Locality-Aware and Churn-Resilient Load Balancing
Algorithms in Structured Peer-to-Peer Networks

Haiying Shen Cheng-Zhong Xu
Dept. of Computer Science and Engineering Dept. of Electrical & Computer Engineering
University of Arkansas, Fayetteville, AR 72701 Wayne State University, Detroit, Ml 48202
hshen@uark.edu czxu@wayne.edu

_Abstract—Structured peer-to-peer overlay networks like Dis- a situation where a large percentage of nodes and items join,
tributed Hash Tables (DHTs) map data items to the network |eave and fail continuously and rapidly, leading to unpredicted
based on a consistent hashing function. Such mapping for P2P network size. By proximity, we mean that the logical

data distribution has an inherent load balance problem. Data imity abstraction derived f DHTs don't |
redistribution algorithms based on randomized matching of proximity abstraction derived from S dont necessarily

heavily loaded nodes with light ones can deal with the dynamics Match the physical proximity information in reality.
of DHTs. But they are unable to consider proximity of the In the past, numerous load balancing algorithms were pro-

nodes simultaneously. There are other methods that rely on posed with different characteristics [18], [13], [6], [25], [10].
auxiliary networks to facilitate locality-aware load redistribution. However. few of them are able to deal with both the network

Due to the cost for network construction and maintenance, the h d imitv. | | the DHT ch hould b
locality-aware algorithms can hardly work for DHTs with churn. churn and proximity. in general, the churn shou e

This paper presents a locality-aware randomized load balancing dealt with by randomized matching between heavily loaded
algorithm to deal with both of the proximity and network churn ~ nodes with lightly loaded nodes. Rabal.[13] proposed three

at the same time. We introduce a factor of randomness in randomized load balancing algorithms, based on a concept
the probing of lightly loaded nodes in a range of proximity. ¢ «irtal servers”, and demonstrated their effectiveness in

We further improve the efficiency by allowing the probing .
of multiple candidates (d-way) at a time. Simulation results Chord. Godifreyet al. [6] extended the algorithms for DHTs

show the superiority of the locality-aware 2-way randomized With churn. The algorithms treat all nodes equally in random
algorithm, in comparison with other random or locality-aware probing, without consideration of node proximity information
algorithms. In DHTs with churn, it performs no worse than the in load balancing. Zhu and Hu presented a proximity-aware
best churn resilient algorithm. It takes advantage of node capacity 5orithm to take into account the node proximity information
heterogeneity and achieves good load balance effectively even in
a skewed distribution of items. in load balancing [25]. The algorithm is based on an additional
network constructed on top of DHTs. Although the network
is self-organized, the algorithm is hardly applicable to DHTs
with churn.

In this paper, we present novel locality-aware randomized

l. INTRODUCTION (LAR) load balancing algorithms to deal with both the prox-

Over the past years, the immense popularity of peer-tisaity and dynamics of DHTs. The algorithms take advantage
peer (P2P) resource sharing services has produced a significdinthe proximity information of the DHTs in node probing
stimulus to content-delivery overlay network research [20]. Aand distribute application load among the nodes according to
important class of the overlay networks is distributed hagheir capacities. We introduce a factor of randomness in the
tables (DHTSs) that map keys to the nodes of a network bageabing of lightly loaded nodes in a range of proximity so
on a consistent hashing function; see [17] and referenceEs to make the probing process robust in DHTs with churn.
therein for representatives of the DHTs. In a DHT, eacWe further improve the efficiency by allowing the probing of
node and key has a unique ID, and each key is mappedntaltiple candidates at a time. We refer to such probing process
a node according to the DHT definition. The ID space a&s d-way probingd > 1. The algorithms are implemented in
each DHT is partitioned among the nodes and each no@gcloid [17], based on a concept of “moving item” [10] for
is responsible for those keys whose IDs are located in istaining DHT network efficiency and scalability. We evalu-
space range. However, consistent hashing produces a boatedl the performance of the LAR load balancing algorithms
of O(logn) imbalance of keys between nodes, wherés via comprehensive simulations. Simulation results demonstrate
the number of nodes in the system [9]. The objective ¢iie superiority of a locality-aware 2-way randomized load
load balancing is to prevent nodes from being overloaded bglancing algorithm, in comparison with other pure random
distributing application load among the nodes in proportioapproaches and locality-aware sequential algorithms. In DHTs
to their capacities. Effective load balancing algorithm shouldith churn, it performs no worse than the best churn resilient
work for DHTs with and without churn and meanwhile belgorithm.
capable of exploiting the physical proximity of the network The rest of this paper is structured as follows. Section Il
nodes to minimize operation cost. Network churn represemgesents a concise review of representative load balancing ap-

Index Terms— Cycloid, Distributed Hash Table, Peer-to-Peer,
Load Balancing, Heterogeneity, Proximity.

proaches for DHT networks. Section IlI briefly introduces thmformation upwards along the tree. When the total length
architecture of Cycloid related to load balancing. Section Ig¥f information reaches a certain threshold, the KT node
details a load balancing framework on Cycloid. Section Would execute load rearrangement. The KT structure helps to
presents the LAR load balancing algorithms. Sections VI ande proximity information to move load between physically
VII show the performance of the approaches in DHTs witblose heavy and light nodes. However, the construction and
and without churn, respectively. Section VIII concludes thisaintenance of KT are costly, especially in churn. In churn,
paper with remarks on future work. a KT will be destroyed without timely fixes, degrading load
balancing efficiency. For example, when a parent fails or
leaves, the load imbalance of its children in the subtree cannot
be solved before its recovery. Besides, the tree needs to be
Load balancing is an inherent problem in any DHTs basedconstructed every time after virtual server transferring, which
on consistent hashing functions. Kargsral. proved that the is imperative in load balancing. Second, a real server cannot
consistent hashing function in chord [18] leads to a bound sfart determining its load condition until the tree root gets
O(logn) imbalance of keys between the nodes. Statal. the accumulated information from all nodes. This centralized
proposed an abstraction of “virtual servers” for Chord loagrocess is inefficient and hinder the scalability improvement
balancing. This abstraction simplifies the treatment of loasf P2P systems.
balancing problem at the cost of higher space overhead andMost recently, Karger and Ruhl [10] proved that the “virtual
lookup efficiency compromise. The original concept of “virtuaservers” method could not be guaranteed to handle item
servers” ignores the file size and node heterogeneity. Latistributions where an key ID interval has more than a certain
on, Raoet al. [13] proposed three algorithms to rearrangé&action of the load. As a remedy, they proposed two schemes
load based on nodes’ different capacities: one-to-one, many-ath provable features: moving items and moving nodes to
many, and one-to-many. Their basic idea is to move load froachieve equal load between a pair of nodes, and then a system-
heavy nodes to light nodes so that each node’s load does witle load balance state. In the moving items scheme, every
exceed its capacity. The algorithms are different primarily inode occasionally contacts a random other node. If one of the
the amount of information used to decide rearrangement. In leo nodes has much larger load than the other, then items
one-to-one algorithm, each light server randomly probes nodee moved from heavy node to the light node until their loads
for a match with a heavy one. In the many-to-many algorithrbecome equal. In the moving nodes scheme, if a pair of nodes
each heavy server sends its excess virtual nodes to a gldied very uneven loads, the load of the heavier node gets split
pool, which executes rearrangement periodically. The one-teetween the two nodes by changing their addresses. However,
one scheme produces too many probes, while the many4iois scheme breaks DHT mapping and cannot support key
many scheme increases overhead in load rearrangement. Ascations as usual. Karger and Ruhl provided a theoretic
trade-off, the one-to-many algorithm works in a way that eagteatment for load balancing problem and proved that good
heavy server randomly chooses a directory which contaililad balance can be achieved by moving items if the fraction
information about a number of light severs. Most recentlgf address space covered by every nod®(s/n) [10].
Godfrey et al. [6] extended this work for dynamic DHT This paper presents LAR algorithms that take into account
networks. In their approach, if a node’s capacity utilizatioproximity information in load balancing and deal with net-
exceeds a predetermined threshold, its excess virtual serweosk dynamism meanwhile. A first implementation of item
will be moved to a light one immediately without waitingmovement based the algorithms is also reported, although
for next periodic balancing. Bienkowski al. [2] proposed a the algorithms are also suitable for “virtual servers”. The
node leave and re-join strategy to balance the key ID intervatsplementation approach bears similarity to the one in [12]
across the nodes. In the algorithm, lightly loaded nodes leawe viewing a P2P system as a cluster of clusters. The latter
the system and rejoin to share the load of heavy ones. Alhs designed for unstructured P2P systems.
of these algorithms assume the objective of minimizing the
amount of moved load. They neglect the factor of physical 1. CycLOID: A CONSTANT-DEGREEDHT
proximity on the effectiveness of load balancing. With proxim-

. : . i o Cycloid [17] is a lookup efficient constant-degree DHT that
ity consideration, load transferring and communication ShOLWe recently proposed. In a Cycloid system with= d - 2¢
be within physically close heavy and light nodes. |

! ilize th imity inf . nodes, each lookup takéx(d) hops withO(1) neighbors per
One of the first work to utilize the proximity information ©ode. In this section, we give a brief overview of the Cycloid

guide load balancing is due to Zhu and Hu [25]. The aUthO‘Eﬁchitecture and its self-organization mechanism, focusing on

suggested 1o build a K-nary tr_ee (KT) S‘T“Ct“”v’_ on top of fhe structural features related to load balancing. For more
DHT overlay. Each KT node is planted in a virtual Server ¢ rmation about Cycloid, please refer to [17]
A K-nary tree node reports the load information of its rea‘1 ' '

server to its parent, until the tree root is reached. The root then

disseminate final information to all the virtual nodes. Usin§- 'D and Structure

this information, each real server can determine whether itin Cycloid, each node is represented by a pair of in-
is heavily loaded or not. Light and heavy nodes report thaiices (k,a4—1a4—2...a9), where k is a cyclic index and
free capacity, excess virtual nodes information to their K&y_1a4_».....ao IS a cubical index. The cyclic index is an
leaf nodes respectively. The leaf nodes will propagate th#eger, ranging from 0 tel — 1 and the cubical index is a

II. RELATED WORK

TABLE | Remote Cycle Remote Cycle Remote Cycle

ROUTING TABLE OF A CYCLOID NODE (4,101-1-1010). .10

(6.1 \01-1-0011)

NodelD(4,101-1-1010)
Routing table | e

cubical neighbor: (3,101-0-xxxx) (3,101-1-1100) (3,101-0-3xxx) (3,101-1-0011)
cyclic neighbor: (3,101-1-1100) i
cyclic neighbor: (3,101-1-0011)

4, 101-1-10:.

Leaf Sets (half smaller, half large
Inside Leaf Set
(3,101-1-1010)] (6,101-1-1010)
Outside Leaf Set
(7,101-1-1001)[(6,101-1-1011)

Preceding Remote Cycle Local Cycle Succeeding Remote Cycle

binary number between 0 ar2f — 1. Each node keeps a

routing table and two leaf sets, inside leaf set and outsiflig. 1. Cycloid node routing links state.

leaf set, with a total of 7 entries to maintain its connectivity

to the rest of the system. Table | shows a routing state table

for node (4,10111010) in an 8-dimensional Cycloid, where deals with the dynamism in a distributed manner. When a
indicates an arbitrary binary value. Its corresponding links €W node joins, it initializes its routing table and leaf sets,

both cubical and cyclic aspects are shown in Figure 1. and notifies the nodes in its inside leaf set of its participation.
In general, a nodék, aq_1aq_s...ax...ao), k # 0, has It also needs to notify the nodes in its outside leaf set if it

one cubical neighbotk — 1,aq_1aq_s...ayza...x) where becomes the primary node of its local circle. Before a node
= denotes an arbitrary bit value, and two cyclic neighbofg§aves, it notifies its inside leaf set nodes, as well. Because
(k—1,bg—1bg—s ... bo) and(k—1,c4_1c4_s . .. co). The cyclic @ Cycloid node has no incoming connections for cubical and
neighbors are the first larger and smaller nodes with cycfyclic neighbors, a leaving node cannot notify those who take

indexk — 1 modd and their most significant different bit with it s their cubical neighbor or cyclic neighbor. The need to
the current node in cubical indices is no larger than 1. hotify the nodes in its outside leaf set depends on whether the

That is, leaving node is a primary node or not. Updating cubical and
(k-1, bg_1 ...b1bo) cyc_lic neighbors are the responsibility of system stabilization,
= min{V(k-1, Yg—1 ... y190)|¥Yd—1 - - - Y0>aAd—1 - . . @100}, as in Chord.
(k'l, Cd—1 - .6160)
= max{V(K-1, ya_1 .- ¥1%0)|Yd—1-- - Yo<a@q_1...aiap}. IV. LOAD BALANCING FRAMEWORK
The node with a cyclic indekx = 0 has no cubical neighbor or This section presents a framework for load balancing based
cyclic neighbors. The node with cubical index 0 has no smah item movement on Cycloid. It takes advantage of the
cyclic neighbor, and the node with cubical inde%— 1 has Cycloid’s topological properties and conducts a load balancing
no large cyclic neighbor. operation in two steps: local load balancing within a local
The nodes with the same cubical index are ordered by thejfcle and global load balancing between circles.
cyclic index (modd) on a local circle. The inside leaf set of A general approach with consideration of node heterogene-
a node points to the node’s predecessor and successor inififs to partition the nodes into a super node with high
local circle. The Iargest CyC"C index node in a local circle iéapacity and a class of regu|ar nodes with low Capacity [4],
called the primary node of the circle. All local circles togethep3]. Each super node, together with a group of regular
form a global circle, ordered by their cubical index ("M®Y. nodes, forms a cluster in which the super node operates as
The outside leaf set of a node points to the primary nodesdnserver to the others. All the super nodes operate as equals
its preceding and Succeeding small circles in the global Cil’Ciﬂ. a network of super-peers. Super-peer networks strike a
The Cycloid connection pattern is resilient in the sense thgilance between the inherent efficiency of centralization and
even if many nodes are absent, the remaining nodes are gfiftribution, and take advantage of capacity heterogeneity, as
capable of being connected. well. Recall that each local circle in Cycloid has a primary
The Cycloid DHT assigns keys onto its ID space by the usgde. We regard Cycloid as a quasi-super-peer network by
of a consistent hashing function. For a given key, the cycligssigning each primary node as a leading super node in its
index of its mapDEd node is set to its hash value modulated é.iycie_ We designate a node as Supernode if its capacity is
d and the cubical index is set to the hash value divided.Hf higher than a pre-defined threshold. To ensure every primary
the target node of an item ke¥, aq—1 . .. a1ao) is not present node meets the capacity requirement of supernodes, we modify
in the system, the key is assigned to the node whose ID is fifigé Cycloid rules for node join and leave slightly. If the cyclic
numerically closest taq—1aq4—2 ...ao and then numerically |p selected by a regular node is the largest in its local circle,

closest to k. it needs to have another choose unless it is the bootstrap node
o of the circle. In the case of primary node departure or failure,
B. Self-organization a super node needs to be searched in the primary node’s place

P2P systems are dynamic in the sense that nodes i&rhe node with the second largest cyclic ID in the circle is
frequently joining and departing from the network. Cycloidhot a super node. This operation can be regarded as the new

TABLE I

super node leaves and re-joins the system with the ID of the
DONATING AND STARVING SORTED LISTS

leaving or failing primary node.

Let L, ,, denote the load of iterh in nodes. It is determined Load information in a primary node
by the item sizeS; , and the number of visits of the itei Donating sorted list| Starving sorted list
during a certain time period. That i%, , = S; » x Vi . The <O0Lj Aj > <Lin,Dig, Ai >
actual load of a real servér denoted byL;, is the total load S Am S | <Lim DimAiS

of all of its items: L; = ZZL’& L; ,, assuming the node has
m; items. LetC; denote the capacity of nodeit is defined
as a pre—set tal’get |0ad Wh|Ch the node iS W|”|ng to hOld V\ﬂgonthm 1: Primary node periodica”y performs |Oad
refer to the node whose actual load is no larger than its targghrrangement between a pair of DSL and SSL

load (.e. L; < C;) as a light node; otherwise a heavy one. We
define utilization of a node, denoted byNVU;, as the fraction for each item k in SSldo

of its target capacity that is occupied. That8l/; = L,/C;. for each item j in DSLdo

System utilization, denoted bgU, is the ratio of the total if L;, < 0L, then

actual load to the total node capacity. item k is arranged to be transferred from i to |
Each node contains a list of data items, labelled gsiD= if §L; — L;; > 0 then

1,2,.... To make full use of node capacity, the excess items put <(6L;- — L; 1), A;> back to DSL

chosen to transfer should be with minimum load. We define
excess items of a heavy node as a subset of the resident items,
satisfying the following condition. Without loss of generality,

we assume the excess items dB1,Ds,..., Dy}, 1 <
m’ < m;. Their corresponding loads afé; 1, ..., L; ' }. The J: node: will have a forward pointer in D location pointing to
set of excess items is determined in such a way that the item D inj’s place; item D will have a backward pointer
to nodes indicating its original host. When queries for item D
. m’ reach node, they will be redirected to nodgwith the help of
minimizes _ Li ., (1) forward pointer. If item D needs to be transferred from ngde
k=1) to another node, say, for load balancing, nodg will notify
. i node; via its backward pointer of the item’s new location.
subject to(L; — ;Li”f) =i @ We use a centralized method in local load balancing, and

a decentralized method in global load balancing. Each node
Each primary node has a pair of sorted donating an#,a;—iaq—2...ag) periodically reports its load information
starving lists which store the load information of all nodet the primary node in its local circle. Unlike a real super-peer
in its local cycle. A donating sorted list (DSL) is used taetwork, Cycloid has no direct link between a node and the
store load information of light nodes and a starving sortegtimary node. The load information needs to be forwarded us-
list (SSL) is used to store load information of heavy nodeag Cycloid routing algorithm, which ensures the information
as shown in Table Il. The free capacity of light nodés reaches the up-to-the-minute primary node. Specifically, the

defined asiL; = C; — L,. Load information of heavy nodé information is targeted to the nodd — 1,a4—1a4-2 ... ag).
includes the information of its excess items in a set of 3-tupky the routing algorithm, the destination it reaches, say ripde
representationx L;1,D;1,A; >,< Ly, Dir, Ai >,...,< may be the primary node or its successor depending on which
L;m, Dims, Ai >, in which A; denotes the IP address ofone is closer to the ID. If the cyclic index of the succesgor(
nodei. Load information of light nodej is represented in is larger than the cyclic index af then the load information
the form of < 6L;, A; >. An SSL is sorted in a descendingis forwarded to the predecess9r{which is the primary node.
order of L; ; minL; j represents the item with the minimumOtherwise,i is the primary node. According to the Cycloid
load in the primary node’s starving list. A DSL is sorted imouting algorithm, each report needs to tak€ steps in the
an ascending order @i ;; max dL; represents the maximumworst case. Cycloid cycle contains a primary node all the time.
0L; in the primary node’s donating list. Load rearrangemeince the load information is guaranteed to reach the up-to-
is executed between a pair of DSL and SSL, as shown time-minute primary node, there is no serious advert effect of
Algorithm 1. primary node updates on load balancing. After receiving the
This scheme guarantees that heavier items have a higlead information, the primary node puts it to its own DSL and
priority to be reassigned to a light node, which means fast86L accordingly. A primary node with nonempty starving list
convergence to a system-wide load balance state. A heavy itdPNS) first performs local load rearrangement between its DSL
L; is assigned to the most-it light node wittL; which and SSL. Afterwards, if its SSL is still not empty, it probes
has minimum free capacity left after the heavy itdim; is other primary nodes’ DSLs for global load rearrangement one
transferred to it. It makes full use of the available capacity.by one until its SSL becomes empty. When a primary node
Our load balancing framework is based on item movemeigipn't have enough capacity for load balancing, it can search
which transfers items directly instead of “virtual nodes” to savi@r a high capacity node to replace itself.
cost. Cycloid maintains two pointers for each transferred item.We arrange the PNS to initiate probing because the probing
When an item D is transferred from heavy nade light node process will stop once it is not overloaded. If a node of

nonempty donating list initiates probing, the probing procesemposed with new ones joining and existent ones leaving.
could proceed infinitely, incurring much more communicatioBervers are heterogeneous with respect to their capacities.
messages and bandwidth cost. Because primary nodes Tasks are of different sizes and arrive in different rates. In [5],
super peers with high capacities, they are less likely to e proved the random probing is equivalent to a generalized
overloaded in the load balancing. This avoids the situati@upermarket model and showed the following results.
that heavy nodes will be overloaded if they perform probing, Theorem 5.1:Assume servers join in a Poisson distribution.
such as in the schemes in [13]. This scheme can be exten&ied any fixed time interval [0,T], the length of the longest
to perform load rearrangement between one SSL and multipjeeue in the supermarket model with= 1 islnn/Inlnn(1+
DSLs for improvement. O(1)) with high probability; the length of the longest queue
in the model withd > 2 is Inlnn/Ind + O(1), wheren is
V. LOCALITY-AWARE RANDOMIZED LOAD BALANCING the number of servers.
ALGORITHMS The theorem implies that 2-way probing could achieve a

The load balancing framework in the preceding sectidh°"® balanced load distripution With faster spegd even in
facilitates the development of load balancing algorithms Wiﬁ'hum'_ because 2-way probing _has higher poss'b'“_ty to reach
different characteristics. A key difference between the algg" ctive node than 1-way probing, but d-way probihg; 2,
rithms is, for a PNS, how to choose another primary nodB& not result in much additional improvement.
for a global load rearrangement between their SSL and DSL.

It affects the efficiency and overhead to reach a system-wiBle Locality-Aware Probing

load balance state. One goal of load balancing is to effectively keep each

node lightly loaded with minimum load balancing overhead.
A. D-way Randomized Probing Proximity is one of the most important performance factors.

A general approach to dealing with the churn of DHTs iMismatch between logical proximity abstraction and physical
randomized probing. In the policy, each PNS probes oth@foximity information in reality is a big obstacle for the
primary nodes randomly for load rearrangement. A simpfeployment and performance optimization issues for P2P
form is one-way probing, in which a PNS, say nag@robes applications. Techniques to exploit topology information in
other primary nodes one by one to execute load rearrangenfé¢rlay routing include geographic layout, proximity routing
betweenSSL; and DSL;, wherej is a probed node. We and proximity-neighbor selection [3].
generalize the one-way randomized probing policy tbway ~ We integrate proximity-neighbor selection and
probing, in whichd primary nodes are probed at a time, anéPpologically-aware ~ overlay construction techniques
the primary node with the most total free capacity in its DSIN [22], [3] and [19] into Cycloid to build a topology-
is chosen for load rearrangement. A critical performance iss@are Cycloid. As a result, the topology-aware connectivity
is the choice of an appropriate valde of Cycloid ensures that a message reaches its destination

The randomized probing in our load ba|ancing framéN|th minimal OVerhead. Details Of tOpOlOgy-awal’e CyC|0|d
work is similar to load balancing problem in other contextgonstruction will be presented in Section VI.
competitive online load balancing and supermarket model.In & topology-aware Cycloid network, the cost for commu-
Competitive online load balancing is to assign each task togation and load movement can be reduced if a primary node
server on-line with the objective of minimizing the maximungontacts other primary nodes in its routing table or primary
load on any server, given a set of servers and a sequefigdes of its neighbors. In general the primary nodes of a
of task arrivals and departures. Azet al. [1] proved that Nhode’s neighbors are closer to the node than randomly chosen
in competitive online load balancing, allowing each task tBfimary nodes in the entire network, such that load is moved
have two server choices to choose a less loaded server inste@iveen closer nodes. This method should be the first work
of just one choice can exponentia”y minimize the maximumat handles the load balanCing issue with the information
server load and result in a more balanced load distributid#sed for achieving efficient routing. There are two methods for
Supermarket model is to allocate each randomly incomif@cality-aware probing: randomized and sequential method.
task modelled as a customer with service requirements, to d) Locality-aware randomized probing (LAR)n LAR,
processor (or server) with the objective of reducing the time each PNS contacts primary nodes in a random order
each customer spends in the system. Mitzenmaghat. [11] in its routing table or primary nodes of its neighbors
proved that allowing a task two server choices and to be served except the nodes in its inside leaf set. After all these
at the server with less workload instead of just one choice leads primary nodes have been tried, if the PNS’s SSL is still
to exponential improvements in the expected execution time nonempty, global random probing is started in the entire
of each task. But a poll size larger than two gains much less ID space.
substantial extra improvement. 2) Locality-aware sequential probing (Lsedj. Lseq, each

The randomized probing between the lists of SSLs and PNS contacts its larger outside leaf Setccessor(PNS)
DSLs is similar to the above competitive load balancing and After load rearrangement, if its SSL is still nonempty,
supermarket models if we regard SSLs as tasks, and DSLs the larger outside leaf set Buccessor(PNSBucces-
as servers. But the random probing in P2P systems had a sor(Successor(PNS)$ tried. This process is repeated,
general workload and server models. Servers are dynamically until that SSL becomes empty. The distances between a

TABLE Il

overlay networks [14], [22], [21], [7]. We used GT-ITM to
SIMULATION SETTINGS AND ALGORITHM PARAMETERS.

generate transit-stub topologies for Cycloid, and get physical

Environment Parameter | Default value hop distance for each pair of Cycloid nodes. Recall that we use
gblegt a":cval Locatlon Z’gggrm over ID space proximity-neighbor selection method to build topology-aware
umper of noaes s . . . : . .
Node capacity Bounded Paretor Shape 2 Cycloid; thgt is, it selects the routing table_entrles p0|.nt|ng
lower bound:2500, upper bound: 2500+10 t0 the physically nearest among all nodes with nodelD in the
Number of items 20480 desired portion of the ID space.
Existing item load Bounded Pareto: shape: 2,

: . We use landmark clustering and Hilbert number [22] to
lower bound: mean item actual load/2 . . .
upper bound: mean item actual load/2*10 Cluster Cycloid nodes. Landmark clustering is based on the

intuition that close nodes are likely to have similar distances
to a few landmark nodes. Hilbert number can convért

node and its sequential nodes are usually smaller thdimensional landmark vector of each node to one dimensional
distances between the node and randomly chosen nodetex while still preserve the closeness of nodes. We selected

in the entire ID space. 15 nodes as landmark nodes to generate the landmark vector
and a Hilbert number for each node cubic ID. Because the
V1. PERFORMANCEEVALUATION nodes in a stub domain have close (or even same) Hilbert

We designed and implemented a simulator in Java fepmbers, th_eir cubic IDs are also close to each other._As a
evaluation of the load balancing algorithms on topology-awaf@sult, physically close nodes are close to each other in the
Cycloid. Table Il lists the parameters of the simulation anBHT'S ID space, and nodes in one cycle are physically close
their default values. The simulation model and parameté €ach other. For example, assume nodesd j are very
settings are not necessarily representative of real DHT #0se to each other in physical locations but far away from
plications. They are set in a similar way to related studies fipde m. Nodesi and j will get approximately equivalent
literature for fair comparison. We will compare the differenftndmark vectors, which are different from's. As a result,
load balancing algorithms in Cycloid without churn in terms ofodesi and j would get the same cubic IDs and be assigned

the following performance metrics; the algorithms in Cycloid® the circle different fromm’s. In the landmark approach,
with churn will be evaluated in Section VII. for each topology, we choose landmarks at random with the

1)

2)

3)

4)

5)

Load movement factodefined as the total load trans_only condition that the Iandm_ar_ks are separated from each
ferred due to load balancing divided by the syste ther_by fo_ur hops. More sophlst|catgd placement schemes, as
actual load, which is system target capacity times S gscrlbed |n_[8] would onIy_ serve to improve our results. _

It represents load movement cost. Our experiments are built on two tra_nsn-stub topologies:
Total time of probings defined as the time spent for“tSSk-Iarge” and “tsbk-small” with approximately 5,000 nodes

primary node probing assuming that probing one no@é’mh' In the topologies, nodes are organized into logical do-
takes 1 time unit, and probing nodes simultaneously mains. We classify the domains into two types: transit domains
also takes 1 time unit. It represents the speed of probifigd Stub domains. Nodes in a stub domain are typically an

phrase in load balancing to achieve a system-wide |o§8qpo'”t_'” a ne_tworl_< flow; nodes in transit domains are
balance state typically intermediate in a network flow. “tsbk-large” has 5

Total number of load rearrangementeefined as the transi'F domains, 3 transit node§ per transit domain, 5 stub
total number of load rearrangement between a pair demains attached to each transit node, and 60 nodes in each
tub domain on average. “ts5k-small” has 120 transit domains,
transit nodes per transit domain, 4 stub domains attached to
Total probing bandwidth defined as the sum of theeaCh transit node, and 2 nodes in each stub domain on average.

bandwidth consumed by all probing operations. Th‘gsSk—Iarge" has a larger backbone and sparser edge network

bandwidth of a probing operation is the sum of bancf—?t“b), thap “tsSk-smaII”. .“t55k—large" is u;ed to represent a
width of all involved communications, each of which jSituation in which Cycloid overlay consists of nodes from

message size times physical path length of the mess&g¥eral big stub domains, while “tsSk-small” represents a
travelled. It is assumed that the size of a message askifyation in which Cycloid overlay consists of nodes scattered

and replying for information is 1 unit. It represents thd the entire Intemet and only few nodes from the same
traffic burden caused by probings. edge network join the overlay. To account for the fact that

Moved load distributiondefined as the cumulative dis_interdomain routes have higher latency, each interdomain hop
tribution function (CDF) of the percentage of movedounts as 3 hops of units of latency while each intradomain
load versus moving distance. It represents the lo&}pP counts as 1 hop of unit of latency.

movement cost for load balance. The more load moved

along the shorter distances, the less load balancing cogis.Effectiveness of LAR Algorithms

SSL and DSL. It represents the efficiency of probin
for light nodes.

In this section, we will show the effectiveness of LAR load

A. Topology-aware Cycloid Construction balancing algorithm. First, we present the impact of LAR
GT-ITM (transit-stub and tiers) [24] is a network topologyalgorithm on the alignment of the skews in load distribution
generator, widely used for the construction of topology-awaead node capacity when the system is fully loaded. Figure 2(a)

250000

200000

o
@

150000

Node Load

100000

Node Utilization
Node Utilizatior

50000 -

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 100000 200000 300000
Node sequence Node sequence Node Capacity

(a) Before load balancing (b) After load balancing (c) Node load after balancing

Fig. 2. Effect of load balancing.

shows the initial node utilization of each node. Recall that nodeFigure 3(c) and (d) show the performance of the algorithms
utilization is a ratio of the actual load to its target (desiredh “ts5k-large”. From Figure 3(c), we can observe that unlike
load. Many of the nodes were overloaded before load bat lightly loaded systems, in heavily loaded systems t&kes
ancing. Load balancing operations drove all node utilizatiomsore bandwidth than LARand Lseq, and the performance
down below 1 by transferring excess items between the nodgap increases as the system load increases. This is because
as shown in Figure 2(b). Figure 2(c) shows the scatterplot thfat much less probings are needed in a lightly loaded system,
loads according to node capacity. It confirms that the capacitausing less effect of probing distance on bandwidth consump-
aware load balancing feature of the LAR algorithm. Recdilon. The bandwidth results of LAR and Lseq are almost the
that LAR algorithm was based on item movement, usirgame when the SU is unde6%; when the SU goes beyond
forward pointers to keep DHT lookup protocol. We calculate@d.9, LAR consumes more bandwidth than Lseq. This is due
the fraction of items that are pointed to by forward pointert® the fact that in a more heavily loaded system, more nodes
in systems of different utilization levels. We found that th@eed to be probed in the entire ID space, leading to longer
fraction increased linearly with the system load, but it woultbad transfer distances. Figure 3(d) shows the moved load
be no higher than 45% even when the system becomes fudigtribution in load balancing as the SU approaches 1. We
loaded. The cost is reasonably low compared to the extran see that LARand Lseq are able to transfer about/60
space, maintenance cost and efficiency degradation in “virtudlglobal moved load within 10 hops, while,Rransfers only
servers” load balancing approach. about 15% because Ris locality-oblivious.
We measured the load movement factors due to different
load balancing algorithms: one-way random;)Rtwo-way Figure 3(e) and (f) show the performance of the algorithms
random (R), LAR1, LAR-, and Lseq, on systems of differentin “ts5k-small”. These results also confirm that LABchieve
loads and found that the algorithms led to almost the sarhetter locality-aware performance than,Rilthough the im-
amount of load movement in total at any given utilization leveprovement is not so significant as in “ts5k-large”. It is because
This is consistent with the observations by Retoal. [13] that in “ts5k-small” topology, nodes are scattered in the entire
that the load moved depends only on distribution of loads, thetwork, and the neighbors of a primary node may not be
target to be achieved, but not on load balancing algorithmshysically closer than other nodes.
This result suggests that an effective load balancing algorithm
should explore to move the same amount of load along shorteFigures 3(d) and (f) also include the results due to two
distance and in shorter time to reduce load balancing overheather popular load balancing approaches: proximity-aware K-
In the following, we will examine the performance of variousary Tree (KTree) algorithm [25] and churn resilient algorithm
load balancing algorithms in terms of other performandq€RA) [6] for comparison. From the figures, we can see that
metrics. Because metrics (2) and (3) are not affected hAR performs as well as KTree, and outperform proximity-
topology, we will only show results of them in “ts5k-large”. oblivious CRA, especially in “ts5k-large”. The performance
gap between proximity-aware and proximity-oblivious algo-
_)) rithms is not as large as in “tsk-small”. It is because the
C. Comparison with Other Algorithms nodes in “ts5k-small” are scattered in the entire Internet with
Figure 3(a) shows the probing process in Lseq takes muelss locality.
more time than Rand LAR;. This implies that random algo-
rithm is better than sequential algorithm in probing efficiency. In summary, the results in Figure 3 suggest that the random-
Figure 3(b) shows that the rearrangement number of the thiered algorithm is more efficient than the sequential algorithm
algorithms are almost the same. This implies that they nemdthe probing process. The locality-aware approaches can
almost the same number of load rearrangement to achieve lefféctively assign and transfer loads between neighboring
balance. However, long probing time of Lseq suggests thamnivdes first, thereby reduce network traffic and improve load
is not as efficient as random probing. It is consistent with thelancing efficiency. The LAR algorithm performs no worse
observation of Mitzenmacher in [11] that simple randomizetthan the proximity-aware KTree algorithm. In Section VII, we
load balancing schemes can balance load effectively. will show LAR works much better for DHTs with churn.

,, 7000 1800 250000
£ ¢ Random 1600 +{~>< Random ” |
= 6000 T1-a-| seq =L
1400 5 ~°°d
||-+-LARL <+ LARL
1200

1000 +
800 -
600 -
400 %

—-Random
200000 -+ ™ LAR1
—A-Lseq

150000

100000 -

Physical Probing Bandwidth

d
Number of Load Rearrangements

& 50000
£ 1000 200 4
°
0 : : : : 0 : : ! ! 0 * - T i
05 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 08 0.9 1 05 0.6 07 0.8 0.9 1
System Utilization System Utilization System Utilization
(a) Total primary node probing in “ts5k-large” (b) Total number of load in “ts5k-large” (c) Total bandwidth of time in “ts5k-large”
5100 300000 < 100 1T CRA o
5 90 £ -+-Random = 90
g B 250000 1|] g - LARL [
8§ 801 E -=LARL / S 80 7l-KTree .//
A = -
? 70 § 200000 Lseq g 70 1{-+- Random 2
260 - 2 60 H{¢Lseq
g 50 £ 150000 4 g 50
= 40 l / / -=-Random § % 40 -
S 30 > KTree] 100000 | o 304
g0 4 [A ~-CRA g g 201
g " Va et ~LARL £ 500001 8 10
LS AN LA-Lseq 0 + : ‘ : 2 o ‘
0 5 10 15 20 05 0.6 0.7 0.8 0.9 1 0 15 20
Physical Distance by Hops System Utilization Physical Distance by Hops

(d) CDF of moved load distribution in “ts5k- (e) Total bandwidth of probings in “ts5k-small” (f) CDF of moved load distribution in “ts5k-
large” small”

Fig. 3. Effect of load balancing due to different probing algorithms.

D. Effect of D-Way Random Probing probing, but a d-way (d2) probing leads to much less
substantial additional improvement. In the following, we will
analyze whether the improvement of LARd > 2) over
LAR; is at the cost of more bandwidth consumption or
. . locality-aware performance degradation. We can observe from
LAR; reduces t.he probmg time O.f LARat the COSF of more Figure 5(c) that the probing bandwidth of LARs almost
number of problngs. Unlike LAB in LAR2, a probing nodg the same as LAR Figure 5(d) shows the moved load dis-
pnly sends its SSL to a node with more total frge capacity tHbution in global load balancing due to different algorithms.
!ts DSL between two probed nodes. The more item transt can see that LARleads to an approximately identical
in one load rearrangemen_t, the Iess_ probing time. It Ieadsc}%tribution as LAR and they cause slightly less global load
less number of SSL sending operation of LARan LAR,, movement cost than LARand LAR;. This is because the

resulting in less number of load rearrangements as Sho‘ﬁ%re simultaneous probed nodes, the less possibility that the

n dF'gurtE;] 5(b). 'trhtelreffore, S|mu.I:ar?eqtleDp)SrEb|ngs to gleta%st primary node is a close neighbor node. These observations
node with more total free capacity in 1ts can save 1o monstrate that LAR improves on LAR at no cost of

ba'?”cmg time and reduce network traffic load. bandwidth consumption. It retains the advantage of locality-
Figures 4(a) and (b) show the breakdown of total numbgy,ore probing.

of probed nodes in percentage that are from neighbors Ofigures 5(e) and (f) show the performance of different

randomly chosen in entire ID space in LARaNd LAR, gg0rithms in “ts5k-small”. Although the performance gap
respectively. Label “one neighbor and one random” represeftS,,: 45 wide as in ‘ts5k-large”, the relative performance
the condition when there’s only one neighbor in routinga.veen the algorithms retains.

table, then another probed node is chosen randomly from 1D
space. We can see that the percentage of neighbor primary
node constitutes the most part, which means that neighbors
can support most of system excess items in load balancingln practice, nodes and items continuously join and leave
With SU increases, the percentage of neighbor primary noB@P systems. It is hard to achieve the objective of load bal-
decreases because the neighbors’ DSLs don’t have enough &ieee in networks with churn. We conducted a comprehensive
capacity for a larger number of excess items, then randonglyaluation of the LAR algorithm in dynamic situations and
chosen primary nodes must be resorted to. compare the algorithm with with CRA, which was designed
Figures 5(a) and (b) show that the probing efficiency der DHTs with churn. The performance factors we considered
LAR, (d>2) is almost the same as LARthough they need include load balancing frequency, item arrival/departure rate,
to probe more nodes than LAROur results are consistentnonuniform item arrival pattern, and network scale and node
with our expectations in Section V-A that a two-way probin§apacity heterogeneity. We adopted the same metrics as in [6]:
method leads to an exponential improvement over one-wayl) The 99.9th percentile node utilization (99.9th NWye

We tested the performance of the LARigorithms with
different probing concurrency degréeFigure 5(a) shows that
LAR, takes much less probing time than LARt implies that

VII. L OAD BALANCING IN DHTS WITH CHURN

8000

7000

6000

@
=}
S
1S}

S
1S3
3

Now A
1<)
1S}
S}

S
S
1S}

Total Primary Nodes Probing Time

1000

- LAR1

-4 LAR2

< LAR4
- LAR6

0.7 0.8 0.9

System Utilization

0.5 0.6

Total Number of Load Rearrangements

7000

180000

6000 : tiﬁ; / g 160000 1 : tﬁi;
5000 I LAR4 5 140000 174 AR4 Vi

- ARG S 120000 +—|-><LAR6
4000 E 100000
3000 g 80000
2000 4 F 60000

% 40000
1000 4 T 20000
0 ; i T T 0 y T i T
0.5 0.6 0.7 0.8 0.9 1 05 0.6 0.7 0.8 0.9 1

System Utilization

System Utilization

(a) Total primary node probing in “ts5k-large”

(b) Total number of load in “ts5k-large”

(c) Total bandwidth of probings in “ts5k-large”

=
o
s}

920
80
70

Percentage of Global Moved Load (%)

o

60 +
50 q
40
30 -
20
10 4

T]-+-LARL % <
= LAR2 7.4 §
1 {-~LAR4 % k=
< LARG a
[
Q
S
o
E
L
3
>
2
o
0 5 10 15 20

Physical Distance by Hops

250000 100
+LARL S 90 = (ARL (-ft
200000 -+ LAR2 & 80 {=LAR2
s Fr i y
150000 2 60 {{XLARG
ERCOE
8
100000 | o 40
2 30 _
g
50000 4 £ 20
5
2 _4_..44:/
0 : : ‘ ‘ 0 . ‘ ‘
05 06 07 08 09 1 0 5 10 15 20

System Utilization

Physical Distance by Hops

(d) CDF of moved load distribution in “ts5k- (e) Total bandwidth of probings in “ts5k-small” (f) CDF of moved load distribution in “ts5k-

large”

Fig. 5.

Effect of load balancing due to different LAR algorithms.

Breakdown of Probing Nodes

o o
SN
L

© 0 oo 9o oo
w s OO N ®©O
T I

B One random
@ One neighbor

small”

o

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 095 1

System Utilization

(a) LAR;

1.4
1.2 4
1 CRA
- Load Moved Fac.
0.8 4 —&The 99.9th NU
> L/DHT-L
0.6 LAR1
=¥~ Load Moved Fac.
0.4 4 ——The 99.9th NU
—-L/DHT-L
0.2 A
0 T T T T
0 20 40 60 80 100
Node Interarrival Time

Fig. 6. Effect of load balancing with churn.

| OTwo randoms
B Two neighbors

DOnenelghburandonerandom I I I I

Breakdown of Probing Nodes

2)
H B

0.5 055 0.6 065 0.7 075 0.8 085 0.9 095 1

System Utilization

Fig. 4.

(b) LARy

Breakdown of probed nodes.

measure the maximum 99.9th percentile of the node uti-
lizations after each load balancing period T in simulation
and take the average of these results over a period as the
99.9th NU. The 99.9th NU represents the efficiency of
LAR to minimize load imbalance.

Load moved/DHT load moved (L/DHT;ldefined as the
total load moved incurred due to load balancing divided
by the total load of items moved due to node joins
and departures in the system. This metric represents
the efficiency of LAR to minimize the amount of load
moved.

Unless otherwise indicated, we run each trial of the simu-

lation for 20T simulated seconds, where T is a parameterized

load

balancing period, and its default value was set to 60

seconds in our test. The item and node join/departure rates
were modelled by Poisson processes. The default rate of
item join/departure rate was 0.4; that is, there were one item

10

join and one item departure every 2.5 seconds. We ranged-igure 8(a) shows that all the 99.9th NUs are less than 1, and
node interarrival time from 10 to 90 seconds, with 10 seconhen the actual load of a system consists more than 60% of
increment in each step. A node life time is computed by arrivas target load, the 99.9 NU quickly converges to 1. It implies
rate times number of nodes in the system. The default systémt the LAR algorithm is effective in keeping every node light,

utilization SU was set to 0.8. and it can quickly transfer excess load of heavy nodes to light
nodes even in a highly loaded system. Observing Figure 8(a)

the lower 99.9th NU. It is consistent with our expectation that

velr:slgzr?]o?iepilr?ttgrgr]r?v:letriz(rem;ﬁr(if ?eetﬁogﬁs ngoﬁR:ﬂnmore load moved leads to move balanced load distribution.
g'p - =Y parng Intuitively, a higher load balancing frequency should lead

res_ults of .LAR and CRA, we can have a number of obsert-o less the 99.9th NU and more load moved. Our observation
vations. First, the 99.9th NUs of LARand CRA are kept . . L . .
. o from Figure 8 is counter-intuitive. That is, the 99.9th NU in-

no more than 1 and 1.25 respectively. This implies that on .

. ; , I reases and load movement factor decreases as load balancing
average, LAR is comparable with CRA in achieving the Ioad|Cs erformed more frequently. Recall that the primary objective
balancing goal in churn. Second, LARnoves up (0% and fFI)oad balancing is toqkee ye.zach node not oSerIoadyed Jins;tead
CRA moves up to45% of the system load to achieve loa 9 P '

balance for SU as high &9%. Third, the load moved due to of keeping the application load evenly distributed between the

load balancing is very small compared with the load moverH)des. Whenever a node’s utilization is below 1, it does not

due to node joins and departures and it is ug# for LAR; Rieietzgra?j&?rngzgagrteo"?(tgleri') Vgghose?;gg dlggd_?ﬁ(leanﬁ]lgg
and53% for CRA. When the node interarrival time is 10, th d Y, y : y may

L/DHT-L is the highest. It is because faster node joins aﬁwqave high ut|I|zat|_ons less tha_n_ 1,_and e_nd up with less load
. . movement and high node utilization. Figure 8(b) reveals a

departures generate much higher load imbalance, such that

more load transferred is needed to achieve load balance.

pgar relationship between the load movement factor and
fact that the results of LARare comparable to CRA implies:system utilization and that the slope of low frequency is larger
that LAR algorithm is as efficient as CRA to handle churn b

&han high frequency because of the impact of load balancing
moving a small amount load. requency on highly loaded systems.
The results in Figure 6 are due to a default node join/leave

rate of 0.4. Figure 7 plots the 99.9th NU, load movemem®. Impact of Item Arrival/Departure Rate

factor and the L/DHT-L as a function of SU with different
. . : . Continuous and fast item arrivals increase the probability of
node interarrival time respectively. We can observe that the

o . overloaded nodes generation. Item departures generate nodes
results of the three metrics increase as SU increases. ThaY’ 9 P 9

; : {ith available capacity for excess items. An efficient load bal-

because nodes are prone to being overloaded in a heavily. ; o ; ey .
S .ancing algorithm will find nodes with sufficient free capacity

loaded system, resulting in more load transferred to achieve

load balance. We also can observe that the results of tl% excess items quickly in order to keep load balance state

L . . X in“churn. In this section, we evaluate the efficiency of LAR
metrics increase as interarrival time decreases, though they are_. . . .
. .) .2 algorithm in the face of rapid item arrivals and departures. In
not obvious. It is due to the fact that with faster node joing; o .
is test, we varied item arrival/departure rate from 0.05 to

and departures, nodes are more easily to become overloa . .
leading to the increase of the 99.9th NU and load moved [p S ata step size of 0.1, varied SU from 0.5 to 0.9 at a step

load balancing. Low NUs in different SU and node interarriv Ize of 0.05, and measured the 99.9th NU and load movement
time means that the LAR is effective in maintaining each nogactor in each condition. Figure 9(a) and (b), respectively,

light in a dynamic DHT with different node join/departure rat(-ﬁ,ﬁOt the 99.9th NU and load movement factor as functions

and different SUs, and confirms the churn-resilient feature 0? item arnval/departurg rate. As e>.<pected, the 999th NU apd
LAR algorithm oad movement factor increase with system utilization. It is

consistent with the results in the load balancing frequency
test. Figure 9(a) shows that all the 99.9th NUs are less than
B. Impact of Load Balancing Frequency 1, which means that the LAR is effective to assign excess
It is known that high frequent load balancing ensures thiems to light nodes in load balancing in rapid item arrivals
system load balance at a high cost, and low frequent loadd departures. From the figures, we can also see that when
balancing can hardly guarantee load balance at all time. itam arrival/departure rate increases, unlike in lightly loaded
this simulation, we varied load balancing interval T from 68ystem, the 99.9th NU decreases in heavily loaded system. It
to 600 seconds, at a step size of 60, and we conducted the iestue to efficient LAR load balancing, in which more load
in a system with SU varies from 0.5 to 0.9 at a step size of Osearrangements initiated timely by overloaded nodes with high
Figure 8(a) and (b) show the 99.9th NU and load movemeitem arrival rate. On the other hand, in the lightly loaded
factor in different system utilization and time interval. We camystem, though the loads of nodes accumulate quickly with
see that the 99.9th NU and load movement factor increasehégh item arrival rate, most nodes are still light with no need
SU increases. This is because that nodes are most likely totbenove out load, leading to the increase of 99.9th NU.
overloaded in highly loaded system, leading to high maximum This is confirmed by the observation in Figure 9(b) that
NU and a large amount of load needed to transfer for lodkde load moved is higher in heavily loaded system than that
balance. in lightly loaded system, and movement factor drops faster

11

12 0.5 0.6
= -+ Interarrival=10s -+ Interarrival=10s -+~ Interarrival=10s
2 -=30s 0457 g 305 -=30s
o 14 = 1 0.5 -
3 -+-60s g 04 fa60s Nz -+ 60s
f) 0 |==90s § 0.35 ><90s 0.4 1l><90s
= € 034 =
5 06] 2 oo] £ 53
© 06 $ 0.25 E 0.3
@ g 0.2 S
§°*1 5 0151 0.2 1
f23 4
© 024 3 ol 014
< 0.05 4
=

0 T T T 0 T T T 0 T T T
0.1 0.3 0.5 0.7 0.9] 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
System Utilization System Utilization System Utilization
(a) The 99.9th percentage NU (b) Load movement factor (c) LIDHT-L

Fig. 7. Impact of system utilization under continual node joins and departures.

o
)

o
)

0899 4.

0898 J. 7

[=]
=]
@

o
o
B

0897 .-

Load Movernent Factar

0896 .-

The 99.9th Percentage Mode Utilization

oo

0s 0o

12
180

120

180" 08

g o 07 fy
"Va/;.? 240 e &9% 240 0.7)
i i < oglioh
ng T 4o T 300 e 0 ot Rt
(a) The 99.9th percentage node utilization (b) Load movement factor

Fig. 8. Impact of load balancing frequency.

0.9995 -~
0.999 ----~
09985 .L---7

0998 -t

Load Movement Factor

09975 f----"

The 98.9th Percentile Node Utilization

05

5 0 .
y‘”%%?n 7 —_—
o, 06 > a0 Ogﬁpa“‘“e rat®
05 ¢ yen ol
(a) The 99.9th percentage node utilization (b) Load movement factor

Fig. 9. Impact of item arrival/departure rate.

in highly loaded system, which means that faster item depan “impulse” of items as a group of items that suddenly join
tures lead to less load moved for load balance. Figure 9(b)the system and their IDs are distributed over a contiguous
demonstrates that the load movement factor drops as itarterval of a ID space interval. We set their total load a$ 10
arrival/departure rate increases. It is because that the taththe total system load, and varied the spread of interval from
system load (denominator of load movement factor) grovi€% to 90% of the ID space.
quickly with a high item arrival/departure rate. In summary, Figure 10(a) shows that in different impulses and SUs,
item arrival/departure rate has direct effect on NU and loadhR algorithm kept the 99.9th NU less than 1.055, which
movement factor in load balancing, and LAR is effective tgnplies that LAR algorithm can almost solve the impulses
achieve load balance with rapid item arrivals and departuresccessfully. The 99.9th NU is high in high SU and low
impulse spread. Except when SU equals to 0.8, the impulse
D. Impact of Nonuniform Item Arrivals with spread larger than 0.3 can be successfully solved by
Furthermore, we tested LAR algorithm to see if it is churnAR algorithm. When the impulse is assigned to a small
resilient enough to handle skewed load distribution. We defilie space interval less than 0.3, the load of the nodes in

12

that ID space interval accumulates quickly, leading to higheapacities but are assigned much higher load, which is needed
NUs. The situation becomes worse with higher SU, becausemove out for load balance.
there’s already less available capacity left in the system for theThe results show that node heterogeneity helps, not hurts,
impulse. The curve of SU=0.8 is largely above others is mainije scalability of LAR algorithm. LAR algorithm can achieve
due to the item load and node capacity distributions, and theod load balance even in large scale network by arranging
impulse load relative to the SU. In that case, it is hard foad transfer timely.
find nodes with large enough capacity to support excess items
because of the fragmentation of the@% capacity left in the
system. The results are consistent with the results in paper [6].
Figure 10(b) shows that the load movement factor decreasedhis paper presents LAR load balancing algorithms to deal
with the increase of impulse spread, and the decrease of Stth both of the proximity and dynamics of DHTs simulta-
In low impulse spread, a large amount of load assigning tongously. The algorithms distribute application load among the
small region generates a large number of overloaded node@des by “moving items” according to their capacities and
so the LAR load balancer cannot handle them quickly. ThRFoXimity information in topology-aware DHTs. We introduce
situation becomes worse when SU increases to 0.8, due to litidactor of randomness in the probing process in a range
available capacity left. Therefore, the 99.9th NU and the lo&d proximity to deal with DHT churn. We further improve
movement factor are high in highly loaded system and lothe randomized load balancing efficiency by d-way probing.
impulse interval. In summary, the LAR algorithm can solv&imulation results show the superiority of a locality-aware 2-
nonuniform item arrival generally. It can deal with suddelay randomized load balancing in DHTs with and without
increase of10% load in 10% ID space in a highly loaded churn. The algorithm saves bandwidth in comparison with ran-
system with SU equals to 0.8, achieving the 99.9th NU clo§@mized load balancing because of its locality-aware feature.
to 1. Due to the randomness factor in node probing, it can achieve
load balance for SU as high as 90% in dynamic situations
.) by moving load up t020% of the system load, and up to
E. Impact of Node Number and Capacity Heterogeneity 4004 of the underlying DHT load moved caused by node joins
Consistent hashing function adopted in DHT leads to and departures. We further evaluate the LAR algorithm with
bound of O(logn) imbalance of keys between the nodeggspect to a number of performance factors including load
where n is the number of nodes in the system. Node hepalancing frequency, arrival/departure rate of items and nodes,
erogeneity in capacity make the load balancing problem evekewed item ID distribution, and node number and capacity
more severe. In this section, we study the effects of the numth@terogeneity. Simulation results show that LAR algorithm can
of nodes and heterogeneous capacity distribution in the systefigctively achieve load balance by moving a small amount of
on load balancing. We varied the number of nodes from 100gad even in skewed distribution of items.
to 8000 at a step size of 1000, and tested NU and loadAlthough the LAR algorithm was tested on Cycloid-
movement factor when node capacities were heterogenestisictured DHTSs, it is applicable to other DHT networks, as
and homogeneous. Homogeneous node capacities are egu@dl It must be complemented by node clustering to cluster
capacities set as 50000, and heterogeneous node capacitie® ke nodes together according to their physical locations so as
determined by the default Pareto node capacity distributiorto facilitate LAR’s probing in a range of proximity. Section 6.1
Figure 11(a) shows that in the heterogeneous case, fiiesented a way of clustering in Cycloid. Readers are referred
99.9th NUs are all around 1. It means that the LAR ca@ [16] for its generalization to other DHT networks.
maintain nodes to be light in different network scales when We also note that the load balancing algorithms work for
node capacities are heterogeneous. In the homogeneous deedistribution load balancing. In file sharing P2P systems, a
the 99.9th NU maintains around 1 when node number figain function of nodes is to handle key location query. Query
no more than 5000, but it grows linearly as node numbtad balancing is a critical part of P2P load balancing; that is,
increases when nodes are more than 5000. It is somewtig number of queries that nodes receive, handle and forward is
surprisingly that LAR can achieve better load balance ipased on their different capacities accordingly. We will explore
large scale network when node capacities are heterogenemgthods for this.
than when they are homogeneous. Intuitively, this is becauseAcknowledgmentsWe are grateful to the anonymous re-
that in the heterogeneous case, very high load items canviewers for constructive comments. This research was sup-
accommodated by large capacity nodes, but there’s no nqgueted in part by U.S. NSF grants ACI-0203592, CCF-
with capacity large enough to handle them in the homogenedi&l 1750, and MCS-0624849 and an NASA grant 03-OBPR-
case. The results are consistent with those in [6]. 01-0049. Preliminary results of this work were presented
Figure 11(b) shows that in both cases, the load movemémt[15].
factors increase as node number grows. Larger system scale
generates higher key imbalance, such that more load needs to REFERENCES
be transferred for load balance. The figure also shows that the
factor of the homogeneous case is pronounced less than tifdt Y- Azar, A. Broder, and et al. Balanced allocations.Rroc. of STOC
. .. pages 593-602, 1994.
in the heterogenous case. This is due to the heterogene

) e))) E']SM. Bienkowski, M. Korzeniowski, and F. M. auf der Heide. Dynamic
capacity distribution, in which some nodes have very small load balancing in distributed hash tables.Rroc. of IPTPS 2005.

VIIl. CONCLUSIONS

13

1.06 0.1
5 —-SU=05 0.09]
2 1.05 =06 [’
£ 07]
2 1.04 *08 L
Q
3 =
z ~—
g
&
£
S
3 I
,'QE) & ol el ol 0.01 +—{=<0.8
0.99 T T T T T T T 0 T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]
Impulse Spread Impulse Spread
(a) The 99.9th percentage node utilization (b) Load movement factor
Fig. 10. Impact of non-uniform item arrival patterns.
- 1.08 0.4
S
§ 1061 t _ 0.35 - . l
= S
5 1.04 4 % 0.3 ////.,/,,,/I""
8 1.024 F & U |
S e 0.
s 1e ¥ —e * 3 3 g 2 oo 1’_“-‘/'/,/./’/‘/
E 0.98 - g 9
8 2015+
& 0.96 >
£ 004 ~#-Homogeneous § 0.1 ‘+Homogeneous
Si -8 Heterogeneous 0.05 - Heterogeneous
© 0.92
£ oo o : : : : : :
1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 6000 7000 8000
Number of Nodes in the System Number of Nodes in the System
(a) The 99.9th percentage node utilization (b) Load movement factor
Fig. 11. Impact of the number of nodes in the system.
[3] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Topology-awarfl7] H. Shen, C. Xu, and G. Chen. Cycloid: A scalable constant-degree p2p

(4]
(5]

(6]

(7]

(8]

(9]

[10]
(1]

[12]

(23]

[14]

[15]

[16]

routing in structured peer-to-peer overlay networkskliture Directions
in Distributed Computing2002.
Fasttrack product
http://www.fasttrack.nu/indeint.html.
S. Fu, C. Xu, and H. Shen. Random choices for churn resilient load
balancing in peer-to-peer networks. Technical report, ECE Departmelit9]
Wayne State University, September 2006.

B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. StoickO!
Load balancing in dynamic structured P2P systemBerformance
Evaluation 63(3), 2006. (21]
K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, a@%
|. Stoica. The impact of DHT routing geometry on resilience an 1
proximity. In Proc. of ACM SIGCOMMZ2003. 23
S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang. On thg]
placement of Internet instrumentation. Bmoc. of INFOCOM 2000. 24]
D. Karger, E. Lehman, T. Leighton, M. Levine, and et al. Consister#t
hashing and random trees: Distributed caching protocols for relievirrg5]
hot spots on the World Wide Web. Froc. of STOCpages 654—663,
1997.

D. R. Karger and M. Ruhl. Simple efficient load balancing algorithms
for Peer-to-Peer systems. Rroc. of IPTPS 2004.

M. Mitzenmacher. On the analysis of randomized load balancing
schemes. IProc. of SPAA1997.

A. Mondal, K. Goda, and M. Kitsuregawa. Effective load-balancing
of peer-to-peer systems. IRroc. of IEICE DEWS DBSJ Annual
Conference 2003.

A. Rao and K. Lakshminarayanan et al. Load balancing in structured
P2P systems. IfProc. of IPTPS 2003.

S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-
aware overlay construction and server selectiorProc. of INFOCOM

2002.

H. Shen and C. Xu. Locality-aware randomized load balancing algo-
rithms for structured P2P networks. Rroc. of ICPR pages 529-536,
2005.

H. Shen and C. Xu. Hash-based proximity clustering for load balancing
in heterogeneous DHT networks. Rroc. of IPDPS’06 April 2006.

description, 2001.[18]

overlay network. Performance Evaluatign63(3):195-216, 2006. An
early version appeared in Proc. of IPDPS'04.

I. Stoica, R. Morris, and et al. Chord: A scalable peer-to-peer lookup
protocol for Internet applicationsEEE/ACM Transactions on Network-
ing, 2003.

M. Waldvogel and R. Rinaldi. Efficient topology-aware overlay network.
In Proc. of HotNets-1'02

C. Xu. Scalable and Secure Internet Services and Architecture. Chapman
& Hall/lCRC Press, 2005.

Z. Xu, M. Mahalingam, and M. Karlsson. Turning heterogeneity into
an advantage in overlay routing. Proc. of INFOCOM 2003.

Z. Xu, C. Tang, and Z. Zhang. Building topology-aware overlays using
global soft-state. IrProc. of ICDCS 2003.

B. Yang and H. Garcia-Molina. Designing a super-peer network. In
Proc. of ICDE 2003.

E. Zegura, K. Calvert, and et al. How to model an Internetwork. In
Proc. of INFOCOM 1996.

Y. Zhu and Y. Hu. Efficient, proximity-aware load balancing for dht-
based p2p systemEEE TPDS 16(4), 2005. An early version appeared
in Proc. of IPDPS'04.

