue teams.



To handle the challenge, we propose MobiRescue, a human
Mobility based Rescue team dispatching system that aims to
maximize the total number of rescued people, and meanwhile
minimize the rescue teams’ driving delay to the rescued
people’s pick-up positions and minimize the number of
serving rescue teams. First, we analyzed a city-scale mobility
dataset that record the movements of most of the people in the
North Carolina State during and after the Hurricane Florence
(Sep. 12-15, 2018) and gained the following observations:
(1) We found that the impact severities of the hurricane

disaster are quite different in different regions of the city,
and can be assessed by the characteristics that describe
the disaster (e.g., precipitation, wind speed and altitude).
Thus, we can utilize the characteristics to predict the
distribution of people’s potential rescue requests, which
serves as the guidance for dispatching rescue teams.

(2) We also found that people’s movement was significantly
affected by the disaster. To efficiently fulfill the people’s
pick-up rescue request, the rescue team dispatching sys-
tem must be able to adjust the rescue teams’ driving
routes in real time to adapt to the real-time changes of
the distribution of people’s potential rescue requests.

The observations serve as the foundation for the design
of MobiRescue which runs periodically (e.g., every 5 min-
utes). Accordingly, we first develop a Support Vector Ma-
chine (SVM) [10] based method to take into account various
disaster-related factors (i.e., characteristics that reflect the
intensity of the disaster, such as precipitation, wind speed,
and altitude) in predicting the distribution of potential rescue
requests. Then, based on the predicted distribution of potential
rescue requests and the operable roads (i.e., not destroyed
by the disaster) obtained from external support (e.g., satellite
imaging of the disaster area from area National Weather Ser-
vice [11]), we develop a Reinforcement Learning (RL) based
method, which can quickly output the guidance for the rescue
teams without taking a long time as in calculating the integer
programming problem. The inputs to the RL model include
the status of each rescue team and rescue requests (current
position, the number of rescue requests on each road segment)
and the outputs include the guidance on which road segment
each rescue team should drive to. The reward is defined in a
way that increases the number of rescue requests served by all
rescue teams, reduces the total driving delay that the rescue
teams need to drive to their assigned pick-up positions, and
reduces the total number of serving rescue teams.

In summary, our contributions include:
1. We analyze on a city-scale human mobility dataset in the

Hurricane Florence disaster, which confirms the effect of
disaster on vehicle flow rate (i.e., the average number of
vehicles per unit time) of each road segment and human
movement. The analytical results lay the foundation for
the design of MobiRescue.

2. We propose the MobiRescue rescue team dispatching
system that aims to maximize the total number of res-
cued people, and meanwhile minimize the rescue teams’
driving delay to the rescue requests’ positions and also
the number of serving rescue teams.

3. We have conducted extensive trace-driven experiments to

show the effectiveness of MobiRescue in terms of the
number of rescued people per unit time, the rescue teams’
average driving delay to the rescue requests’ positions,
the prediction accuracy and precision of rescue requests,
the number of serving rescue teams, and timeliness of
rescuing.

To our knowledge, this paper is the first work for rescue
team dispatching that considers various disaster-related factors
in predicting the appearance of potential rescue requests and
adaptively update the driving route of rescue team in real time
under flooding disaster situations. Note that the factors taken
into account for rescue request prediction can be manually
selected according to different catastrophic situations, so our
designed method can be extended to other disasters (e.g.,
earthquake, blizzard, etc.). Since the data is collected under
the context of flooding disasters, we limit the paper writing
to flooding catastrophic situation specifically. The remainder
of the paper is organized as follows. Section II presents the
literature review. Section III presents our dataset analysis
results. Section IV presents the detailed design of MobiRescue.
Section V presents our performance evaluations. Section VI
concludes the paper.

II. RELATED WORK

Emergency vehicle dispatching under normal situations.
Many works [3]–[6] focus on scheduling the driving route of
emergency vehicles to reduce the vehicles’ driving delay to
the target emergency event positions under normal situations.
Schmid et al. [3] proposed to consider the emergency vehicles’
real-time positions in updating their driving routes to minimize
the emergency vehicles’ driving delay to the emergency event
positions. Maxwell et al. [4] proposed an approximate dy-
namic programming (ADP) model that schedules the driving
routes of emergency vehicles to maximize the real-time cov-
erage of potential emergency events while keeping the emer-
gency vehicles’ service delay below a certain threshold. Van et
al. [5] proposed an integer programming to deploy the stand-
by positions of emergency vehicles to minimize the emergency
vehicles’ average driving delay to the emergency event po-
sitions. Snyder et al. [6] further considered the availability
of emergency vehicles to dynamically redeploy the stand-by
locations of emergency vehicles to minimize the emergency
vehicles’ driving delay when some areas do not have available
emergency vehicles. However, these methods aim to serve
appearing emergency requests on demand under normal sit-
uations but are not applicable for the flooding disasters.
Rescue team dispatching under catastrophic situations.
Many works [1], [2], [7]–[9] have been proposed to optimize
the dispatching of rescue teams by utilizing various stochastic
models to estimate the appearance of potential rescue requests
under flooding disaster situations. Sun et al. [7] proposed a
fuzzy rough set theory based model to predict the time-varying
change of rescue requests based on historical appearance
records of rescue requests. Huang et al. [8] formulated an
integer programming problem to minimize the sum of the
driving delays of the rescue teams. Cavdur et al. [1] proposed
a two-stage stochastic programming model to minimize the
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Fig. 1: Regions of Charlotte.

total travel distance of rescue teams and the number of
unmet rescue requests. Edrissi et al. [2] studied the reliability
measurement of road network under catastrophic situation
and proposed a heuristic algorithm to minimize the rescue
teams’ travel time considering the different reliability of road
segments. El-Tawab et al. [9] proposed to detect the real-time
weather condition of the road network by spreading sensors to
roadside after a disaster, and used the sensor data to dispatch
the rescue teams with the minimum driving delay to rescue
requests. However, these methods have insufficient accuracy
in estimating the positions of people’s rescue requests as
explained previously. Also, their integer programming problem
based dispatching methods are time-consuming and cannot
efficiently guide the rescue teams in real time to serve the
rescue requests. Our MobiRescue can handle these problems.

III. DATASET MEASUREMENT

A. Dataset Description and Definitions
Our datasets record the human mobility of 8,590 people in

the Charlotte city of North Carolina 15 days prior and after the
Hurricane Florence (Sep. 12-15, 2018) [12]. They include:
•GPS Data. The GPS data is collected from individual’s
cellphone GPS sensor at a certain time interval (varying
from 0.5 to 2 hours) of the 8,590 people. The data contains
timestamp, latitude, longitude, altitude, and speed of each user
during the sampling period. The associated timestamp and
unique ID of each individual allows us to track each user
anonymously. The location data covers all over Charlotte.
•Road map data. This data of Charlotte is obtained from
OpenStreetMap [13]. We have used a bounding box with
coordinate (latitude=35.6022, longitude=-79.0735) as south-
west corner, and coordinate (latitude=36.0070, longitude=-
78.2592) as north-east corner. We have used the data from
National Weather Service [11] to crop the affected area.
•Weather data. It includes precipitation and wind speed dur-
ing the disaster and is obtained from National Weather Service.

For data management, we utilized a 11.7 TB Hadoop
Distributed File System (HDFS) [14] on a cluster consisting
of 52 nodes, each of which is equipped with 20 cores and 32
GB RAM. For data processing, we used Apache Spark [15],
which is a fast in-memory cluster computing system running
on Hadoop. We study the spatio-temporal correlation and
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Fig. 2: Average vehicle flow rate of
two regions before and after disaster.
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Fig. 3: Difference of average vehicle
flow rate before and after disaster.

divergence between the mobility (in terms of trips) obtained
by cellphones, which serve as the empirical guidelines for
our system design later. We represent the road network of
Charlotte city with a directed graph G = (E, V ), in which
vertices V represent landmarks (i.e., intersections or turning
points in the road network), and edges E represent road
segments [16]–[18]. Based on the road network, we introduce
the following definitions:

Definition 1. Trajectory. A human’s or a rescue team’s tra-
jectory is a sequence of time-ordered landmarks, where each
landmark is represented by a latitude and a longitude.

Definition 2. Vehicle Flow Rate. Vehicle flow rate of a road
segment is defined as the average number of vehicles driving
through the road segment per unit time (an hour) [19]. The
vehicle flow rate of a region is defined as the average vehicle
flow rate over all the road segments in the region.

According to the planning of Charlotte City Council
Districts, the area of Charlotte City is partitioned into a set of
7 regions, which is shown in Figure 1. In Figure 1, we also put
the average precipitation (denoted by P), wind speed (denoted
by W) and altitude (denoted by A) per hour during the
hurricane (Sep. 14) in each region. The average precipitation
and wind speed data is obtained from the National Weather
Service. The average altitude is calculated based on the
altitude readings of the people’s movement data in each
region. Since these characteristics reflect the intensity of the
hurricane disaster, we define them as disaster-related factors.

B. Dataset Analysis
1) Disaster Impact on Different Regions in a City: Gener-

ally, the incidents caused by a flooding disaster will severely
impact people’s movement in the disaster area. To determine
whether a person’s movement is impacted by flooding, we
refer to National Weather Service [11] to obtain the satellite
imaging of the flooding zones in the city. We assume that if a
person’s position is in a flooding zone, the person’s movement
is severely affected and he/she potentially needs to be rescued
to a safer spot. Vehicle flow rate of a road segment is a good in-
dicator on how severe the people’s movement is affected [19].

To find whether the hurricane disaster has different impact
severities on different regions in the city, we measured the
average vehicle flow rate over all the road segments in two
regions (R1 and R2 in Figure 1) at each hour on August 25,
2018 (i.e., before disaster) and September 20, 2018 (i.e., after
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disaster) as our previous foundation work [12]. Figure 2 shows
the measured results. We can see that in R1 (P: 127 mm, W:
61 mph, A: 232.86 m), the difference between the average
vehicle flow rate before and after the disaster is quite small
(< 100 vehiles/hour during all hours). This means that the
people’s basic living in R1 is not severely affected. They can
still utilize the basic road infrastructure in R1 for daily life
after disaster. While in R2 (P: 152 mm, W: 72 mph, 195.07
m), the difference between the average vehicle flow rate before
and after the disaster is much larger and can be as high as
300 vehiles/hour. This means that the people’s basic living in
R2 has been impaired by the hurricane disaster. The primary
reason is that the average precipitation in R1 (61 mm) is much
lower than that in R2 (72 mm), and the average altitude in
R1 (232.86 m) is higher than that in R2. Thus, the flooding
resulted from the precipitation causes more damage in R2’s
road infrastructure.

To show the difference of impact severities in different
regions, we measured the Cumulative Distribution Function
(CDF) of the difference of all road segments’ average ve-
hicle flow rate before and after the disaster. The results are
illustrated in Figure 3. We can see that most road segments
(> 80%) have a difference of average vehicle flow rate
higher than 50 vehiles/hour before and after the disaster. The
differences of average vehicle flow rate of the road segments
vary quite a lot from 50 to 300 vehicles/hour. The above results
confirm that the impact severities of the hurricane disaster are
quite different in different road segments.

To further confirm that the disaster-related factors can reflect
the impact severity of the hurricane disaster, we measured
the Pearson correlation coefficient [20] between vehicle flow
rate and precipitation, wind speed and altitude, respectively,
for all the regions in Charlotte city. The Pearson correlation
coefficient is calculated as cov(R,λ)

σRσλ
, where R is the vehicle

flow rate, λ is one of the three disaster-related factors, cov()
is the covariance of R and λ, σR and σλ are the standard
deviations of R and λ. The range of the coefficient is from
-1 to +1, where a negative value means the two variables
are reversely correlated, a positive values means the two
variables are positively correlated. A higher absolute value
of correlation coefficient between two variables means that
they are more closely correlated. The results are illustrated
in Table I. We can see that the result of precipitation is
-0.897, the result of wind speed is -0.781, and the result
of altitude is 0.739. This means that precipitation and wind
speed are reversely correlated with vehicle flow rate, while
the altitude is positively correlated with vehicle flow rate.
That is, the higher precipitation and wind speed a region
has, the lower vehicle flow rate and the region is more
severely affected by the disaster, and the higher altitude a
region has, the higher vehicle flow rate and the region is less
severely affected by the disaster. The absolute values of the
correlation coefficients of the disaster-related factors follow:
precipitation>wind speed>altitude, which means precipitation
has the greatest impact on the change of vehicle flow rate.
From the results, we know that the disaster-related factors at a
person’s position are useful for assessing the impact severity
of the position and help more accurately determine whether

TABLE I: Correlation between disaster-related factors and vehicle flow rate.

Precipitation Wind speed Altitude
Vehicle flow rate -0.897 -0.781 0.739

Fig. 4: Region distribution of rescued people.

the person needs rescue. In Section IV-B, we will elaborate the
details of our method on combining these factors for predicting
the distribution of people’s potential rescue requests.

Observation 1: A disaster has different impact severities on
different regions in a city, and disaster-related factors can be
used to measure the impact severity of a location.

2) Relationship between Disaster Impact and Rescue Re-
quests: Intuitively, the more greatly the vehicle flow rate (peo-
ple’s movement) is affected, the more people’s rescue requests
will appear since they are trapped and cannot even drive their
vehicles for self-evacuation. To support this conjecture, we
analyze the change of vehicle flow rate and the number of
people rescued to hospital before, during and after the disaster,
and study the relationship between them.

For each region, we first measured the average vehicle
flow rate over the 24 hours in each day before the disaster
(September 10–13), during the disaster (September 14–16) and
after the disaster (September 17–19) as in [12]. Figure 5 shows
the results of all the regions. We can see that the average
vehicle flow rate during the disaster dropped significantly
compared with that before the disaster. During the disaster,
the average vehicle flow rates in the 6 regions all dropped to
almost 0. After the disaster, although the vehicle flow rates
were restored a lot compared to those during the disaster, the
results are still much lower than those before the disaster. The
gap in the average vehicle flow rates during the days before
disaster and the days after disaster can be as high as 300 in
Region 3, and around 100 in the other regions. Region 3 has
a higher gap compared with the other regions because it is
the central downtown area where vehicles frequently drive by
when there was no disaster. During the disaster, its vehicle flow
rate significantly dropped. This result shows that the people’s
movement was greatly affected by the disaster.

Second, we measured the total number of people rescued
to all the hospitals of Charlotte city. Specifically, we first
identified all the people delivered to a hospital in each day.
Starting from a person’s first appearance in a hospital, if the
person stayed at the hospital for more than a time threshold (2
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Fig. 6: # of people delivered to hospi-
tals before, during and after disaster.

hours in this paper), we view this person has been delivered
to the hospital. However, it is possible that not all people
delivered to the hospitals are rescued from flood trapped
places. Therefore, we further analyzed each delivered person’s
previous position before he/she was delivered to the hospital.
If the person’s previous position is located in a flooding
zone according to the satellite imaging explained above, we
conclude that this person was trapped by flooding and was
rescued to the hospital. Figure 6 shows the final measured
results. We can see that starting from September 13 (start
of hurricane impact), there is a steep jump in the number of
people delivered to hospital. From September 13 to September
16, the number of people delivered to hospital remains very
high, which corresponds to the low average vehicle flow
rate during the same days in Figure 5. This means that the
hurricane flooding disaster greatly impacted all the regions and
caused many rescue requests. Figure 4 shows the distribution
of the rescued people in different regions. The warmer color
(i.e., more red) that a region has, the more rescue requests that
appeared in the region, and the colder color (i.e., more green)
that a region has, the fewer rescue requests that appeared in
the region. We can see that most rescue requests appeared in
Region 3, which was impacted the most by the disaster. The
results of Figure 5, Figure 6 and Figure 4 confirm that more
people’s rescue requests appeared under higher disaster impact
measured by vehicle flow rate. To adapt to the sudden change
of people’s rescue requests after disaster, a method that can
adjust the driving routes of the rescue teams in real time is
necessary. In Section IV-C, we will elaborate the details of
our RL-based rescue team dispatching method.

Observation 2: Higher disaster impact leads to more rescue
requests. The distribution of people’s movement has significant
change before, during and after the disaster.

Problem statement: Given the remaining available road
network (i.e., road segments that vehicles can still drive
through) after diaster provided by satellite imaging (denoted
as G̃ = (Ẽ, Ṽ )), and real-time distribution of people collected
from people’s cellphone, how to predict the distribution of peo-
ple’s potential rescue requests and dispatch the rescue teams
to maximize the total number of rescued people, minimize the
driving delay to the rescue requests’ position, and minimize
the number of serving rescue teams?

IV. SYSTEM DESIGN

We assume that each rescue team has one vehicle. The
capacity of a rescue team (i.e., the number of persons that can
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Fig. 7: Framework of MobiRescue.

be rescued at a time) is c, which can be set by the rescue team
dispatching center according to actual equipment details (e.g.,
c = 5). There will be multiple rounds of dispatches within
24 hours per rescue team. Once a rescue team delivered the
rescued people to a certain safe spot, it will be dispatched to
pick up the next person that needs rescue directly or drive
back to the dispatching center to stand by.

A. Framework of MobiRescue

MobiRescue runs periodically (e.g., every 5 minutes) to
dispatch the rescue teams based on the predicted distribution
of potential rescue requests. MobiRescue consists of the fol-
lowing stages as shown in the three dashed boxes in Figure 7:
1. Human mobility information derivation. First, we apply
the Data Cleaning (e.g., filtering out positions out of the
actual range of our interested city, redundant positions). Then,
based on the cleaned data, we derive the Trajectories in
Landmarks of humans on the Roadmap with Landmarks and
Road Segments as explained in Section III-A.
2. Predicting distribution of potential rescue requests (Sec-
tion IV-B). Based on the output of Trajectories in Landmarks
from the first stage, we input the Disaster-related Factors (i.e.,
precipitation, wind speed, altitude) of each road segment to
the SVM Model to predict the Distribution of Potential Rescue
Requests across all the road segments.
3. Reinforcement Learning based Rescue Team Dispatching
(Section IV-C). Based on the Distribution of Potential Rescue
Requests and the remaining available road network (denoted
as G̃ = (Ẽ, Ṽ )) obtained from the satellite imaging from
National Weather Service [11], we train and utilize the RL
based Rescue Team Dispatching method to decide the road
segment each rescue team should drive to in order to maximize
the total number of fulfilled rescue requests, minimize the
rescue teams’ driving delay to the rescue requests’ positions,
and minimize the number of serving rescue teams.

B. Predicting Distribution of Potential Rescue Requests

From Observation 1 (Section III-B1), we know that although
the overall city area was greatly affected by a disaster, the
disaster has different impact severities on different regions due
to their different disaster-related factors. Based on the impact
severity and surrounding disaster-related factors, people send
out rescue requests. For example, under a flooding disaster,
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for people that are trapped in low altitude places, they must
be rescued as soon as possible because their basic living is
already or will be in danger. In addition to people’s altitude,
more disaster-related factors (e.g., precipitation, wind speed,
altitude) need to be considered in general disaster situations.
Thus, one research problem is: Given the distribution of
people in an area affected by disaster, how to determine the
distribution of potential rescue requests with the consideration
of various disaster-related factors? In this section, we present
the details of our SVM [10] based model to solve this problem.

According to previous works on the analysis of disaster
characteristics [21], [22], the primary disaster-related factors
that affect the living conditions of people in post-disaster
situations can be categorized into: (precipitation, wind speed,
altitude) for hurricane, flooding or tsunami, and (seismic
magnitude, altitude, building density) for earthquake. In this
paper, we focus on hurricane related factors represented as a
vector h = (precipitation, wind speed, altitude). Precipitation
and wind speed can be obtained from the external facilities
such as National Weather Service. Altitude can be obtained
from the altimeter sensor on the person’s cellphone [23]. Thus,
each person will have a vector of the factors corresponding to
his/her position. For example, if a person is on a playground,
the vector of the person’s surrounding disaster-related factors
is (100 mm, 10 mph, 5 m). If the person is moved to a safe
spot, the vector of the person’s surrounding disaster-related
factors changes to (10 mm, 5 mph, 50 m).

To classify whether a person should be rescued based
on the disaster related factors surrounding this person, an
effective approach is to use machine learning technique to
take the person’s disaster related factors as inputs and output
the person’s rescue decision (i.e., should be rescued or should
not be rescued). By combining all the persons that should be
rescued, we can predict the distribution of potential rescue
requests. Specifically, we choose the SVM model for the
classification. The SVM is a classifier model that maps the
feature data (i.e., disaster-related factors in this paper) as points
in a high-dimensional space. After training, SVM determines a
hyperplane that separates the data points into the two types of
rescue decisions and the corresponding weights of the factors,
so that the distance from the hyperplane to the nearest data
points on each side is maximized. The reasons of selecting
SVM as the classifier are as follows:
• The disaster-related factors (precipitation, wind speed, alti-
tude) are features with continuous numerical values, which
are suitable for the processing of SVM.
•We aim to do binary classification on the people’s rescue
decision (i.e., should be rescued or should not be rescued),
which can be achieved by the SVM classifier.
• In a high-dimensional space, the data points may not be
separated with a linear function. The SVM classifier can
overcome this problem by using the kernel function, which
supports the formulation of a nonlinear function for separating
the data points in training the classification model.

To get the training data, for each person in the historical
movement data during disaster, we first checked whether the
person was rescued by using the method of identifying rescued
people introduced in Section III-B2. We consider this as

the ground truth of the person’s rescue requests. Then, we
located the person’s previous staying position before he/she
was delivered to a hospital and calculated the disaster-related
factor vector of the person.

Finally, we input the disaster-related factor vector of each
person in the dataset to the SVM model and train the model
to output the corresponding rescue decision for the person
with the minimum error. Once the training of the SVM model
is complete, given the real-time disaster-related factor vector
of a person as the inputs, we can utilize the SVM model to
determine whether the person should be rescued. Specifically,
we use Equation (1) to represent the decision of the SVM
model on a person q’s rescue decision:

f(pq,hq) =

{
1, person q should be rescued,
0, otherwise.

(1)

where f is the trained SVM model, pq is the position of person
q, and hq is the disaster-related factor vector at q’s position.
After applying the SVM model to determine the rescue deci-
sion of each person, we count the number of persons that need
to be rescued on each road segment ei ∈ E (i.e., distribution
of potential rescue requests on road segments) as

ñei =
∑
q∈Qei

f(pq,hq), (2)

where Qei is the set of people on road segment ei. ñei
will be used in the reinforcement learning based rescue team
dispatching method introduced below.

C. Reinforcement Learning based Rescue Team Dispatching

From Observation 2 (Section III-B2), we know that the
distribution of people’s movement has significant change
before, during and after the disaster. The previous integer
programming based rescue team dispatching methods are time-
consuming and cannot efficiently guide the rescue teams in
real time to serve the people’s rescue requests. Thus, we need
a real-time rescue team dispatching method to maximize the
number of fulfilled rescue requests, and meanwhile minimize
the rescue teams’ driving delay to the rescue requests’ position
and the total number of serving rescue teams.

Therefore, we propose the RL based dispatching method to
determine the action of all the rescue teams. RL can output
the guidance for the rescue teams much faster than the integer
programming based methods. Therefore, the guidance of the
rescue teams can be produced in real time. This method
runs based on the predicted distribution of potential rescue
requests from Section IV-B periodically (e.g., 5 minutes).
The dispatching process of the RL model works as follows:
given a current state s, the model outputs an action a that
maximizes the reward r. As shown in Figure 8, as state,
Current Distribution of Potential Rescue Requests, the Rescue
Teams’ Current Positions are the inputs to the RL model,
which outputs the Action of all the rescue teams. The action
of a rescue team includes driving to a road segment to pick up
a person that needs rescue or driving back to the dispatching
center to stand by. The reward resulted by an action is defined
as the weighted sum of the total number of rescue requests
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that the dispatched rescue teams fulfilled, the total sum of the
dispatched rescue teams’ driving delays, and the number of
serving rescue teams. Once we optimize the RL model’s policy
π : s 7→ a through training, we can use it to optimally guide
the rescue teams’ movement that maximizes the reward. The
guided rescue teams will serve the people’s rescue requests
appearing on their driving routes. Next, we introduce the
details of the state, action and reward of the RL model, as
shown in Figure 8.

1) State: One goal is to maximize the total number of
rescue requests fulfilled by all the rescue teams, and each
rescue team can only select one road segment from the road
network as its destination at a time. Therefore, the state needs
to include current distribution of potential rescue requests, i.e.,
the estimated number of potential rescue requests on each road
segment ñei calculated by Equation (1). Specifically, recall
that for each road segment in the remaining available road
network ei ∈ Ẽ, we utilize the SVM model (Equation (1))
to determine the number of potential rescue requests on ei
(denoted by ñei ). Another goal is to minimize the rescue
teams’ driving delay from their current positions to the rescue
requests’ positions, so the state also needs to include the rescue
teams’ current positions. In summary, the state s consists
of current position of each rescue team and the estimated
number of potential rescue requests on each road segment in
the remaining available road network. Thus, the state set S is
defined as follows:

s = ({pmk | ∀ mk ∈M}, {ñei | ∀ ei ∈ Ẽ}) ∈ S (3)

where mk denotes the kth rescue team, pmk denotes the
current position of the kth rescue team, and M denotes the
set of all the rescue teams.

2) Action: The action consists of the driving decision of
each rescue team. Specifically, the kth rescue team’s driving
decision (denoted by xmk ) is: i) driving to a destination road
segment in the remaining available road network (denoted by
xmk=ej ∈ Ẽ), or ii) driving to the rescue team dispatching
center to stand by (denoted by xmk = 0). The rescue teams
that are chosen to drive to a certain destination road segment
are considered as serving rescue teams. Thus, the action set
A is defined as:

a = (xmk | ∀ mk ∈M) ∈ A. (4)

3) Reward: As aforementioned, the RL model aims to
maximize the total number of rescued people, and meanwhile
minimize the sum of all the rescue teams’ driving delays
and the number of serving rescue teams. The reward function
resulted by the xmk of all the rescue teams is defined as the
weighted sum of the total number of rescue requests actually
served by all the rescue teams (denoted by Nq), the sum of the
rescue teams’ driving delays to the rescue requests’ positions
(denoted by T d), and the number of serving rescue teams
(denoted by Nm), which can be formulated as:

r(st, at, st+1) = αNq − βT d − γNm (5)

where st is the state at current time, st+1 is the next state
caused by the action at, and α, β and γ are the weights that de-
termine the importance of the metrics that can be manually set.

The total number of served rescue requests metric is the
total number of rescue requests that all the rescue teams
may encounter by driving to their respective destination road
segments. Specifically, for each rescue team (say kth rescue
team), we first use an existing routing algorithm (e.g., the
Dijkstra algorithm [19]) to determine the shortest distance
driving route from the rescue team’s current position (pmk
in the state) to the end of the destination road segment
in the determined action (ej ∈ Ẽ), which is denoted as
Φkj = {pmk , . . . , ej}. Then we calculate the union set of the
road segments that will be driven by all the rescue teams by
taking their actions (denoted by E′ =

⋃
mk∈M Φkj). Finally,

we sum the numbers of the served rescue requests in each
road segment in E′ (denoted by nei ): N

q =
∑
ei∈E′ nei .

The rescue team driving delay metric is the sum of all
the serving rescue teams’ driving delays T d =

∑
mk∈M tkj ,

where tkj is the driving delay of the kth rescue team. Specif-
ically, if the kth rescue team is chosen to drive to the end
of road segment ej (denoted by xmk = ej ∈ Ẽ), its driving
delay to ej is calculated by tkj =

∑
ei∈Φkj

lei
vei

, where lei is
the length of ei, and vei is the speed limit of ei under current
flooding disaster condition.

The number of serving rescue teams metric is the number
of rescue teams that are chosen to drive to certain destination
road segments. Specifically, if a rescue team mk is chosen to
drive to a new destination road segment to serve the rescue
requests (xmk = ej ∈ Ẽ), it is counted as a serving rescue
team. That is, cmk = 1. If rescue team mk is chosen to drive
to the dispatching center (xmk = 0), it is not counted as a
serving rescue team. That is, cmk = 0. Thus, this metric is
calculated as Nm =

∑
mk∈M cmk .

4) Obtaining the Optimal Policy: We utilize the Deep
Neural Network (DNN) (as in [24]) to obtain the optimal
policy for dispatching rescue teams. For DNN training, we get
the historical distribution of rescue requests and the historical
positions of rescue teams from previous disasters with a short
sampling interval (e.g., 1 minute) as the training data. After the
completion of model training, we can utilize the output of the
model to generate a routing plan which can guide each rescue
team during disaster. However, this sampled historical data
may not be completely applicable for the current disaster area
since historical disasters may have different levels of impact.
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Therefore, once the RL model is trained and when running
the RL model, we keep training the RL mode. That is, we
keep getting the up-to-date training data with a short sampling
interval by recording the generated rescue teams’ driving
routes as the output data (i.e., action of all the rescue teams),
and the position of each rescue team and the distribution of
rescue requests on all the road segments as the input data (i.e.,
state of all the rescue teams).

5) Extension for General Catastrophic Situations: Mo-
biRescue can be extended to handle different catastrophic
situations. Specifically, the following components can be more
sophisticatedly designed for the extension. We leave the de-
tailed extension of the components as our future work.
1. Disaster-related factors. It is worth clarifying that the
disaster-related factors are not necessarily limited to the ones
considered in this paper (i.e., precipitation, wind speed, al-
titude), but should be selected according to different types
of disasters. For example, (temperature, precipitation, wind
direction) may be more effective factors for victim prediction
related to wild fire hazard; (precipitation, road slope degree,
temperature) may be more effective factors for damage as-
sessment under icy or snowy weather. We leave the adaptive
selection of the disaster-related factors according to different
types of disaster as our future work directions.
2. Availability of real-time GPS data. Under severe situations,
the GPS locations of some people may not be readily available.
We can refer to these people’s historical GPS data to analyze
the home address/work address/preferred driving pattern and
estimate the approximate position/area of the people.

V. PERFORMANCE EVALUATION

A. Comparison Methods

We evaluate the performance of MobiRescue (MR in short)
in comparison with a representative emergency vehicle dis-
patching method for normal situations [5] (Schedule in short)
and a representative rescue team dispatching method for catas-
trophic situations [8] (Rescue in short). Schedule uses integer
programming to dispatch emergency vehicles on demand of
the appearance of emergency requests to minimize the emer-
gency vehicles’ average driving delay to the emergency event
positions. However, it aims to serve appearing emergency
requests under normal situations but is not applicable for the
flooding disasters since they cannot predict the appearance
of rescue requests and proactively guide the rescue teams to
timely serve the requests. Long time in solving the integer pro-
gramming problem further prevents the timely rescue serving.

Rescue applies time series analysis on historical distribution
of rescue request appearances. It predicts the rescue request
demand at the current hour by using the weighted average
request demand at this hour in several previous days. Based
on the predicted distribution of rescue requests, it formulates
an integer programming problem to minimize the sum of the
rescue teams’ driving delays to the predicted rescue requests’
positions and periodically solves the problem to update the
rescue teams’ driving route according to the changed distribu-
tion of potential rescue requests. The drawback of this method
is that it does not consider the factors (e.g., precipitation,
wind speed, altitude) that reflect the danger level of people’s

surrounding environment, which causes insufficient accuracy
in estimating the positions of potential rescue requests. Also,
solving the integer programming problem is time-consuming
and cannot efficiently guide the rescue teams in real time.

For fair comparison, we suppose the deployment of hospi-
tals in the three methods follows the deployment of existing
hospitals in Charlotte city, and all three systems deliver the
rescued people to their nearest hospitals.

B. Experiment Settings

We use the human mobility data in Charlotte on September
16, 2018 to simulate the appearance of rescue requests. This
day is representative because that it has the highest number
of rescue requests and the requests are distributed in different
regions according to the measurement made in Section III-B1.
We use the data from the Hurricane Michael (October 7-16,
2018), which also impacted the Charlotte area, to train our
SVM model and RL model. For the SVM model’s training,
we got the rescue decision on each person using the method
introduced in Section III-B2 as the ground truth. The disaster-
related factors are determined based on the weather data in
Charlotte during the same time period. For the RL model’s
training, we suppose that the initial positions of rescue teams
(i.e., ambulances) were randomly distributed among all the
hospitals. The number of ambulances is equal to the maximum
daily number of requests over all days during the hurricane.
Given the hospital delivery timestamp (td) of a person in
our ground truth, we chose the ambulance that can drive
to the person’s request position and deliver him/her to the
destination hospital with the estimated delivery timestamp
most approximate to td as the ambulance that picked up the
person. We also suppose that after each rescue, the ambulance
chose to stay in its nearest hospital. Then, we use the driving
routes of all the ambulances as the output. Meanwhile, we
sample the position of each rescue team per unit time (e.g., 1
minute) and the ground truth historical distribution of rescue
requests on all the road segments per unit time as the inputs.

We utilize Flow [25], which is a computational framework
for RL and control experiments for traffic simulation, to train
the RL based rescue team dispatching method. Based on the
deployment of existing hospitals in Charlotte, we use SUMO
[26], which is a simulator for city-scale traffic simulation, to
simulate the movement of 100 rescue teams for 24 hours on
Charlotte’s road network. We call the rescue requests that are
served within 30 minutes timely served requests. We converted
OpenStreetMap road network of Charlotte to a SUMO road
network file. The metrics we measured include:
• The total number of timely served rescue requests: For each
rescue team, we measure the number of rescue requests it has
timely served in each hour throughout a day. Then, we measure
the total number of timely served rescue requests of all the
rescue teams in each hour throughout the day. We also measure
the CDF of the numbers of timely served rescue requests of
all the rescue teams throughout the day. The purpose of this
metric is to compare the performance of different methods in
serving the rescue requests.
• The average driving delay: For each rescue request from a
person, we measure the rescue team’s driving delay to his/her
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Fig. 9: The total number of served rescue requests.

position. Then, we measure the average driving delay over all
the served rescue requests in each hour throughout a day. We
also measure the CDF of the driving delays of all the served
rescue requests throughout the day. The purpose of this metric
is to compare the performance of different methods in reducing
the waiting time of the rescue requests before being served by
a rescue team.
• Timeliness of rescuing. For each rescue request from a person,
we measure (the person’s rescue time - person’s request time)
as the timeliness of rescuing. For the case when rescue team
has already arrived at the person’s position before the actual
request, we set the timeliness of rescuing as 0. The purpose
of this metric is to compare the timeliness performance of
different methods in dispatching the rescue teams. Note that
the computation delay resulted from the dispatching methods
is included in this metric.
• The number of serving rescue teams. During each hour
throughout a day, we measure the number of serving rescue
teams. The purpose of this metric is to compare the perfor-
mance of different methods in reducing the cost of dispatching.
• The prediction accuracy and precision of rescue re-
quests: To demonstrate the performance of our SVM based
method in predicting whether a person needs rescue, for
each road segment, we measure the prediction accuracy as

TP+TN
TP+TN+FP+FN , and measure the prediction precision as
TP

TP+FP , where True Positive (TP) = the number of people
correctly predicted as sending rescue requests; False Positive
(FP) = the number of people incorrectly predicted as sending
rescue requests; True Negative (TN) = the number of people
correctly predicted as not sending rescue requests; False
Negative (FN) = the number of people incorrectly predicted
as not sending rescue requests.

C. Experimental Results
1) The Total Number of Timely Served Rescue Requests:

Figure 9 shows the total number of timely served rescue
requests of all the rescue teams during each hour throughout
a day under different methods. Figure 10 shows the CDF
of the numbers of timely served rescue requests of all the
rescue teams throughout the day under different methods.
We can see that the results of MobiRescue are always the
highest compared with the other methods. The results follow:
MobiRescue>Rescue>Schedule.

In Schedule, the rescue teams’ driving routes are updated on
demand of the appearance of real-time rescue requests. Based
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Fig. 11: The average driving delay.

on the real-time distribution of rescue requests, Schedule uses
integer programming to minimize the rescue teams’ average
driving delay to the appearance positions of rescue requests.
However, Schedule aims to serve appearing emergency
requests under normal situations but is not applicable for
the flooding disaster situations since they cannot predict the
appearance of rescue requests and proactively guide the rescue
teams to timely serve the requests. Long time in solving integer
programming problem further prevents its timely rescuing.

Rescue applies time series analysis on historical distribution
of rescue request appearances to periodically predict the
future appearance of people’s rescue requests and periodically
solving its integer programming to update the driving routes of
the rescue teams. However, it does not consider the disaster-
related factors that closely reflect the danger level of people’s
surrounding environment, which causes insufficient accuracy
in estimating the positions of potential rescue requests. Also,
when planning the driving route of a rescue team, Rescue
needs to spend a long time on solving its integer programming
problem. Therefore, Rescue cannot efficiently guide the rescue
teams in real time to serve the rescue requests, which causes
much fewer served rescue requests than that of MobiRescue.

In MobiRescue, the rescue team dispatching center monitors
the disaster-related factors in real time and utilizes the SVM
based method to periodically estimate the distribution of
potential rescue requests with a high accuracy. Based on the
predicted distribution of potential rescue requests, MobiRescue
can avoid the rescue teams from driving to regions that have
low likelihood of rescue request appearance. Also, the periodi-
cal running of the RL model can always guide the rescue teams
in real time to cruise around the areas with the highest pos-
sibility of served potential rescue requests and reduce rescue
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Fig. 13: Timeliness of rescuing.

teams’ driving time. Therefore, the rescue teams of MobiRes-
cue can serve the most rescue requests among the methods.

2) The Average Driving Delay to the Rescue Requests’
Positions: Figure 11 shows the average driving delays of the
rescue teams to serve the rescue requests during each hour
throughout a day under different methods. Figure 12 shows
the CDF of the driving delays of all the served rescue requests
throughout the day under different methods. We can see that
the results of MobiRescue is much lower than the other two
methods during most times. The results follow: MobiRes-
cue<Rescue<Schedule. Schedule does not consider the real-
time road network connection status under flooding disaster
condition, which causes the emergency vehicles to waste time
on routes with unavailable road segments. Therefore, it results
in the longest average driving delay. In Rescue, the estimated
positions of potential rescue requests output by its time series
analysis are not sufficiently accurate since it does not consider
the factors that reflect the danger level of people’s surrounding
environment. The rescue teams wasted some time on driving
to some inaccurate request positions. Therefore, it results
in the second longest average driving delay. In contrast, in
MobiRescue, the rescue team dispatching center can utilize the
SVM based method to periodically estimate the distribution
of potential rescue requests with a high accuracy, and aims
to minimize the total driving delays of all rescue teams based
on the real-time connection status of remaining available road
network. The rescue teams can approach the accurate request
positions through available road segments. Therefore, it results
in the shortest average driving delay.

3) Timeliness of Rescuing: Figure 13 shows the CDF of
the timeliness of rescuing of all the rescue requests under
different methods. We can see that the results follow: MobiRes-
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cue<<Schedule<Rescue in all dispatchings. This is because
that in Rescue and Schedule, solving the integer programming
problem generally takes around 300 seconds for computation
and the computation time varies under different amounts of
request demands (i.e., the more requests, the more complex
for solving the integer programming problem). Therefore, the
long computation time in solving their integer programming
problem prevents their timely rescue serving. While in Mo-
biRescue, once the RL model training is complete, it takes less
than 0.5 second in computing and outputting the dispatching
guidance. This result confirms that MobiRescue can achieve
real-time dispatching of rescue teams compared to integer
programming based dispatching methods.

4) The Number of Serving Rescue Teams: Figure 14 shows
the number of serving rescue teams during each time slot
throughout a day under different methods. We can see that the
results follow: MobiRescue<Rescue=Schedule. In Rescue and
Schedule, the number of serving rescue teams remains constant
during all time slots since their integer programming based
methods do not aim to minimize the number of serving rescue
teams according to the change of rescue request appearance. In
MobiRescue, the change of the number of serving rescue teams
generally matches the change of the number of rescue request
appearances as illustrated in Figure 9. This is because that the
RL based rescue team dispatching method aims to minimize
the total number of serving rescue teams in covering the rescue
requests. This result confirms that MobiRescue can reduce the
cost of dispatching rescue teams of the other methods.

5) The Prediction Accuracy and Precision of Rescue Re-
quests: Figure 15 shows the CDF of the prediction accuracies
of rescue requests on all the road segments of MobiRescue and
Rescue. Schedule is not included since it does not have such
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prediction function. Figure 16 shows the CDF of the prediction
precisions of rescue requests on all the road segments. We
can see that the results follow: MobiRescue>Rescue for all
road segments. This is primarily because that the time series
analysis method in Rescue does not consider the factors that
reflect the danger level of people’s surrounding environment.
In MobiRescue, since the SVM model learns the impacts of the
factors during the training on historical rescue request records,
MobiRescue can achieve both higher prediction accuracy and
higher prediction precision over all the road segments since it
additionally considers the disaster-related factors.

VI. CONCLUSION

Rescue team dispatching under a flooding disaster is crucial
for decreasing the number of deaths and injuries. Previous
emergency vehicle dispatching methods in normal situations
cannot effectively handle flooding disaster situations, and
previous rescue team dispatching methods have insufficient
accuracy in predicting the distribution of rescue requests by
only relying on the historical data that may not accurately
reflect current disaster impact in different regions and cannot
guide the rescue teams in real time since their integer pro-
gramming based methods are time-consuming. Our proposed
MobiRescue is the first human mobility based rescue team
dispatching method that utilizes SVM model and Reinforce-
ment Learning to maximize the total number of served rescue
requests, minimize the rescue teams’ driving delay to the
rescue requests’ positions and the number of serving rescue
teams. Our analytical results on a city-scale human mobility
dataset provide foundation for the design of MobiRescue.
We develop an SVM based method that utilizes the disaster-
related factors of regions to predict the distribution of po-
tential rescue requests. Based on the predicted distribution
of potential rescue requests, we develop a Reinforcement
Learning based rescue team dispatching method to achieve the
aforementioned goals. We conducted trace-driven experiments
on SUMO and Flow to verify the superior performance of
MobiRescue over other representative comparison methods.
In the future, we plan to focus on building a rescue request
prediction model that considers more disaster-related factors
under various catastrophic situations.
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