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Abstract

There are many structured P2P systems that use DHT technologies to map data items onto the nodes in various
ways for scalable routing and location. Most of the systems require O(logn) hops per lookup request with O(logn)
neighbors per node, wheren is the network size. In this paper, we present a constant-degree P2P architecture,
namelyCycloid, which emulates a cube-connected cycles (CCC) graph in the routing of lookup requests. It achieves
a time complexity of O(d) per lookup request by using O(1) neighbors per node, wheren = d × 2d . We compare
Cycloid with other two constant-degree systems, Viceroy and Koorde in various architectural aspects via simulation.
Simulation results show that Cycloid has more advantages for large scale and dynamic systems that have frequent
node arrivals and departures. In particular, Cycloid delivers a higher location efficiency in the average case and
exhibits a more balanced distribution of keys and query loads between the nodes.
© 2005 Elsevier B.V. All Rights Reserved.
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1. Introduction

Over the past years, the immerse popularity of peer-to-peer resource sharing services has produced
a significant stimulus to content-delivery overlay network research. An important class of the overlay
networks is distributed hash tables (DHTs) that map keys to the nodes of a network based on a consistent
hashing function. Representatives of the DHTs include CAN[16], Chord[19], Pastry[17], Tapestry[22]
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and Kademlia[13]. They organize the nodes in various ways for efficient location of data items. Most
of the DHTs require O(logn) hops per lookup request with O(logn) neighbors per node, wheren is the
network size.

The network degree determines the number of neighbors with which a node must maintain continuous
contact. In order to reduce the cost for maintenance, in this paper we present a new constant-degree DHT,
namely Cycloid. It achieves a lookup path length of O(d) with O(1) neighbors, whered is the network
dimension andn = d × 2d . It combines Chord and Pastry and emulates a cube-connected cycles (CCC)
graph in the routing of lookup requests between the nodes.

There exist other two constant-degree DHTs: Viceroy[12] and Koorde[9]. Both of them feature a time
complexity of O(logn) hops per lookup request with O(1) neighbors per node. But they are different in
maintenance of the connectivity between a changing set of nodes and in routing for efficient key location.
Koorde embeds a de Bruijn graph on the identifier circle for forwarding lookup requests. It bears much
resemblance to Chord in routing and connectivity maintenance. Viceroy emulates a butterfly network by
assuming a real number ID space in [0, 1). It requires to select a butterfly level parameter of each node
according to an estimate of the network size. Due to the dynamic nature of peer-to-peer systems, the level
of a node may change with time. By contrast, Cycloid specifies each node by a pair of cyclic and cubic
indices. It emulates a CCC graph by using a routing algorithm similar to the one in Pastry. Although the
lookup complexity of all the three constant-degree DHTs are of the same order O(logn), our simulation
results show that Cycloid has a much shorter path length per lookup request in the average case than
Viceroy and Koorde. Cycloid distributes keys and lookup load more evenly between the participating
nodes than Viceroy. Also, Cycloid is more robust as it continues to function correctly and efficiently with
frequent node joins and leaves.

The rest of this paper is structured as follows. Section2 presents a concise review of representative
DHTs. In particular, Viceroy and Koorde are discussed in detail. Section3 details the architecture of
Cycloid, with an emphasis on its nodal routing table, routing algorithm, and self-organization consider-
ations. Section4 shows the performance of Cycloid, in comparison with Viceroy and Koorde. Finally,
Section5 concludes this paper with remarks on possible future work.

2. Related work

There are two classes of peer-to-peer content-delivery overlay networks: unstructured and structured.
Unstructured networks such as Gnutella[2] and Freenet[1,5,6] do not assign responsibility for data
to specific nodes. Nodes join and leave the network according to some loose rules. There are recent
improved query methods, including flooding[2,7] where the query is propagated to all neighbors and
random-walkers[10] where the query is forwarded to randomly chosen neighbors until the object is
found.

Flooding-based search mechanism brings about heavy traffic in a large-scale system because of ex-
ponential increase in messages generated per query. Though random-walkers reduce flooding by some
extent, they still create heavy overhead to the network due to the many forwarding peers involved. Further-
more, flooding and random walkers cannot guarantee data location. They cannot ensure query termination
either once the data is located. In random walkers, a satisfied query cannot stop the other queries to other
random neighbors for the same content. Both of the approaches cannot prevent one node from receiving
the same query multiple times, thus wasting bandwidth. Yang et al. studied related issues and designed
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a scalable hybrid P2P system based on the concepts of chained architecture, replication and hash[21].
Unstructured networks are simple in organization and able to ensure high rate churn. They also support
keyword searches.

Structured networks have strictly controlled topologies. The data placement and lookup algorithms
are precisely defined based on a distributed hash table (DHT) data structure. The node responsible for a
key can always be found even if the system is in a continuous state of change. Because of their potential
efficiency, robustness, scalability and deterministic data location, structured networks have been studied
intensively in recent years. Representative DHTs include CAN[16], Chord[19], Pastry[17], Tapestry
[22] and Kademlia[13]. Structured networks have three main disadvantages. First, DHT is less adept at
supporting keyword searches because it is designed for exact-match query. Second, it incurs substantial
repair operations for high churn rate. Third, hot-spots are generated for too frequently accessed files.
Readers are referred to[18] for more discussions about advantages and disadvantages of structured and
unstructured P2P networks.

In the following, we review and compare structured DHT representatives by focusing on their topologi-
cal aspects. Space limitation prevents us from a detailed discussion of each system. Instead, we give more
detailed descriptions of constant-degree Viceroy and Koorde DHTs for comparison. Hypercube-based
Pastry is discussed in detail, as well because it serves as a base of our Cycloid DHT.

2.1. Hypercube-based

Plaxton et al.[14] developed perhaps the first routing algorithm that could be scalably used for P2P
systems. Tapestry and Pastry use a variant of the algorithm. The approach of routing based on address
prefixes, which can be viewed as a generalization of hypercube routing, is common to all theses schemes.
The routing algorithm works by correcting a single digit at a time in the left-to-right order. If node
number 12,345 received a lookup query with key 12,456, which matches the first two digits, then the
routing algorithm forwards the query to a node which matches the first three digits (e.g., node 12,467).
To do this, a node needs to have, as neighbors, nodes that match each prefix of its own identifier but differ
in the next digit. For each prefix (or dimension), there are many such neighbors (e.g., node 12,467 and
node 12,478 in the above case) since there is no restriction on the suffix, i.e., the rest bits right to the
current bit. This is the crucial difference from the traditional hypercube connection pattern and provides
the abundance in choosing cubical neighbors and thus a high fault resilience to node absence or node
failure.

Besides such cubical neighbors spreading out in the key space, each node in Pastry also contains a leaf
setL of neighbors which are the set of|L| numerically closest nodes (half smaller, half larger) to the
present node ID and a neighborhood setM which are the set of|M| geographically closest nodes to the
present node.

2.2. Ring-based

Chord uses a one-dimensional circular key space. The node responsible for the key is the node whose
identifier most closely follows the key numerically; that node is called the key’s successor. Chord maintains
two sets of neighbors. Each node has a successor list ofk nodes that immediately follow it in the key
space and a finger list of O(logn) nodes spaced exponentially around the key space. Theith entry of
the finger list points to the node that is 2i away from the present node in the key space, or to that node’s
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successor if that node is not alive. So the finger list is always fully maintained without any null pointer.
Routing correctness is achieved with such two lists. A lookup(key) is, except at the last step, forwarded
to the node closest to, but not past, the key. The path length is O(logn) since every lookup halves the
remaining distance to the home.

2.3. Mesh-based

CAN chooses its keys from ad-dimensional toroidal space. Each node is associated with a region
of this key space, and its neighbors are the nodes that own the contiguous regions. Routing consists
of a sequence of redirections, each forwarding a lookup to a neighbor that is closer to the key. CAN
has a different performance profile than the other algorithms; nodes have O(d) neighbors and path
lengths are O(dn1/d) hops. Note that whend = log n, CAN has O(logn) neighbors and O(logn) path
length like the other algorithms. This actually gives another way to deploy the hypercube as an overlay
network.

Recently, Xu et al.[20] studied the fundamental tradeoff between the routing table size and the network
diameter and proved that the Tapestry, Pastry, Chord and CAN schemes were indeed asymptotically
optimal as uniform algorithms. They found a routing table size threshold (logn) that separates the tradeoff
region dominated by congestion and the region dominated by reachability for uniform algorithms. They
further proposed a graph based on a modified static butterfly that costs O

(
log n

log log n

)
and O(logd n) for

lookups with routing tables of size logn andd, respectively.

2.4. Constant-degree DHTs

Viceroy[12] maintains a connection graph with a constant-degree logarithmic diameter, approximating
a butterfly network. Each Viceroy node in butterfly levell has seven links to its neighbors, including
pointers to its predecessor and successor pointers in a general ring, pointers to the next and previous
nodes in the same level ring, and butterfly pointers to its left, right nodes of levell + 1, and up node of
level l − 1, depending on the node location.

In Viceroy, every participating node has two associated values: its identity∈ [0, 1) and a butterfly
level indexl. The node ID is independently and uniformly generated from a range [0, 1) and the level is
randomly selected from a range of [1, log n0], wheren0 is an estimate of the network size. The node ID
of a node is fixed, but its level may need to be adjusted during its life time in the system.

Viceroy routing involves three steps: ascending to a level 1 node via up links, descending along the
down link until a node is reached with no down links, and traversing to the destination via the level ring
or ring pointers. Viceroy takes O(logn) hops per lookup request.

Koorde [9] combines Chord with de Bruijn graphs. Like Viceroy, it looks up a key by contacting
O(log n) nodes with O(1) neighbors per node. As in Chord, a Koorde node and a key have identifiers that
are uniformly distributed in a 2d identifier space. A keyk is stored at its successor, the first node whose
ID is equal to or followsk in the identifier space. Node 2d − 1 is followed by node 0.

Due to the dynamic nature of the P2P systems, they often contain only a few of the possible 2d nodes.
To embed a de Bruijn graph on a sparsely populated identifier ring, each participating node maintains
knowledge about its successor on the ring and its first de Bruijn node. To look up a keyk, the Koorde
routing algorithm must find the successor ofk by walking down the de Bruijn graph. Since the de Bruijn
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Table 1
A comparison of some representative P2P DHTs

Systems Base network Lookup complexity Routing table size

Chord Cycle O(logn) O(log n)
CAN Mesh O(d × n1/d) O(d)
eCAN Mesh O(d × n1/d) O(d)
Pastry/Tapestry Hypercube O(logn) O(|L|) + O(|M|) + O(log n)
Viceroy Butterfly O(logn) 7
Koorde de Bruijn O(logn) ≥2
Cycloid CCC O(d) 7

graph is usually incomplete, Koorde simulates the path taken through the complete de Bruijn graph,
passing through the immediate real predecessor of each imaginary node on the de Bruijn path.

We summarize the architectural characteristics of the representative DHTs inTable 1.

3. Cycloid: a constant-degree DHT

Cycloid combines Pastry with CCC graphs. In a Cycloid system withn = d × 2d nodes at most, each
lookup takes O(d) hops with O(1) neighbors per node. Note that the Cycloid is not necessarily complete;
it can have nodes less thand × 2d with some void node places. Like Pastry, it employs consistent hashing
to map keys to nodes. A node and a key have identifiers that are uniformly distributed in ad × 2d

identifier space.

3.1. CCC and key assignment

A d-dimensional CCC graph is ad-dimensional cube with replacement of each vertex by a cycle
of d nodes. It containsd × 2d nodes of degree 3 each. Each node is represented by a pair of indices
(k, ad−1ad−2 · · · a0), wherek is a cyclic index andad−1ad−2 · · · a0 is a cubical index. The cyclic index is
an integer, ranging from 0 tod − 1 and the cubical index is a binary number between 0 and 2d − 1.Fig. 1
shows the three-dimensional CCC.

A P2P system often contains a changing set of nodes. This dynamic nature poses a challenge for DHTs
to manage a balanced distribution of keys among the participating nodes and to connect the nodes in an
easy-to-maintain network so that a lookup request can be routed toward its target quickly. In a Cycloid
system, each node keeps a routing table and two leaf sets with a total of seven entries to maintain its
connectivity to the rest of the system.Table 2shows a routing state table for node (4,101–1–1010) in an
eight-dimensional Cycloid. Its corresponding links in both cubical and cyclic aspects are shownFig. 2.

In general, a node (k, ad−1ad−2 · · · ak · · · a0) (k 
= 0) has one cubical neighbor (k − 1,

ad−1ad−2 · · · akxx · · · x) where x denotes an arbitrary bit value, and two cyclic neighbors (k − 1,

bd−1bd−2 · · · b0) and (k − 1, cd−1cd−2 · · · c0). The cyclic neighbors are the first larger and smaller nodes
with cyclic indexk − 1 modd and their most significant different bit with the current node is no larger
thank − 1. That is:

(k − 1, bd−1 · · · b1b0) = min{∀(k − 1, yd−1 · · · y1y0)|yd−1 · · · y0 ≥ ad−1 · · · a1a0},
(k − 1, cd−1 · · · c1c0) = max{∀(k − 1, yd−1 · · · y1y0)|yd−1 · · · y0 ≤ ad−1 · · · a1a0}
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Fig. 1. A three-dimensional cube-connected cycles.

The node with a cyclic indexk = 0 has no cubical neighbor and cyclic neighbors. The node with cubical
index 0 has no small cyclic neighbor, and the node with cubical index 2d − 1 has no large cyclic neighbor.

The nodes with the same cubical index are ordered by their cyclic index modd on a local cycle. The
left inside leaf set node points to the node’s predecessor and the right inside leaf set node points to the
node’s successor in the local cycle. The largest cyclic index node in a local cycle is called the primary
node of the local cycle. All local cycles are ordered by their cubical index mod 2d on a large cycle. The
left outside leaf set node points to the primary node in the node’s preceding remote cycle and the right
outside leaf set node points to the primary node in the node’s succeeding remote cycle in the large cycle.
In other words, the nodes with the same cubical index are connected by a local cycle, and all the nodes
with different cubical indices are connected by a large ring. The nodes on one cycle can reach the nodes
in other cycles directly or indirectly.

The cubical links allow us to change cubical index from left to right, in the same left-to-right order as
in Pastry. The cyclic links allow us to change the cyclic index. It is easy to see that the network will be

Table 2
Routing table state of a Cycloid node (4,101–1–1010)

Cubical neighbor (3,101–0–xxxx)
Cyclic neighbor (3,101–1–1100)
Cyclic neighbor (3,101–1–0011)
Leaf sets (half smaller, half larger)

Inside leaf set
(3,101–1–1010) (6,101–1–1010)

Outside leaf set
(7,101–1–1001) (6,101–1–1011)

x indicates an arbitrary value, 0 or 1. Inside leaf set maintains the node’s predecessor and successor in the local cycle. Outside
leaf set maintains the links to the preceding and the succeeding remote cycles.



H. Shen et al. / Performance Evaluation xxx (2005) xxx–xxx 7

Fig. 2. Cycloid node routing links state.

the traditional cube-connected cycles if all nodes are alive. Our connection pattern is resilient in the sense
that even if many nodes are absent, the remaining nodes are still capable of being connected. The routing
algorithm is heavily assisted by the leaf sets. The leaf sets help improve the routing efficiency, check the
termination condition of a lookup, and wrap around the key space to avoid the target overshooting. How
the routing table and leaf sets are initialized and maintained is the subject of Section3.3.

The Cycloid DHT assigns keys onto its ID space by the use of a consistent hashing function. The key
assignment is similar to Pastry, except that the Cycloid associates a pair of cyclic and cubic indices with
each node. For a given key, the cyclic index of its mapped node is set to its hash value modulated byd
and the cubical index is set to the hash value divided byd. If the Cycloid peers constitutes a complete
CCC graph, the consistent hashing will map keyk to nodek and a lookup request can be redirected in
O(d) steps following the Cycloid routing algorithm. If the target node of a key’s ID (k, ad−1 · · · a1a0) is
not a participant, the key is assigned to the node whose ID is first numerically closest toad−1ad−2 · · · a0

and then numerically closest tok. For example, (1,1101) is closer to (2,1101) than (2,1001). In the case
of two nodes with the same distance to the key’s ID, the key’s successor will be responsible for storing
this key. Cycloid key storage mechanism is almost the same as that of Pastry[17].

3.2. Cycloid routing algorithm

Cycloid routing algorithm emulates the routing algorithm of CCC[15] from source node
(k, ad−1 · · · a1a0) to destination (l, bd−1 · · · b1b0), incorporating the resilient connection pattern of
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Fig. 3. Lookup algorithm in Cycloid.

Cycloid. The routing algorithm as shown inFig. 3, involves three phases, assuming MSDB be the most
significant different bit of the current node and the destination:

(1) Ascending: When a node receives a request, if itsk < MSDB, it forwards the request to a node in the
outside leaf set sequentially until cyclic indexk ≥ MSDB.

(2) Descending: In the case ofk ≥ MSDB, whenk = MSDB, the request is forwarded to the cubical
neighbor, otherwise the request is forwarded to the cyclic neighbor or inside leaf set node, whichever
is closer to the target, in order to change the cubical index to the target cubical index.

(3) Traverse cycle: If the target ID is within the leaf sets, the request is forwarded to the closest node in
the leaf sets until the closest node is the current node itself.

Specifically, the ascending phase selects the node whose cubical index is numerically closest to the
destination out of the outside leaf set. In the descending phase, whenk > MSDB, the node whose cubical
index is the closest to the destination and cyclic index≤ MSDB is chosen among the cyclic neighbors
and the inside leaf set. When choosing node from the cyclic neighbors, the cyclic neighbor that is closer
to the destination should be chosen. That is, if the key’s cubical index is toward the clockwise direction
of the present node, the larger cyclic neighbor should be chosen, otherwise the smaller cyclic neighbor
should be chosen. As a result, thead−1 · · · a1a0 might be changed toa′

d−1 · · · a′
1a

′
0. Whenk = MSDB,

the prefix routing algorithm is used in the left-to-right order as Pastry[17] to changead−1 · · · a1a0 to
bd−1 · · · b1b0. Along each cubical link, the message is sent to the next node that shares at least one more
bit in prefix with the key than the current node. After a cubical link is taken, one or more cyclic links
or inside leaf set are taken in order to change the cyclic index to the MSDB between the current node
and the key. Thus, cubical and cyclic links or inside leaf set are used alternately. In the traverse cycle
phase, if the destination is within the local cycle, the message is sent to the a node in the inside leaf set,
otherwise it is sent to a node in the outside leaf set, whichever is numerically closer to the destination. If
the nearest node is itself, then the destination is reached and the search is completed. During the entire
lookup process, if a node cannot be found or if a node has failed, the node that is numerically closer to
the destination among the leaf sets is chosen.

Fig. 4 presents an example of routing a request from node (0,0100) to node (2,1111) in a four-
dimensional Cycloid DHT. The MSDB of node (0,0100) with the destination is 3. As (0,0100) cyclic
indexk = 0 andk < MSDB, it is in the ascending phase. Thus, the node (3,0010) in the outside leaf set
is chosen. Node (3,0010)’s cyclic index 3 is equal to its MSDB, then in the descending phase, the request
is forwarded to its cubical neighbor (2,1010). After node (2,1010) finds that its cyclic index is equal to
its MSDB 2, it forwards the request to its cubical neighbor (1,1110). Because the destination (2,1111) is
within its leaf sets (1,1110) forwards the request to the closest node to the destination (3,1111). Similarly,
after (3,1111) finds that the destination is within its leaf sets, it forwards the request to (2,1111) and the
destination is reached.
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Fig. 4. An example of routing phases and routing table states in Cycloid.

Each of the three phases is bounded by O(d) hops, hence the total path length is O(d). The key idea
behind this algorithm is to keep the distance decrease repeatedly. In[4], we proved the correctness of
the routing algorithm by showing its convergence and reachability. By convergence, we mean that each
routing step reduces the distance to the destination. By reachability, we mean that each succeeding node
can forward the message to the next node. Because each step sends the lookup request to a node that
either shares a longer prefix with the destination than the current node, or shares as long a prefix with, but
is numerically closer to the destination than the current node, the routing algorithm is convergent. Also,
the routing algorithm can be easily augmented to increase fault tolerance. When the cubical or the cyclic
link is empty or faulty, the message can be forwarded to a node in the leaf sets.

Our discussion so far is based on a seven-entry Cycloid DHT. It can be extended to include two
predecessors and two successors in its inside leaf set and outside leaf set, respectively. We will show via
simulations in the next section that the 11-entry Cycloid DHT has better performance.

3.3. Self-organization

Peer-to-peer systems are notoriously dynamic in the sense that nodes are frequently joining in and
departing from the network. Cycloid deals with node joining and leaving in a distributed manner, without
requiring hash information to be propagated through the entire network. This section describes how
Cycloid handles node joining and leaving.

3.3.1. Node join
When a new node joins, it first gets its ID by using the method introduced in Section3.1. It then

initializes its routing table and leaf sets, and informs other related nodes of its presence. Like Chord[19]
and Viceroy[12], Cycloid assumes that any new node initially knows about a live node. Assume the first
contact node isA = (k, ad−1ad−2 · · · a0) and the new node isX = (l, bd−1bd−2 · · · b0). According to the
routing algorithm discussed in Section3.2, the nodeA will route the joining message to the existing
nodeZ whose ID is numerically closest to the ID ofX. Z’s Leaf Sets are the basis forX’s Leaf Sets. In
particular, the following two cases are considered:

(1) If X andZ are in the same cycle,Z’s outside leaf set becomes theX’s outside leaf set.X’s inside leaf
set is initiated according toZ’s inside leaf set. IfZ is X’s successor,Z’s predecessor andZ are the
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left node and right node inX’s inside leaf set respectively. Otherwise,Z andZ’s successor are the
left node and right node.

(2) If X is the only node in its local cycle, thenZ is not in the same cycle asX. In this case, two nodes
in X’s inside leaf set areX itself. X’s outside leaf set is initiated according toZ’s outside leaf set. If
Z’s cycle is the succeeding remote cycle of theX, Z’s left outside leaf set node and the primary node
in Z’s cycle are the left node and right node inX’s outside leaf set. Otherwise, the primary node in
Z’s cycle andZ’s right outside leaf set node are the left node and right node inX’s outside leaf set.

We use a local–remote method to initialize the three neighbors in theX’s routing table. It searches
for a neighbor in the local cycle in a decreasing order of the node cyclic index. If the neighbor is not
found, then its neighboring remote cycle is searched. The remote cycle search sequence depends on the
kth bit in the cubical index. Ifak is 1, the search direction is counter-clockwise, otherwise the direction
is clockwise. This is done in order to enhance the possibility and the speed of finding the neighbors.

After a node joins the system, it needs to notify the nodes in its inside leaf set. It also needs to notify
the nodes in its outside leaf set if it is the primary node of its local cycle. Once the nodes in the inside
leaf set receive the joining message, they will update themselves. When the nodes in the outside leaf set
receive the joining message, in addition to update themselves, they need to transfer the message to the
nodes in their inside leaf set. Thus, the message is passed along in the joining node’s neighboring remote
cycle until all the nodes in that cycle finish updating.

3.3.2. Node departure
Before a node leaves, it needs to notify its inside leaf set nodes. In Cycloid, a node only has outgoing

connections and has no incoming connections. Therefore, a leaving node cannot notify those who take it
as their cubical neighbor or cyclic neighbor. The need to notify the nodes in its outside leaf set depends
on whether the leaving node is a primary node. Upon receiving a leaving notification, the nodes in the
inside and outside leaf sets update themselves. In addition, the nodes in the outside leaf set need to notify
other nodes in their local cycle one by one, which will take at most d steps. As a result, only those who
take the leaving node as their inside leaf set or outside leaf set are updated. Those nodes who take the
leaving node as their cubical neighbor or cyclic neighbor cannot be updated. Updating cubical and cyclic
neighbors are the responsibility of system stabilization, as in Chord.

3.3.3. Fault tolerance
Undoubtedly, low degree P2P networks perform poorly in failure-prone environments, where nodes fail

or depart without warning. Usually, the system maintains another list of nodes to handle such problems,
such as the successor list in Chord[19] and the bucket in Viceroy[12]. In this paper, we assume that
nodes must notify others before leaving, as the authors of Koorde argued that the fault tolerance issue
should be handled separately from routing design.

4. Cycloid performance evaluation

In [9], Kaashoek and Karger listed five primary performance measures of DHTs: degree in terms
of the number of neighbors to be connected, hop count per lookup request, degree of load balance,
degree of fault tolerance, and maintenance overhead. In this section, we evaluate Cycloid in terms of
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these performance measures and compare it with other two constant-degree DHTs: Viceroy and Koorde.
Recall that each Cycloid node maintains connectivity to seven neighbors in its routing table. Cycloid can
be extended to include more predecessors and successors in its inside and outside leaf sets for a trade-off
for lookup hop count. The results due to 11-neighbor Cycloid are included for a demonstration of the trade-
off. Similarly, Koorde DHT provides a flexibility to making a trade-off between routing table size and
routing hop count. For a fair comparison, in our simulations, we assumed the Koorde DHT maintained
connectivity to seven neighbors, including one de Bruijn node, three successors and three immediate
predecessors of the de Bruijn node. Since all of the constant-degree DHTs borrowed ideas from Chord
and other DHTs with O(logn) neighbors, we also include the results of Chord as references. The actual
number of participants varied in different experiments. We designed and implemented simulators in Java
for the DHTs. The simulation results due to Chord, Koorde, and Viceroy were verified with those in their
original publications.

4.1. Key location efficiency

It is known that all of the constant-degree DHTs have a complexity of O(logn) or O(d) hops per
lookup request with O(1) neighbors. Although Cycloid contains more nodes than the others for the same
network dimension, its average routing performance relative to Viceroy and Koorde is unknown. In this
experiment, we simulated networks withn = d × 2d nodes and varied the dimensiond from 3 to 8. Each
node made a total ofn/4 lookup requests to random destinations.Figs. 5 and 6plot the mean of the
measured path lengths of the lookup requests due to various DHT routing algorithms with respect to the
network size and dimension, respectively. The path length of each request is measured by the number of
hops traversed during its search.

FromFig. 5, we can see that the path lengths of Viceroy are more than two times than those of Cycloid,
although key locations in both Cycloid and Viceroy involve the same ascending, descending and traverse
ring/cycle phases. There are two reasons. First, the ascending phase in Cycloid usually takes only one
step because the outside leaf set entry node is the primary node in its cycle. But the ascending phase in
Viceroy takes (logn)/2 steps on average because each step decreases the level one at a time.Fig. 7(a) and
(b) present breakdowns of the lookup cost in different phases in Cycloid and Viceroy, respectively. From

Fig. 5. Path lengths of lookup requests in various DHTs of different network sizes.
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Fig. 6. Path lengths as a function of network dimension in various DHTs.

the figures, we can see that the ascending phase in Viceroy constitutes about 30% of the total path length,
but only up to 15% in Cycloid. Second, the descending phase in Cycloid takes d steps because each step
redirects the request to a node with longer prefix or is numerically closer to the target. It is followed by
anotherd hops of search in local cycles or cubic neighbor cycles. In Viceroy, the distance to the target
can be halved each step in the second descending phase. ButFig. 7(b) shows that the descending phases
constitute around only 20% of the total searching path. More than half of the cost is spent in the third
traverse ring phase. In the traverse ring phase, the lookup request approaches the destination step by step
along ring links or level ring links and needs another (logn)/2 steps on average.

Fig. 7. Path length breakdown in various DHTs of different sizes.
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In Koorde, each node redirects an incoming lookup request to its first de Bruijn node or a successor.
Each selection of a first de Bruijn node would reduce the distance by half. Since the first de Bruijn node
may not be the immediate predecessor of the imaginary node of the destination, selection of a successor
is to find the immediate predecessor.Fig. 7(c) shows a breakdown of the cost between the two selections.
The selection of successors constitutes about 30% of the total path length, which implies some nodes
might interpose land in between the current node’s first de Bruijn node and the imaginary node. In this
case, the current node’s successors have to be passed in order to reach the immediate predecessor of the
imaginary node. Because of the dense network in which every node is alive, there are only a few nodes
at interpose between de Bruijn node and the imaginary node, consequently, the path length of taking
successors takes a reasonable percentage of the whole path length. However, Koorde’s lookup efficiency
is reduced in sparse network. We will discuss this in Section4.5.

The principle of Cycloid routing algorithm is almost the same as that of Koorde. In both algorithms,
starting from a specific chosen node, the node ID bits are changed one by one until the target node ID
is reached. Both of their path lengths are close to d, the dimension of the network in simulation. Since a
d-dimensional Cycloid contains more (d − 1) × 2d nodes than Koorde of the same dimension, Cycloid
leads to shorter lookup path length than Koorde in networks of the same size, as shown inFig. 6.

From Fig. 6, we can also see that the path length of Viceroy increases much faster with respect to
the network dimension. Its path length increases from 4 in a four-dimensional network to 12.91 in an
eight-dimensional network. It is because an increase of one dimension in Cycloid contains (d + 1) times
more nodes than in Viceroy and Koorde. That is, Cycloid leads to a smaller dimension for large-scale
networks and higher key location efficiency.

4.2. Load balance

A challenge in the design of balanced DHTs is to distribute keys evenly between a changing set of
nodes and to ensure each node experiences even load as an intermediate for lookup requests from other
nodes. Cycloid deals with the key distribution problem in a similar way to Koorde, except that Cycloid
uses a pair of cyclic and cubical indices to represent a node. Viceroy maintains a one-dimensional ID
space. Although both Cycloid and Viceroy nodes have two indices to represent their place in the overlay
network, the cyclic index is part of the Cycloid node ID but the level is not part of the Viceroy node
ID. Also, Viceroy stores keys in the keys’ successors.Table 3shows the differences in key assignment
between the DHTs.

In this experiment, we simulated different DHT networks of 2000 nodes each. We varied the total
number of keys to be distributed from 104 to 105 in increments of 104. Fig. 8 plots the mean, the 1st
and 99th percentiles of the number of assigned keys per node when the network ID space is of 2048

Table 3
Characterization of node identification and key assignment in different DHTs

Cycloid Viceroy Koorde

Base network CCC Butterfly de Bruijn
ID space ([0, d), [0, d × 2d)) ([0, 3 log n), [0, 1)) [0, 2d)
Node identity (k, ad−1ad−2 · · · a0) k is static (level, ID) level is dynamic Id
Key placement Numerically closest node Successor Successor
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Fig. 8. Key distribution in networks of 2000 nodes due to different DHTs. Assume the network ID space is of 2048 nodes.

nodes. The number of keys per node exhibits variations that increase linearly with the number of keys
in all DHTs. The key distribution in Cycloid has almost the same degree of load balance as in Koorde
and Chord because Cycloid’s two-dimensional ID space is reduced to one-dimension by the use of a
pair of modula and divide operations. By comparison, the number of keys per node in Viceroy has much
larger variations. Its poor balanced distribution is mainly due to the large span of real number ID space
in [0, 1). In Viceroy, the key is stored in its successor; that is, a node manages all key-value between its
counter-clockwise neighbor and itself. Because of Viceroy’s large ID span, its node identifiers may not
uniformly cover the entire space, some nodes may manage much more keys than the others.

Fig. 9 plots the mean, the 1st and 99th percentiles of the number of keys per node in Cycloid and
Koorde DHTs when there are only 1000 participants in the network. From the figure, it can be seen that
Cycloid leads to a more balanced key distribution than Koorde for a sparse network. In Koorde, the node
identifiers do not uniformly cover the entire identifier space, leading to unbalanced key allocation as a
result of storing the key in its successor. By comparison, using two-dimension key allocation method,

Fig. 9. Key distribution in networks of 1000 nodes due to different DHTs. Assume the network ID space is of 2048 nodes.
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Fig. 10. Query load variances in various DHTs of different sizes.

Cycloid achieves better load balance by storing the key in its numerically closest node; that is, the keys
between a node’s counter-clockwise neighbor and itself will be allocated to that neighbor or the node itself
rather than to itself totally. Chord solved this problem by replicating each node into O(logn) “virtual
nodes”, but such replication would destroy the optimality of constant degree in Koorde. In[9], Kaashoek
and Karger put forward a question of finding a system that is both degree optimal and load balanced.
Cycloid should be an answer.

In summary, when the entire identifier space is mostly occupied, Cycloid’s load balance is as good as
Chord. When the actual nodes only occupy small part of the total entire identifier space, Cycloid’s load
balance is better than Chord.

Key distribution aside, another objective of load balancing is to balance the query load between the
participating nodes. The query load is measured as the number of queries received by a node for lookup
requests from different nodes.

Fig. 10plots the mean, the 1st and 99th percentiles of query loads of various DHT networks of 64
and 2048 nodes. The figures shows that Cycloid exhibits the smallest variation of the query load, in
comparison with other constant-degree DHTs. This is partly due to the symmetric routing algorithm of
Cycloid.

In Viceroy, the ascending phase consists of a climb using up connections until level 1 is reached and
the descending phase routes down the levels of tree using the down links until no down links exist. As
a result, the nodes in the higher levels will be the hot spots, on the other hand, the nodes of the lower
levels have smaller workload, which leads to the great workload variation, especially in the large-scale
network. In Koorde, the first de Bruijn of a node with IDm is the node immediately precedes 2m; that is,
the predecessor of the ID got by shittingm to the left one bit. So, all the first de Bruijn nodes’ identifiers
are even in a “complete” (dense) network and with high probability the IDs are even in an incomplete
(sparse) network. Consequently, the nodes with even IDs have heavy workload while nodes with odd IDs
have light workload according to the lookup algorithm of Koorde. In Cycloid, because of the leaf sets,
the nodes with small cyclic index, typically 0 or 1, will be light loaded. However, these nodes constitute
only small part of the Cycloid network, in comparison with the hot spots in Viceroy and Koorde. Cycloid
performs better than Viceroy and Koorde in the aspect of congestion.
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Fig. 11. Path lengths of various DHTs with different nodal departure probabilities.

4.3. Simultaneous node failures/departures

In this section, we evaluate the impact of massive node failures and/or departures on the performance
of various DHTs, and on their capability to performing correct lookups without stabilization. We use the
term of departure to refer to both failure and departure. We assume that node departures are graceful; that
is, a node informs its relatives before its departure. Ungraceful departure is not discussed in this paper.

In this experiment, we simulated a network of 2048 nodes. Once the network becomes stable, each
node is made to fail with probabilityp ranging from 0.1 to 0.5. After a failure occurs, we performed
10,000 lookups with random sources and destinations. We recorded the number of timeouts occurred in
each lookup, the lookup path length, and whether the lookup found the key’s correct storing node. A
timeout occurs when a node tries to contact a departed node. The number of timeouts experienced by
a lookup is equal to the number of departed nodes encountered.Fig. 11shows the mean path length of
the lookups with the change of departure probabilityp in different DHTs. The mean, the 1st and 99th
percentiles of the number of timeouts of each DHTs are presented inTable 4.

In Cycloid, the path length increases due to the increasing of the number of timeouts as thep increases.
Recall that when a departed node is met, the leaf sets have to be turned to for the next node. Therefore, the
path length increases. All lookups were successfully resolved means that the Cycloid is robust and reliable.

We can see fromFig. 11that unlike Cycloid and Koorde, the lookup path length in Viceroy decreases
with the increase ofp. In Viceroy, a node has both outgoing and incoming connections. A node notifies its

Table 4
Number of timeouts in different DHTs as more nodes depart/fail

Departure probability Seven-entry Cycloid Eleven-entry Cycloid Viceroy Chord Koorde

0.1 0.53 (0, 4) 0.56 (0, 4) 0 (0, 0) 0.62 (0, 6) 0.02 (0, 1)
0.2 1.24 (0, 8) 1.38 (0, 8) 0 (0, 0) 1.37 (0, 8) 0.04 (0, 1)
0.3 2.46 (0, 11) 2.14 (0, 10) 0 (0, 0) 2.38 (0, 11) 0.06 (0, 2)
0.4 4.09 (0, 17) 3.67 (0, 15) 0 (0, 0) 3.91 (0, 16) 0.08 (0, 3)
0.5 5.88 (0, 24) 5.24 (0, 25) 0 (0, 0) 6.53 (0, 26) 0.09 (0, 4)
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outgoing and incoming connections before its departure. Therefore, all related nodes are updated before
the node departs. Based on this characteristic, massive departures have no adverse effect on Viceroy’s
ability to perform correct lookups.Table 4shows that Viceroy has no timeouts. The decrease of the path
length is caused by the decrease of the network size. We can see fromFig. 11that when the departure
probability is 0.5, the path length is 16.45, which is very close to the 1024 nodes complete network
lookup’s average path length 16.92 inFig. 5.

In order to eliminate the impact of simultaneous node departures in Viceroy, a leaving node would
induce O(logn) hops and require O(1) nodes to change their states. This causes a large amount of
overhead. In Cycloid, the path length increased a little with a small fraction of departed nodes. Even
though the path length of Cycloid increases slightly, it is still much less than that of Viceroy.

In Fig. 11, Koorde’s path length increased not so much as in Cycloid when the node departure probability
p exceeds 0.3. Unlike Cycloid and Viceroy, Koorde has lookup failures whenp becomes larger than 0.3.
Our experiment results show that there are 791, 1226, and 4259 lookup failures whenp = 0.3, 0.4, and
0.5, respectively.

In Koorde, when a node leaves, it notifies its successors and predecessor. Then, its predecessor will
point to its successor and its successor will point to its predecessor. By this way, the ring consistency
is maintained. The nodes who take the leaving node as their first de Bruijn node or their first de Bruijn
node’s predecessor will not be notified and their update are the responsibility of stabilization.

Each Koorde node has three predecessors of its first de Bruijn node as its backups. When the first de
Bruijn node and its backups have all failed, the Koorde node fails to find the next node and the lookup
fails. When the failed node percentage is as low as 0.2, all the queries can be solved successfully at a
marginal cost of query length with increase path length as shown inFig. 11. Whenp exceeds 0.3, with
increasing timeouts as shown inTable 4, the number of failures increase, and the path length increases
not so much as before because less backups are taken.

FromTable 4, we can see that although Koorde has much less timeouts than Cycloid, it still has a large
number of failures. In Koorde, the critical node in routing is the de Bruijn node whose backups cannot
always be updated. In contrast, Cycloid relies on updated leaf sets of each node for backup. Therefore,
Koorde is not as robust as Cycloid in response to massive node failures/departures. The experiment shows
that Cycloid is efficient in handling massive node failures/departures without stabilization.

4.4. Lookups during node joining and leaving

In practice, the network needs to deal with nodes joining the system and with nodes that leave volun-
tarily. In this paper, we assume that multiple join and leave operations do not overlap. We refer the reader
to [11] for techniques to achieve concurrency and to handle failures in the system. In this experiment, we
compare Cycloid with Viceroy and Koorde when nodes join and leave continuously.

The setting of this experiment is exactly the same as the one in[19]. Key lookups are generated ac-
cording to a Poisson process at a rate of one per second. Joins and voluntary leaves are modeled by
a Poisson process with a mean rate ofR, which ranges from 0.05 to 0.40. A rate ofR = 0.05 cor-
responds to one node joining and leaving every 20 s on average. In Cycloid, each node invokes the
stabilization protocol once every 30 s and each node’s stabilization routine is at intervals that are uni-
formly distributed in the 30 s interval. Thus,R ranges from a rate of 1.5 joins and 1.5 leaves per one
stabilization periods to a rate of 12 joins and 12 leaves per one stabilization period. The network starts with
2048 nodes.
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Fig. 12. Path lengths of lookup requests in different DHTs as the node join/leave rates change.

Fig. 12 shows the mean path length of lookup operations in different DHTs as the node join/leave
rate R changes. The mean, the 1st and 99th percentiles of the number of timeouts are shown in
Table 5. There are no failures in all test cases. From the path length evaluation in Section4.1, we
know that the mean path length of Cycloid in steady states is 8.38. FromFig. 12, we can see that
the measured path lengths in the presence of node joining and/or leaving are very close to this value
and do not change with the rateR. This is because with the help of stabilization, there are less
needs for a node to turn to its leaf sets in the case of meeting an absent or departed node. Con-
sequently, a lookup request would experience less timeouts and its path length remains unchanged.
Compared with the timeout results inTable 4, we can see that stabilization removes majorities of the
timeouts.

In Koorde, the path lengths changed little compared to 11.59 in stable network though the timeouts
increase with the rate of node joins and leaves. The failure time is reduced to 0 compared to the large
failure time in Section4.3. That’s because stabilization updates the first de Bruijn node of each node and
the de Bruijn node’s predecessors in time. When the first de Bruijn node and its predecessors have all
failed, then passed lookups will fail with high probability.

Table 5
Number of timeouts as the node join/leave rate changes

Node join/leave rate
(per second/per stable period)

Seven-entry
Cycloid

Eleven-entry Cycloid Viceroy Chord Koorde

0.05/1.5 0.005 (0, 0) 0.059 (0, 2) 0 (0, 0) 0.033 (0, 1) 0.003 (0, 0)
0.10/3 0.009 (0, 0) 0.103 (0, 2) 0 (0, 0) 0.078 (0, 2) 0.013 (0, 1)
0.15/4.5 0.014 (0, 1) 0.171 (0, 2) 0 (0, 0) 0.130 (0, 2) 0.008 (0, 0)
0.20/6 0.031 (0, 1) 0.205 (0, 3) 0 (0, 0) 0.125 (0, 2) 0.013 (0, 1)
0.25/7.5 0.047 (0, 2) 0.246 (0, 2) 0 (0, 0) 0.151 (0, 2) 0.016 (0, 1)
0.30/9 0.052 (0, 2) 0.289 (0, 3) 0 (0, 0) 0.191 (0, 3) 0.016 (0, 1)
0.35/10.5 0.058 (0, 2) 0.367 (0, 4) 0 (0, 0) 0.220 (0, 3) 0.023 (0, 1)
0.40/12 0.070 (0, 2) 0.374 (0, 4) 0 (0, 0) 0.233 (0, 3) 0.023 (0, 1)
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The results show that Viceroy’s performance is not affected by the node leaving and joining. That’s
because, before a node leaves and after a node joins, all the related nodes are updated. Although Viceroy
has no timeouts, its path length is much longer compared to Cycloid’s path.

Though Viceroy does not run stabilization periodically, it needs to update all related node for node
joining and leaving. Therefore, it is not suitable for a dynamic network with frequent node arrivals and
departures considering the join and leave high cost.

4.5. Impact of network sparsity in the ID space

Due to the dynamic nature of peer-to-peer systems, a DHT needs to maintain its location efficiency,
regardless of the actual number of participants it has. But, in most of the DHTs, some node routing table
entries are void when not all nodes are present in the ID space. For example, if a local cycle in Cycloid
has only one node, then this node has no inside leaf set nodes. It is also possible that a node cannot find a
cubical neighbor, or cyclic neighbor. We define the degree of sparsity as the percentage of non-existent
nodes relative to the network size. To examine the impact of sparsity on the performance of other systems,
we did an experiment to measure the mean search path length and the number of failures when a certain
percentage of nodes are not present. We tested a total of 10,000 lookups in different DHT networks
with an ID space of 2048 nodes.Fig. 13shows the results as the degree of network sparsity changes.
There are no lookup failures in each test case. From the figure, we can see that Cycloid keeps its location
efficiency and the mean path length decreases slightly with the decrease of network size. In Viceroy, it’s
impossible for nodes to fully occupy its ID space because the node ID∈ [0, 1). Therefore, it is very likely
that some links of a node are void and hence the sparsity imposes no effect on the location efficiency.
In Koorde, the path length increases when the actual number of participants drops. This is because a
sparse Koorde DHT exhibits a large span between two neighboring nodes. Since Koorde routes a lookup
request through the immediate real predecessor of each imaginary node on the de Bruijn path, the distance
between the imagination node and its immediate predecessor in the sparse DHT leads to a longer distance
between the predecessor’s first de Bruijn node and the imagination node in the next step. Therefore,
more successors need to be taken to reach the immediate predecessor of the imagination, thus more path

Fig. 13. Path length of lookup requests in different DHTs with the change of the degree of network sparsity.
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Fig. 14. Path length breakdown in Koorde with the change of the degree of network sparsity.

length.Fig. 14presents a breakdown of the lookup cost of de Bruijn nodes and successors. From the
figure, we can see that with the increase of sparsity, the lookup routing path involves more percentage of
successors.

In summary, the sparsity does not have adverse effect on the location efficiency in Cycloid. However,
Koorde’s performance degrades with the decrease of the number of actual participants.

5. Conclusions

In this paper, we have presented a constant-degree DHT, namely Cycloid, and compared it with other
two constant-degree DHTs: Viceroy and Koorde. Cycloid is based on Pastry and CCC, while Viceroy
and Koorde emulate butterfly and de Bruijn graphs, respectively. Cycloid resembles Viceroy and Koorde
in appearance because CCC is a subgraph of butterfly network and de Bruijn is a coset graph of butterfly,
as recently proved in graph theories[3,8]. But they are different in connectivity maintenance of dynamic
participants and in routing for key location.

We have evaluated the performance of the DHTs in terms of the lookup hop count, degree of load
balance, degree of fault tolerance and cost for maintenance. Experiment results show that:

• Cycloid yields the best average-case location efficiency.
• Cycloid distributes keys and query load more evenly between the participants than Viceroy. In com-

parison with Koorde, Cycloid results in higher degrees of load balance for sparse networks and the
same degree of load balance for dense networks.

• Cycloid is more robust because it continues to function correctly when a node’s information is only
partially correct. In contract, Koorde cannot perform well with partially correct information and in-
complete network.

• Cycloid scales well with the number of nodes, recovers from large numbers of simultaneous node
departures and joins, and answers lookups correctly even during recovery. By contrast, Viceroy handles
massive node failures/departures at a high cost for connectivity maintenance, especially in the case
when a node needs to change its level.
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A common problem with constant-degree DHTs is their weakness in handling node leaving without
warning in advance. Keeping more information like successor list in Chord[19] and Bucket in Viceroy[12]
helps to resolve the problem, but destroys the optimality of constant degree. Because of this disadvantage,
whenever a node joins or leaves, Cycloid needs to notify its inside leaf set. Especially, if the joining or
leaving node is the primary node of a cycle in Cycloid, the updates might produce much more overhead.
In addition, the initialization and updates of three neighbors in the routing table also might cause a lot of
overhead. These issues need to be addressed for a refinement of Cycloid.
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