
1

Locality-Aware and Churn-Resilient Load Balancing
Algorithms in Structured Peer-to-Peer Networks

Haiying Shen Cheng-Zhong Xu
Dept. of Computer Science and Engineering Dept. of Electrical & Computer Engineering

University of Arkansas, Fayetteville, AR 72701 Wayne State University, Detroit, MI 48202
hshen@uark.edu czxu@wayne.edu

Abstract— Structured peer-to-peer overlay networks like Dis-
tributed Hash Tables (DHTs) map data items to the network
based on a consistent hashing function. Such mapping for
data distribution has an inherent load balance problem. Data
redistribution algorithms based on randomized matching of
heavily loaded nodes with light ones can deal with the dynamics
of DHTs. But they are unable to consider proximity of the
nodes simultaneously. There are other methods that rely on
auxiliary networks to facilitate locality-aware load redistribution.
Due to the cost for network construction and maintenance, the
locality-aware algorithms can hardly work for DHTs with churn.
This paper presents a locality-aware randomized load balancing
algorithm to deal with both of the proximity and network churn
at the same time. We introduce a factor of randomness in
the probing of lightly loaded nodes in a range of proximity.
We further improve the efficiency by allowing the probing
of multiple candidates (d-way) at a time. Simulation results
show the superiority of the locality-aware 2-way randomized
algorithm, in comparison with other random or locality-aware
algorithms. In DHTs with churn, it performs no worse than the
best churn resilient algorithm. It takes advantage of node capacity
heterogeneity and achieves good load balance effectively even in
a skewed distribution of items.

Index Terms— Cycloid, Distributed Hash Table, Peer-to-Peer,
Load Balancing, Heterogeneity, Proximity.

I. I NTRODUCTION

Over the past years, the immense popularity of peer-to-
peer (P2P) resource sharing services has produced a significant
stimulus to content-delivery overlay network research [20]. An
important class of the overlay networks is distributed hash
tables (DHTs) that map keys to the nodes of a network based
on a consistent hashing function; see [17] and references
therein for representatives of the DHTs. In a DHT, each
node and key has a unique ID, and each key is mapped to
a node according to the DHT definition. The ID space of
each DHT is partitioned among the nodes and each node
is responsible for those keys whose IDs are located in its
space range. However, consistent hashing produces a bound
of O(log n) imbalance of keys between nodes, wheren is
the number of nodes in the system [9]. The objective of
load balancing is to prevent nodes from being overloaded by
distributing application load among the nodes in proportion
to their capacities. Effective load balancing algorithm should
work for DHTs with and without churn and meanwhile be
capable of exploiting the physical proximity of the network
nodes to minimize operation cost. Network churn represents

a situation where a large percentage of nodes and items join,
leave and fail continuously and rapidly, leading to unpredicted
P2P network size. By proximity, we mean that the logical
proximity abstraction derived from DHTs don’t necessarily
match the physical proximity information in reality.

In the past, numerous load balancing algorithms were pro-
posed with different characteristics [18], [13], [6], [25], [10].
However, few of them are able to deal with both the network
churn and proximity. In general, the DHT churn should be
dealt with by randomized matching between heavily loaded
nodes with lightly loaded nodes. Raoet al. [13] proposed three
randomized load balancing algorithms, based on a concept
of “virtual servers”, and demonstrated their effectiveness in
Chord. Godfreyet al. [6] extended the algorithms for DHTs
with churn. The algorithms treat all nodes equally in random
probing, without consideration of node proximity information
in load balancing. Zhu and Hu presented a proximity-aware
algorithm to take into account the node proximity information
in load balancing [25]. The algorithm is based on an additional
network constructed on top of DHTs. Although the network
is self-organized, the algorithm is hardly applicable to DHTs
with churn.

In this paper, we present novel locality-aware randomized
(LAR) load balancing algorithms to deal with both the prox-
imity and dynamics of DHTs. The algorithms take advantage
of the proximity information of the DHTs in node probing
and distribute application load among the nodes according to
their capacities. We introduce a factor of randomness in the
probing of lightly loaded nodes in a range of proximity so
as to make the probing process robust in DHTs with churn.
We further improve the efficiency by allowing the probing of
multiple candidates at a time. We refer to such probing process
as d-way probing,d ≥ 1. The algorithms are implemented in
Cycloid [17], based on a concept of “moving item” [10] for
retaining DHT network efficiency and scalability. We evalu-
ated the performance of the LAR load balancing algorithms
via comprehensive simulations. Simulation results demonstrate
the superiority of a locality-aware 2-way randomized load
balancing algorithm, in comparison with other pure random
approaches and locality-aware sequential algorithms. In DHTs
with churn, it performs no worse than the best churn resilient
algorithm.

The rest of this paper is structured as follows. Section II
presents a concise review of representative load balancing ap-

2

proaches for DHT networks. Section III briefly introduces the
architecture of Cycloid related to load balancing. Section IV
details a load balancing framework on Cycloid. Section V
presents the LAR load balancing algorithms. Sections VI and
VII show the performance of the approaches in DHTs with
and without churn, respectively. Section VIII concludes this
paper with remarks on future work.

II. RELATED WORK

Load balancing is an inherent problem in any DHTs based
on consistent hashing functions. Kargeret al. proved that the
consistent hashing function in chord [18] leads to a bound of
O(log n) imbalance of keys between the nodes. Stoicaet al.
proposed an abstraction of “virtual servers” for Chord load
balancing. This abstraction simplifies the treatment of load
balancing problem at the cost of higher space overhead and
lookup efficiency compromise. The original concept of “virtual
servers” ignores the file size and node heterogeneity. Later
on, Raoet al. [13] proposed three algorithms to rearrange
load based on nodes’ different capacities: one-to-one, many-to-
many, and one-to-many. Their basic idea is to move load from
heavy nodes to light nodes so that each node’s load does not
exceed its capacity. The algorithms are different primarily in
the amount of information used to decide rearrangement. In the
one-to-one algorithm, each light server randomly probes nodes
for a match with a heavy one. In the many-to-many algorithm,
each heavy server sends its excess virtual nodes to a global
pool, which executes rearrangement periodically. The one-to-
one scheme produces too many probes, while the many-to-
many scheme increases overhead in load rearrangement. As a
trade-off, the one-to-many algorithm works in a way that each
heavy server randomly chooses a directory which contains
information about a number of light severs. Most recently,
Godfrey et al. [6] extended this work for dynamic DHT
networks. In their approach, if a node’s capacity utilization
exceeds a predetermined threshold, its excess virtual servers
will be moved to a light one immediately without waiting
for next periodic balancing. Bienkowskiet al. [2] proposed a
node leave and re-join strategy to balance the key ID intervals
across the nodes. In the algorithm, lightly loaded nodes leave
the system and rejoin to share the load of heavy ones. All
of these algorithms assume the objective of minimizing the
amount of moved load. They neglect the factor of physical
proximity on the effectiveness of load balancing. With proxim-
ity consideration, load transferring and communication should
be within physically close heavy and light nodes.

One of the first work to utilize the proximity information to
guide load balancing is due to Zhu and Hu [25]. The authors
suggested to build a K-nary tree (KT) structure on top of a
DHT overlay. Each KT node is planted in a virtual server.
A K-nary tree node reports the load information of its real
server to its parent, until the tree root is reached. The root then
disseminate final information to all the virtual nodes. Using
this information, each real server can determine whether it
is heavily loaded or not. Light and heavy nodes report their
free capacity, excess virtual nodes information to their KT
leaf nodes respectively. The leaf nodes will propagate the

information upwards along the tree. When the total length
of information reaches a certain threshold, the KT node
would execute load rearrangement. The KT structure helps to
use proximity information to move load between physically
close heavy and light nodes. However, the construction and
maintenance of KT are costly, especially in churn. In churn,
a KT will be destroyed without timely fixes, degrading load
balancing efficiency. For example, when a parent fails or
leaves, the load imbalance of its children in the subtree cannot
be solved before its recovery. Besides, the tree needs to be
reconstructed every time after virtual server transferring, which
is imperative in load balancing. Second, a real server cannot
start determining its load condition until the tree root gets
the accumulated information from all nodes. This centralized
process is inefficient and hinder the scalability improvement
of P2P systems.

Most recently, Karger and Ruhl [10] proved that the “virtual
servers” method could not be guaranteed to handle item
distributions where an key ID interval has more than a certain
fraction of the load. As a remedy, they proposed two schemes
with provable features: moving items and moving nodes to
achieve equal load between a pair of nodes, and then a system-
wide load balance state. In the moving items scheme, every
node occasionally contacts a random other node. If one of the
two nodes has much larger load than the other, then items
are moved from heavy node to the light node until their loads
become equal. In the moving nodes scheme, if a pair of nodes
has very uneven loads, the load of the heavier node gets split
between the two nodes by changing their addresses. However,
this scheme breaks DHT mapping and cannot support key
locations as usual. Karger and Ruhl provided a theoretic
treatment for load balancing problem and proved that good
load balance can be achieved by moving items if the fraction
of address space covered by every node isO(1/n) [10].

This paper presents LAR algorithms that take into account
proximity information in load balancing and deal with net-
work dynamism meanwhile. A first implementation of item
movement based the algorithms is also reported, although
the algorithms are also suitable for “virtual servers”. The
implementation approach bears similarity to the one in [12]
by viewing a P2P system as a cluster of clusters. The latter
was designed for unstructured P2P systems.

III. C YCLOID : A CONSTANT-DEGREEDHT

Cycloid [17] is a lookup efficient constant-degree DHT that
we recently proposed. In a Cycloid system withn = d · 2d

nodes, each lookup takesO(d) hops withO(1) neighbors per
node. In this section, we give a brief overview of the Cycloid
architecture and its self-organization mechanism, focusing on
the structural features related to load balancing. For more
information about Cycloid, please refer to [17].

A. ID and Structure

In Cycloid, each node is represented by a pair of in-
dices (k, ad−1ad−2 . . . a0), where k is a cyclic index and
ad−1ad−2......a0 is a cubical index. The cyclic index is an
integer, ranging from 0 tod − 1 and the cubical index is a

3

TABLE I

ROUTING TABLE OF A CYCLOID NODE (4,101-1-1010).

NodeID(4,101-1-1010)
Routing table

cubical neighbor: (3,101-0-xxxx)
cyclic neighbor: (3,101-1-1100)
cyclic neighbor: (3,101-1-0011)

Leaf Sets (half smaller, half larger)
Inside Leaf Set

(3,101-1-1010) (6,101-1-1010)
Outside Leaf Set

(7,101-1-1001) (6,101-1-1011)

binary number between 0 and2d − 1. Each node keeps a
routing table and two leaf sets, inside leaf set and outside
leaf set, with a total of 7 entries to maintain its connectivity
to the rest of the system. Table I shows a routing state table
for node (4,10111010) in an 8-dimensional Cycloid, where x
indicates an arbitrary binary value. Its corresponding links in
both cubical and cyclic aspects are shown in Figure 1.

In general, a node(k, ad−1ad−2 . . . ak . . . a0), k 6= 0, has
one cubical neighbor(k − 1, ad−1ad−2 . . . akxx...x) where
x denotes an arbitrary bit value, and two cyclic neighbors
(k−1, bd−1bd−2 . . . b0) and(k−1, cd−1cd−2 . . . c0). The cyclic
neighbors are the first larger and smaller nodes with cyclic
indexk−1 modd and their most significant different bit with
the current node in cubical indices is no larger thank − 1.
That is,
(k-1, bd−1 . . .b1b0)
= min{∀(k-1, yd−1 . . . y1y0)|yd−1 . . . y0≥ad−1 . . . a1a0},
(k-1, cd−1 . . .c1c0)
= max{∀(k-1, yd−1 . . . y1y0)|yd−1 . . . y0≤ad−1 . . . a1a0}.
The node with a cyclic indexk = 0 has no cubical neighbor or
cyclic neighbors. The node with cubical index 0 has no small
cyclic neighbor, and the node with cubical index2d − 1 has
no large cyclic neighbor.

The nodes with the same cubical index are ordered by their
cyclic index (modd) on a local circle. The inside leaf set of
a node points to the node’s predecessor and successor in the
local circle. The largest cyclic index node in a local circle is
called the primary node of the circle. All local circles together
form a global circle, ordered by their cubical index (mod2d).
The outside leaf set of a node points to the primary nodes in
its preceding and succeeding small circles in the global circle.
The Cycloid connection pattern is resilient in the sense that
even if many nodes are absent, the remaining nodes are still
capable of being connected.

The Cycloid DHT assigns keys onto its ID space by the use
of a consistent hashing function. For a given key, the cyclic
index of its mapped node is set to its hash value modulated by
d and the cubical index is set to the hash value divided byd. If
the target node of an item key(k, ad−1 . . . a1a0) is not present
in the system, the key is assigned to the node whose ID is first
numerically closest toad−1ad−2 . . . a0 and then numerically
closest to k.

B. Self-organization

P2P systems are dynamic in the sense that nodes are
frequently joining and departing from the network. Cycloid

(7,101-1-1001)

(5,101-1-1001) (6, 101-1-1010)(3,101-1-1010)

(7,101-1-1010) (0,101-1-1011)

(6,101-1-1011)

(2, 101-1-1001)

(3,101-1-1100) (3,101-1-0011)(3,101-0-xxxx)

(5,101-1-1100)
(6,101-1-xxxx) (7,101-1-0011)

(0,101-1-0011)

Preceding Remote Cycle Local Cycle

Remote Cycle Remote CycleRemote Cycle

Succeeding Remote Cycle

(4, 101-1-1010)

Fig. 1. Cycloid node routing links state.

deals with the dynamism in a distributed manner. When a
new node joins, it initializes its routing table and leaf sets,
and notifies the nodes in its inside leaf set of its participation.
It also needs to notify the nodes in its outside leaf set if it
becomes the primary node of its local circle. Before a node
leaves, it notifies its inside leaf set nodes, as well. Because
a Cycloid node has no incoming connections for cubical and
cyclic neighbors, a leaving node cannot notify those who take
it as their cubical neighbor or cyclic neighbor. The need to
notify the nodes in its outside leaf set depends on whether the
leaving node is a primary node or not. Updating cubical and
cyclic neighbors are the responsibility of system stabilization,
as in Chord.

IV. L OAD BALANCING FRAMEWORK

This section presents a framework for load balancing based
on item movement on Cycloid. It takes advantage of the
Cycloid’s topological properties and conducts a load balancing
operation in two steps: local load balancing within a local
circle and global load balancing between circles.

A general approach with consideration of node heterogene-
ity is to partition the nodes into a super node with high
capacity and a class of regular nodes with low capacity [4],
[23]. Each super node, together with a group of regular
nodes, forms a cluster in which the super node operates as
a server to the others. All the super nodes operate as equals
in a network of super-peers. Super-peer networks strike a
balance between the inherent efficiency of centralization and
distribution, and take advantage of capacity heterogeneity, as
well. Recall that each local circle in Cycloid has a primary
node. We regard Cycloid as a quasi-super-peer network by
assigning each primary node as a leading super node in its
circle. We designate a node as supernode if its capacity is
higher than a pre-defined threshold. To ensure every primary
node meets the capacity requirement of supernodes, we modify
the Cycloid rules for node join and leave slightly. If the cyclic
ID selected by a regular node is the largest in its local circle,
it needs to have another choose unless it is the bootstrap node
of the circle. In the case of primary node departure or failure,
a super node needs to be searched in the primary node’s place
if the node with the second largest cyclic ID in the circle is
not a super node. This operation can be regarded as the new

4

super node leaves and re-joins the system with the ID of the
leaving or failing primary node.

Let Li,k denote the load of itemk in nodei. It is determined
by the item sizeSi,k and the number of visits of the itemVi,k

during a certain time period. That is,Li,k = Si,k × Vi,k. The
actual load of a real serveri, denoted byLi, is the total load
of all of its items:Li =

∑mi

k=1 Li,k, assuming the node has
mi items. LetCi denote the capacity of nodei; it is defined
as a pre-set target load which the node is willing to hold. We
refer to the node whose actual load is no larger than its target
load (i.e. Li ≤ Ci) as a light node; otherwise a heavy one. We
define utilization of a nodei, denoted byNUi, as the fraction
of its target capacity that is occupied. That is,NUi = Li/Ci.
System utilization, denoted bySU , is the ratio of the total
actual load to the total node capacity.

Each node contains a list of data items, labelled as Dk, k =
1, 2, To make full use of node capacity, the excess items
chosen to transfer should be with minimum load. We define
excess items of a heavy node as a subset of the resident items,
satisfying the following condition. Without loss of generality,
we assume the excess items are{D1, D2, . . . , Dm′}, 1 ≤
m′ ≤ mi. Their corresponding loads are{Li,1, ..., Li,m′}. The
set of excess items is determined in such a way that

minimizes
m′∑

k=1

Li,k, (1)

subject to(Li −
m′∑

k=1

Li,k) ≤ Ci. (2)

Each primary node has a pair of sorted donating and
starving lists which store the load information of all nodes
in its local cycle. A donating sorted list (DSL) is used to
store load information of light nodes and a starving sorted
list (SSL) is used to store load information of heavy nodes
as shown in Table II. The free capacity of light nodei is
defined asδLi = Ci − Li. Load information of heavy nodei
includes the information of its excess items in a set of 3-tuple
representation:< Li,1, Di,1, Ai >,< Li,k, Di,k, Ai >, . . . , <
Li,m′ , Di,m′ , Ai >, in which Ai denotes the IP address of
node i. Load information of light nodej is represented in
the form of< δLj , Aj >. An SSL is sorted in a descending
order ofLi,k; minLi,k represents the item with the minimum
load in the primary node’s starving list. A DSL is sorted in
an ascending order ofδLj ; max δLj represents the maximum
δLj in the primary node’s donating list. Load rearrangement
is executed between a pair of DSL and SSL, as shown in
Algorithm 1.

This scheme guarantees that heavier items have a higher
priority to be reassigned to a light node, which means faster
convergence to a system-wide load balance state. A heavy item
Li,k is assigned to the most-fit light node withδLj which
has minimum free capacity left after the heavy itemLi,k is
transferred to it. It makes full use of the available capacity.

Our load balancing framework is based on item movement,
which transfers items directly instead of “virtual nodes” to save
cost. Cycloid maintains two pointers for each transferred item.
When an item D is transferred from heavy nodei to light node

TABLE II

DONATING AND STARVING SORTED LISTS.

Load information in a primary node
Donating sorted list Starving sorted list

< δLj , Aj > < Li,1, Di,1, Ai >
.

< δLm, Am > < Li,k, Di,k, Ai >

——————————————————————–
Algorithm 1 : Primary node periodically performs load
rearrangement between a pair of DSL and SSL
——————————————————————–

for each item k in SSLdo
for each item j in DSLdo

if Li,k ≤ δLj then
item k is arranged to be transferred from i to j
if δLj − Li,j > 0 then

put <(δLi − Li,k), Ai> back to DSL
——————————————————————–

j, nodei will have a forward pointer in D location pointing to
the item D inj’s place; item D will have a backward pointer
to nodei indicating its original host. When queries for item D
reach nodei, they will be redirected to nodej with the help of
forward pointer. If item D needs to be transferred from nodej
to another node, sayg, for load balancing, nodej will notify
nodei via its backward pointer of the item’s new location.

We use a centralized method in local load balancing, and
a decentralized method in global load balancing. Each node
(k, ad−1ad−2 . . . a0) periodically reports its load information
to the primary node in its local circle. Unlike a real super-peer
network, Cycloid has no direct link between a node and the
primary node. The load information needs to be forwarded us-
ing Cycloid routing algorithm, which ensures the information
reaches the up-to-the-minute primary node. Specifically, the
information is targeted to the node(d − 1, ad−1ad−2 . . . a0).
By the routing algorithm, the destination it reaches, say nodei,
may be the primary node or its successor depending on which
one is closer to the ID. If the cyclic index of the successor(i)
is larger than the cyclic index ofi, then the load information
is forwarded to the predecessor(i), which is the primary node.
Otherwise,i is the primary node. According to the Cycloid
routing algorithm, each report needs to taked/2 steps in the
worst case. Cycloid cycle contains a primary node all the time.
Since the load information is guaranteed to reach the up-to-
the-minute primary node, there is no serious advert effect of
primary node updates on load balancing. After receiving the
load information, the primary node puts it to its own DSL and
SSL accordingly. A primary node with nonempty starving list
(PNS) first performs local load rearrangement between its DSL
and SSL. Afterwards, if its SSL is still not empty, it probes
other primary nodes’ DSLs for global load rearrangement one
by one until its SSL becomes empty. When a primary node
don’t have enough capacity for load balancing, it can search
for a high capacity node to replace itself.

We arrange the PNS to initiate probing because the probing
process will stop once it is not overloaded. If a node of

5

nonempty donating list initiates probing, the probing process
could proceed infinitely, incurring much more communication
messages and bandwidth cost. Because primary nodes are
super peers with high capacities, they are less likely to be
overloaded in the load balancing. This avoids the situation
that heavy nodes will be overloaded if they perform probing,
such as in the schemes in [13]. This scheme can be extended
to perform load rearrangement between one SSL and multiple
DSLs for improvement.

V. L OCALITY-AWARE RANDOMIZED LOAD BALANCING

ALGORITHMS

The load balancing framework in the preceding section
facilitates the development of load balancing algorithms with
different characteristics. A key difference between the algo-
rithms is, for a PNS, how to choose another primary node
for a global load rearrangement between their SSL and DSL.
It affects the efficiency and overhead to reach a system-wide
load balance state.

A. D-way Randomized Probing

A general approach to dealing with the churn of DHTs is
randomized probing. In the policy, each PNS probes other
primary nodes randomly for load rearrangement. A simple
form is one-way probing, in which a PNS, say nodei, probes
other primary nodes one by one to execute load rearrangement
betweenSSLi and DSLj , where j is a probed node. We
generalize the one-way randomized probing policy to ad-way
probing, in whichd primary nodes are probed at a time, and
the primary node with the most total free capacity in its DSL
is chosen for load rearrangement. A critical performance issue
is the choice of an appropriate valued.

The randomized probing in our load balancing frame-
work is similar to load balancing problem in other contexts:
competitive online load balancing and supermarket model.
Competitive online load balancing is to assign each task to a
server on-line with the objective of minimizing the maximum
load on any server, given a set of servers and a sequence
of task arrivals and departures. Azaret al. [1] proved that
in competitive online load balancing, allowing each task to
have two server choices to choose a less loaded server instead
of just one choice can exponentially minimize the maximum
server load and result in a more balanced load distribution.
Supermarket model is to allocate each randomly incoming
task modelled as a customer with service requirements, to a
processor (or server) with the objective of reducing the time
each customer spends in the system. Mitzenmacheret al. [11]
proved that allowing a task two server choices and to be served
at the server with less workload instead of just one choice leads
to exponential improvements in the expected execution time
of each task. But a poll size larger than two gains much less
substantial extra improvement.

The randomized probing between the lists of SSLs and
DSLs is similar to the above competitive load balancing and
supermarket models if we regard SSLs as tasks, and DSLs
as servers. But the random probing in P2P systems had a
general workload and server models. Servers are dynamically

composed with new ones joining and existent ones leaving.
Servers are heterogeneous with respect to their capacities.
Tasks are of different sizes and arrive in different rates. In [5],
we proved the random probing is equivalent to a generalized
supermarket model and showed the following results.

Theorem 5.1:Assume servers join in a Poisson distribution.
For any fixed time interval [0,T], the length of the longest
queue in the supermarket model withd = 1 is lnn/ ln lnn(1+
O(1)) with high probability; the length of the longest queue
in the model withd ≥ 2 is ln lnn/ ln d + O(1), wheren is
the number of servers.

The theorem implies that 2-way probing could achieve a
more balanced load distribution with faster speed even in
churn, because 2-way probing has higher possibility to reach
an active node than 1-way probing, but d-way probing,d > 2,
may not result in much additional improvement.

B. Locality-Aware Probing

One goal of load balancing is to effectively keep each
node lightly loaded with minimum load balancing overhead.
Proximity is one of the most important performance factors.
Mismatch between logical proximity abstraction and physical
proximity information in reality is a big obstacle for the
deployment and performance optimization issues for P2P
applications. Techniques to exploit topology information in
overlay routing include geographic layout, proximity routing
and proximity-neighbor selection [3].

We integrate proximity-neighbor selection and
topologically-aware overlay construction techniques
in [22], [3] and [19] into Cycloid to build a topology-
aware Cycloid. As a result, the topology-aware connectivity
of Cycloid ensures that a message reaches its destination
with minimal overhead. Details of topology-aware Cycloid
construction will be presented in Section VI.

In a topology-aware Cycloid network, the cost for commu-
nication and load movement can be reduced if a primary node
contacts other primary nodes in its routing table or primary
nodes of its neighbors. In general the primary nodes of a
node’s neighbors are closer to the node than randomly chosen
primary nodes in the entire network, such that load is moved
between closer nodes. This method should be the first work
that handles the load balancing issue with the information
used for achieving efficient routing. There are two methods for
locality-aware probing: randomized and sequential method.

1) Locality-aware randomized probing (LAR).In LAR,
each PNS contacts primary nodes in a random order
in its routing table or primary nodes of its neighbors
except the nodes in its inside leaf set. After all these
primary nodes have been tried, if the PNS’s SSL is still
nonempty, global random probing is started in the entire
ID space.

2) Locality-aware sequential probing (Lseq).In Lseq, each
PNS contacts its larger outside leaf setSuccessor(PNS).
After load rearrangement, if its SSL is still nonempty,
the larger outside leaf set ofSuccessor(PNS), Succes-
sor(Successor(PNS))is tried. This process is repeated,
until that SSL becomes empty. The distances between a

6

TABLE III

SIMULATION SETTINGS AND ALGORITHM PARAMETERS.

Environment Parameter Default value
Object arrival location Uniform over ID space
Number of nodes 4096
Node capacity Bounded Pareto: shape 2

lower bound:2500, upper bound: 2500*10
Number of items 20480
Existing item load Bounded Pareto: shape: 2,

lower bound: mean item actual load/2
upper bound: mean item actual load/2*10

node and its sequential nodes are usually smaller than
distances between the node and randomly chosen nodes
in the entire ID space.

VI. PERFORMANCEEVALUATION

We designed and implemented a simulator in Java for
evaluation of the load balancing algorithms on topology-aware
Cycloid. Table III lists the parameters of the simulation and
their default values. The simulation model and parameter
settings are not necessarily representative of real DHT ap-
plications. They are set in a similar way to related studies in
literature for fair comparison. We will compare the different
load balancing algorithms in Cycloid without churn in terms of
the following performance metrics; the algorithms in Cycloid
with churn will be evaluated in Section VII.

1) Load movement factor, defined as the total load trans-
ferred due to load balancing divided by the system
actual load, which is system target capacity times SU.
It represents load movement cost.

2) Total time of probings, defined as the time spent for
primary node probing assuming that probing one node
takes 1 time unit, and probingn nodes simultaneously
also takes 1 time unit. It represents the speed of probing
phrase in load balancing to achieve a system-wide load
balance state.

3) Total number of load rearrangements, defined as the
total number of load rearrangement between a pair of
SSL and DSL. It represents the efficiency of probing
for light nodes.

4) Total probing bandwidth, defined as the sum of the
bandwidth consumed by all probing operations. The
bandwidth of a probing operation is the sum of band-
width of all involved communications, each of which is
message size times physical path length of the message
travelled. It is assumed that the size of a message asking
and replying for information is 1 unit. It represents the
traffic burden caused by probings.

5) Moved load distribution, defined as the cumulative dis-
tribution function (CDF) of the percentage of moved
load versus moving distance. It represents the load
movement cost for load balance. The more load moved
along the shorter distances, the less load balancing costs.

A. Topology-aware Cycloid Construction

GT-ITM (transit-stub and tiers) [24] is a network topology
generator, widely used for the construction of topology-aware

overlay networks [14], [22], [21], [7]. We used GT-ITM to
generate transit-stub topologies for Cycloid, and get physical
hop distance for each pair of Cycloid nodes. Recall that we use
proximity-neighbor selection method to build topology-aware
Cycloid; that is, it selects the routing table entries pointing
to the physically nearest among all nodes with nodeID in the
desired portion of the ID space.

We use landmark clustering and Hilbert number [22] to
cluster Cycloid nodes. Landmark clustering is based on the
intuition that close nodes are likely to have similar distances
to a few landmark nodes. Hilbert number can convertd
dimensional landmark vector of each node to one dimensional
index while still preserve the closeness of nodes. We selected
15 nodes as landmark nodes to generate the landmark vector
and a Hilbert number for each node cubic ID. Because the
nodes in a stub domain have close (or even same) Hilbert
numbers, their cubic IDs are also close to each other. As a
result, physically close nodes are close to each other in the
DHT’s ID space, and nodes in one cycle are physically close
to each other. For example, assume nodesi and j are very
close to each other in physical locations but far away from
node m. Nodes i and j will get approximately equivalent
landmark vectors, which are different fromm’s. As a result,
nodesi and j would get the same cubic IDs and be assigned
to the circle different fromm’s. In the landmark approach,
for each topology, we choose landmarks at random with the
only condition that the landmarks are separated from each
other by four hops. More sophisticated placement schemes, as
described in [8] would only serve to improve our results.

Our experiments are built on two transit-stub topologies:
“ts5k-large” and “ts5k-small” with approximately 5,000 nodes
each. In the topologies, nodes are organized into logical do-
mains. We classify the domains into two types: transit domains
and stub domains. Nodes in a stub domain are typically an
endpoint in a network flow; nodes in transit domains are
typically intermediate in a network flow. “ts5k-large” has 5
transit domains, 3 transit nodes per transit domain, 5 stub
domains attached to each transit node, and 60 nodes in each
stub domain on average. “ts5k-small” has 120 transit domains,
5 transit nodes per transit domain, 4 stub domains attached to
each transit node, and 2 nodes in each stub domain on average.
“ts5k-large” has a larger backbone and sparser edge network
(stub) than “ts5k-small”. “ts5k-large” is used to represent a
situation in which Cycloid overlay consists of nodes from
several big stub domains, while “ts5k-small” represents a
situation in which Cycloid overlay consists of nodes scattered
in the entire Internet and only few nodes from the same
edge network join the overlay. To account for the fact that
interdomain routes have higher latency, each interdomain hop
counts as 3 hops of units of latency while each intradomain
hop counts as 1 hop of unit of latency.

B. Effectiveness of LAR Algorithms

In this section, we will show the effectiveness of LAR load
balancing algorithm. First, we present the impact of LAR
algorithm on the alignment of the skews in load distribution
and node capacity when the system is fully loaded. Figure 2(a)

7

(a) Before load balancing (b) After load balancing (c) Node load after balancing

Fig. 2. Effect of load balancing.

shows the initial node utilization of each node. Recall that node
utilization is a ratio of the actual load to its target (desired)
load. Many of the nodes were overloaded before load bal-
ancing. Load balancing operations drove all node utilizations
down below 1 by transferring excess items between the nodes,
as shown in Figure 2(b). Figure 2(c) shows the scatterplot of
loads according to node capacity. It confirms that the capacity-
aware load balancing feature of the LAR algorithm. Recall
that LAR algorithm was based on item movement, using
forward pointers to keep DHT lookup protocol. We calculated
the fraction of items that are pointed to by forward pointers
in systems of different utilization levels. We found that the
fraction increased linearly with the system load, but it would
be no higher than 45% even when the system becomes fully
loaded. The cost is reasonably low compared to the extra
space, maintenance cost and efficiency degradation in “virtual
servers” load balancing approach.

We measured the load movement factors due to different
load balancing algorithms: one-way random (R1), two-way
random (R2), LAR1, LAR2, and Lseq, on systems of different
loads and found that the algorithms led to almost the same
amount of load movement in total at any given utilization level.
This is consistent with the observations by Raoet al. [13]
that the load moved depends only on distribution of loads, the
target to be achieved, but not on load balancing algorithms.
This result suggests that an effective load balancing algorithm
should explore to move the same amount of load along shorter
distance and in shorter time to reduce load balancing overhead.
In the following, we will examine the performance of various
load balancing algorithms in terms of other performance
metrics. Because metrics (2) and (3) are not affected by
topology, we will only show results of them in “ts5k-large”.

C. Comparison with Other Algorithms

Figure 3(a) shows the probing process in Lseq takes much
more time than R1 and LAR1. This implies that random algo-
rithm is better than sequential algorithm in probing efficiency.
Figure 3(b) shows that the rearrangement number of the three
algorithms are almost the same. This implies that they need
almost the same number of load rearrangement to achieve load
balance. However, long probing time of Lseq suggests that it
is not as efficient as random probing. It is consistent with the
observation of Mitzenmacher in [11] that simple randomized
load balancing schemes can balance load effectively.

Figure 3(c) and (d) show the performance of the algorithms
in “ts5k-large”. From Figure 3(c), we can observe that unlike
in lightly loaded systems, in heavily loaded systems, R1 takes
more bandwidth than LAR1 and Lseq, and the performance
gap increases as the system load increases. This is because
that much less probings are needed in a lightly loaded system,
causing less effect of probing distance on bandwidth consump-
tion. The bandwidth results of LAR and Lseq are almost the
same when the SU is under90%; when the SU goes beyond
0.9, LAR consumes more bandwidth than Lseq. This is due
to the fact that in a more heavily loaded system, more nodes
need to be probed in the entire ID space, leading to longer
load transfer distances. Figure 3(d) shows the moved load
distribution in load balancing as the SU approaches 1. We
can see that LAR1 and Lseq are able to transfer about 60%
of global moved load within 10 hops, while R1 transfers only
about 15% because R1 is locality-oblivious.

Figure 3(e) and (f) show the performance of the algorithms
in “ts5k-small”. These results also confirm that LAR1 achieve
better locality-aware performance than R1, although the im-
provement is not so significant as in “ts5k-large”. It is because
that in “ts5k-small” topology, nodes are scattered in the entire
network, and the neighbors of a primary node may not be
physically closer than other nodes.

Figures 3(d) and (f) also include the results due to two
other popular load balancing approaches: proximity-aware K-
nary Tree (KTree) algorithm [25] and churn resilient algorithm
(CRA) [6] for comparison. From the figures, we can see that
LAR performs as well as KTree, and outperform proximity-
oblivious CRA, especially in “ts5k-large”. The performance
gap between proximity-aware and proximity-oblivious algo-
rithms is not as large as in “ts5k-small”. It is because the
nodes in “ts5k-small” are scattered in the entire Internet with
less locality.

In summary, the results in Figure 3 suggest that the random-
ized algorithm is more efficient than the sequential algorithm
in the probing process. The locality-aware approaches can
effectively assign and transfer loads between neighboring
nodes first, thereby reduce network traffic and improve load
balancing efficiency. The LAR algorithm performs no worse
than the proximity-aware KTree algorithm. In Section VII, we
will show LAR works much better for DHTs with churn.

8

0

1000

2000

3000

4000

5000

6000

7000

0.5 0.6 0.7 0.8 0.9 1
System Utilization

To
ta

l P
rim

ar
y

N
od

e
P

ro
bi

ng
 T

im
e Random

Lseq
LAR1

(a) Total primary node probing in “ts5k-large”

0

200

400

600

800

1000

1200

1400

1600

1800

0.5 0.6 0.7 0.8 0.9 1
System Utilization

N
um

be
r o

f L
oa

d
R

ea
rr

an
ge

m
en

ts Random
Lseq
LAR1

(b) Total number of load in “ts5k-large”

0

50000

100000

150000

200000

250000

0.5 0.6 0.7 0.8 0.9 1
System Utilization

P
hy

si
ca

l P
ro

bi
ng

 B
an

dw
id

th Random
LAR1
Lseq

(c) Total bandwidth of time in “ts5k-large”

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20
Physical Distance by Hops

P
er

ce
nt

ag
e

of
 T

ot
al

 M
ov

ed
 L

oa
d

(%
)

Random
KTree
CRA
LAR1
Lseq

(d) CDF of moved load distribution in “ts5k-
large”

0

50000

100000

150000

200000

250000

300000

0.5 0.6 0.7 0.8 0.9 1
System Utilization

P
hy

si
ca

l P
ro

bi
ng

 B
an

dw
id

th Random
LAR1
Lseq

(e) Total bandwidth of probings in “ts5k-small”

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20
Physical Distance by Hops

P
er

ce
nt

ag
e

of
 T

ot
al

 M
ov

ed
 L

oa
d

(%
)

CRA
LAR1
KTree
Random
Lseq

(f) CDF of moved load distribution in “ts5k-
small”

Fig. 3. Effect of load balancing due to different probing algorithms.

D. Effect of D-Way Random Probing

We tested the performance of the LARd algorithms with
different probing concurrency degreed. Figure 5(a) shows that
LAR2 takes much less probing time than LAR1. It implies that
LAR2 reduces the probing time of LAR1 at the cost of more
number of probings. Unlike LAR1, in LAR2, a probing node
only sends its SSL to a node with more total free capacity in
its DSL between two probed nodes. The more item transfers
in one load rearrangement, the less probing time. It leads to
less number of SSL sending operation of LAR2 than LAR1,
resulting in less number of load rearrangements as shown
in Figure 5(b). Therefore, simultaneous probings to get a
node with more total free capacity in its DSL can save load
balancing time and reduce network traffic load.

Figures 4(a) and (b) show the breakdown of total number
of probed nodes in percentage that are from neighbors or
randomly chosen in entire ID space in LAR1 and LAR2

respectively. Label “one neighbor and one random” represents
the condition when there’s only one neighbor in routing
table, then another probed node is chosen randomly from ID
space. We can see that the percentage of neighbor primary
node constitutes the most part, which means that neighbors
can support most of system excess items in load balancing.
With SU increases, the percentage of neighbor primary node
decreases because the neighbors’ DSLs don’t have enough free
capacity for a larger number of excess items, then randomly
chosen primary nodes must be resorted to.

Figures 5(a) and (b) show that the probing efficiency of
LARd (d>2) is almost the same as LAR2, though they need
to probe more nodes than LAR2. Our results are consistent
with our expectations in Section V-A that a two-way probing
method leads to an exponential improvement over one-way

probing, but a d-way (d>2) probing leads to much less
substantial additional improvement. In the following, we will
analyze whether the improvement of LARd (d ≥ 2) over
LAR1 is at the cost of more bandwidth consumption or
locality-aware performance degradation. We can observe from
Figure 5(c) that the probing bandwidth of LAR2 is almost
the same as LAR1. Figure 5(d) shows the moved load dis-
tribution in global load balancing due to different algorithms.
We can see that LAR2 leads to an approximately identical
distribution as LAR1 and they cause slightly less global load
movement cost than LAR4 and LAR6. This is because the
more simultaneous probed nodes, the less possibility that the
best primary node is a close neighbor node. These observations
demonstrate that LAR2 improves on LAR1 at no cost of
bandwidth consumption. It retains the advantage of locality-
aware probing.

Figures 5(e) and (f) show the performance of different
algorithms in “ts5k-small”. Although the performance gap
is not as wide as in ‘ts5k-large”, the relative performance
between the algorithms retains.

VII. L OAD BALANCING IN DHTS WITH CHURN

In practice, nodes and items continuously join and leave
P2P systems. It is hard to achieve the objective of load bal-
ance in networks with churn. We conducted a comprehensive
evaluation of the LAR algorithm in dynamic situations and
compare the algorithm with with CRA, which was designed
for DHTs with churn. The performance factors we considered
include load balancing frequency, item arrival/departure rate,
nonuniform item arrival pattern, and network scale and node
capacity heterogeneity. We adopted the same metrics as in [6]:

1) The 99.9th percentile node utilization (99.9th NU). We

9

0

1000

2000

3000

4000

5000

6000

7000

8000

0.5 0.6 0.7 0.8 0.9 1
System Utilization

To
ta

l P
rim

ar
y

N
od

es
 P

ro
bi

ng
 T

im
e

LAR1
LAR2
LAR4
LAR6

(a) Total primary node probing in “ts5k-large”

0

1000

2000

3000

4000

5000

6000

7000

0.5 0.6 0.7 0.8 0.9 1
System Utilization

To
ta

l N
um

be
r o

f L
oa

d
R

ea
rr

an
ge

m
en

ts

LAR1
LAR2
LAR4
LAR6

(b) Total number of load in “ts5k-large”

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0.5 0.6 0.7 0.8 0.9 1
System Utilization

P
hy

si
ca

l P
ro

be
 B

an
dw

id
th

LAR1
LAR2
LAR4
LAR6

(c) Total bandwidth of probings in “ts5k-large”

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20
Physical Distance by Hops

P
er

ce
nt

ag
e

of
 G

lo
ba

l M
ov

ed
 L

oa
d

(%
)

LAR1
LAR2
LAR4
LAR6

(d) CDF of moved load distribution in “ts5k-
large”

0

50000

100000

150000

200000

250000

0.5 0.6 0.7 0.8 0.9 1
System Utilization

P
hy

si
ca

l P
ro

be
 B

an
dw

id
th

LAR1
LAR2
LAR4
LAR6

(e) Total bandwidth of probings in “ts5k-small”

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20
Physical Distance by Hops

P
er

ce
nt

ag
e

of
 G

lo
ba

l M
ov

ed
 L

oa
d

(%
)

LAR1
LAR2
LAR4
LAR6

(f) CDF of moved load distribution in “ts5k-
small”

Fig. 5. Effect of load balancing due to different LAR algorithms.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
System Utilization

B
re

ak
do

w
n

of
 P

ro
bi

ng
 N

od
es

One random
One neighbor

(a) LAR1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
System Utilization

B
re

ak
do

w
n

of
 P

ro
bi

ng
 N

od
es

Two randoms
Two neighbors
One neighbor and one random

(b) LAR2

Fig. 4. Breakdown of probed nodes.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100
Node Interarrival Time

CRA
Load Moved Fac.
The 99.9th NU
L/DHT-L
LAR1
Load Moved Fac.
The 99.9th NU
L/DHT-L

Fig. 6. Effect of load balancing with churn.

measure the maximum 99.9th percentile of the node uti-
lizations after each load balancing period T in simulation
and take the average of these results over a period as the
99.9th NU. The 99.9th NU represents the efficiency of
LAR to minimize load imbalance.

2) Load moved/DHT load moved (L/DHT-L), defined as the
total load moved incurred due to load balancing divided
by the total load of items moved due to node joins
and departures in the system. This metric represents
the efficiency of LAR to minimize the amount of load
moved.

Unless otherwise indicated, we run each trial of the simu-
lation for 20T simulated seconds, where T is a parameterized
load balancing period, and its default value was set to 60
seconds in our test. The item and node join/departure rates
were modelled by Poisson processes. The default rate of
item join/departure rate was 0.4; that is, there were one item

10

join and one item departure every 2.5 seconds. We ranged
node interarrival time from 10 to 90 seconds, with 10 second
increment in each step. A node life time is computed by arrival
rate times number of nodes in the system. The default system
utilization SU was set to 0.8.

A. Performance Comparison With CRA

Figure 6 plots the performance due to LAR1 and CRA
versus node interarrival time during T period. By comparing
results of LAR1 and CRA, we can have a number of obser-
vations. First, the 99.9th NUs of LAR1 and CRA are kept
no more than 1 and 1.25 respectively. This implies that on
average, LAR1 is comparable with CRA in achieving the load
balancing goal in churn. Second, LAR1 moves up to20% and
CRA moves up to45% of the system load to achieve load
balance for SU as high as80%. Third, the load moved due to
load balancing is very small compared with the load moved
due to node joins and departures and it is up to40% for LAR1

and53% for CRA. When the node interarrival time is 10, the
L/DHT-L is the highest. It is because faster node joins and
departures generate much higher load imbalance, such that
more load transferred is needed to achieve load balance. The
fact that the results of LAR1 are comparable to CRA implies
that LAR algorithm is as efficient as CRA to handle churn by
moving a small amount load.

The results in Figure 6 are due to a default node join/leave
rate of 0.4. Figure 7 plots the 99.9th NU, load movement
factor and the L/DHT-L as a function of SU with different
node interarrival time respectively. We can observe that the
results of the three metrics increase as SU increases. That’s
because nodes are prone to being overloaded in a heavily
loaded system, resulting in more load transferred to achieve
load balance. We also can observe that the results of the
metrics increase as interarrival time decreases, though they are
not obvious. It is due to the fact that with faster node joins
and departures, nodes are more easily to become overloaded,
leading to the increase of the 99.9th NU and load moved in
load balancing. Low NUs in different SU and node interarrival
time means that the LAR is effective in maintaining each node
light in a dynamic DHT with different node join/departure rate
and different SUs, and confirms the churn-resilient feature of
LAR algorithm.

B. Impact of Load Balancing Frequency

It is known that high frequent load balancing ensures the
system load balance at a high cost, and low frequent load
balancing can hardly guarantee load balance at all time. In
this simulation, we varied load balancing interval T from 60
to 600 seconds, at a step size of 60, and we conducted the test
in a system with SU varies from 0.5 to 0.9 at a step size of 0.1.
Figure 8(a) and (b) show the 99.9th NU and load movement
factor in different system utilization and time interval. We can
see that the 99.9th NU and load movement factor increase as
SU increases. This is because that nodes are most likely to be
overloaded in highly loaded system, leading to high maximum
NU and a large amount of load needed to transfer for load
balance.

Figure 8(a) shows that all the 99.9th NUs are less than 1, and
when the actual load of a system consists more than 60% of
its target load, the 99.9 NU quickly converges to 1. It implies
that the LAR algorithm is effective in keeping every node light,
and it can quickly transfer excess load of heavy nodes to light
nodes even in a highly loaded system. Observing Figure 8(a)
and (b), we find that in a certain SU, the more load moved,
the lower 99.9th NU. It is consistent with our expectation that
more load moved leads to move balanced load distribution.

Intuitively, a higher load balancing frequency should lead
to less the 99.9th NU and more load moved. Our observation
from Figure 8 is counter-intuitive. That is, the 99.9th NU in-
creases and load movement factor decreases as load balancing
is performed more frequently. Recall that the primary objective
of load balancing is to keep each node not overloaded, instead
of keeping the application load evenly distributed between the
nodes. Whenever a node’s utilization is below 1, it does not
need to transfer its load to others. With a high load balancing
frequency, few nodes are likely to be overloaded. They may
have high utilizations less than 1, and end up with less load
movement and high node utilization. Figure 8(b) reveals a
linear relationship between the load movement factor and
system utilization and that the slope of low frequency is larger
than high frequency because of the impact of load balancing
frequency on highly loaded systems.

C. Impact of Item Arrival/Departure Rate

Continuous and fast item arrivals increase the probability of
overloaded nodes generation. Item departures generate nodes
with available capacity for excess items. An efficient load bal-
ancing algorithm will find nodes with sufficient free capacity
for excess items quickly in order to keep load balance state
in churn. In this section, we evaluate the efficiency of LAR
algorithm in the face of rapid item arrivals and departures. In
this test, we varied item arrival/departure rate from 0.05 to
0.45 at a step size of 0.1, varied SU from 0.5 to 0.9 at a step
size of 0.05, and measured the 99.9th NU and load movement
factor in each condition. Figure 9(a) and (b), respectively,
plot the 99.9th NU and load movement factor as functions
of item arrival/departure rate. As expected, the 99.9th NU and
load movement factor increase with system utilization. It is
consistent with the results in the load balancing frequency
test. Figure 9(a) shows that all the 99.9th NUs are less than
1, which means that the LAR is effective to assign excess
items to light nodes in load balancing in rapid item arrivals
and departures. From the figures, we can also see that when
item arrival/departure rate increases, unlike in lightly loaded
system, the 99.9th NU decreases in heavily loaded system. It
is due to efficient LAR load balancing, in which more load
rearrangements initiated timely by overloaded nodes with high
item arrival rate. On the other hand, in the lightly loaded
system, though the loads of nodes accumulate quickly with
high item arrival rate, most nodes are still light with no need
to move out load, leading to the increase of 99.9th NU.

This is confirmed by the observation in Figure 9(b) that
the load moved is higher in heavily loaded system than that
in lightly loaded system, and movement factor drops faster

11

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.3 0.5 0.7 0.9
System Utilization

Th
e

99
.9

th
 P

er
ce

nt
ile

 N
od

e
U

ti. Interarrival=10s
30s
60s
90s

(a) The 99.9th percentage NU

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0.1 0.3 0.5 0.7 0.9
System Utilization

Lo
ad

 M
ov

em
en

t F
ac

to
r

Interarrival=10s
30s
60s
90s

(b) Load movement factor

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0.3 0.5 0.7 0.9
System Utilization

L/
D

H
T-

L

Interarrival=10s
30s
60s
90s

(c) L/DHT-L

Fig. 7. Impact of system utilization under continual node joins and departures.

(a) The 99.9th percentage node utilization (b) Load movement factor

Fig. 8. Impact of load balancing frequency.

(a) The 99.9th percentage node utilization (b) Load movement factor

Fig. 9. Impact of item arrival/departure rate.

in highly loaded system, which means that faster item depar-
tures lead to less load moved for load balance. Figure 9(b)
demonstrates that the load movement factor drops as item
arrival/departure rate increases. It is because that the total
system load (denominator of load movement factor) grows
quickly with a high item arrival/departure rate. In summary,
item arrival/departure rate has direct effect on NU and load
movement factor in load balancing, and LAR is effective to
achieve load balance with rapid item arrivals and departures.

D. Impact of Nonuniform Item Arrivals

Furthermore, we tested LAR algorithm to see if it is churn-
resilient enough to handle skewed load distribution. We define

an “impulse” of items as a group of items that suddenly join
in the system and their IDs are distributed over a contiguous
interval of a ID space interval. We set their total load as 10%
of the total system load, and varied the spread of interval from
10% to 90% of the ID space.

Figure 10(a) shows that in different impulses and SUs,
LAR algorithm kept the 99.9th NU less than 1.055, which
implies that LAR algorithm can almost solve the impulses
successfully. The 99.9th NU is high in high SU and low
impulse spread. Except when SU equals to 0.8, the impulse
with spread larger than 0.3 can be successfully solved by
LAR algorithm. When the impulse is assigned to a small
ID space interval less than 0.3, the load of the nodes in

12

that ID space interval accumulates quickly, leading to higher
NUs. The situation becomes worse with higher SU, because
there’s already less available capacity left in the system for the
impulse. The curve of SU=0.8 is largely above others is mainly
due to the item load and node capacity distributions, and the
impulse load relative to the SU. In that case, it is hard to
find nodes with large enough capacity to support excess items
because of the fragmentation of the20% capacity left in the
system. The results are consistent with the results in paper [6].
Figure 10(b) shows that the load movement factor decreases
with the increase of impulse spread, and the decrease of SU.
In low impulse spread, a large amount of load assigning to a
small region generates a large number of overloaded nodes,
so the LAR load balancer cannot handle them quickly. This
situation becomes worse when SU increases to 0.8, due to little
available capacity left. Therefore, the 99.9th NU and the load
movement factor are high in highly loaded system and low
impulse interval. In summary, the LAR algorithm can solve
nonuniform item arrival generally. It can deal with sudden
increase of10% load in 10% ID space in a highly loaded
system with SU equals to 0.8, achieving the 99.9th NU close
to 1.

E. Impact of Node Number and Capacity Heterogeneity

Consistent hashing function adopted in DHT leads to a
bound of O(log n) imbalance of keys between the nodes,
where n is the number of nodes in the system. Node het-
erogeneity in capacity make the load balancing problem even
more severe. In this section, we study the effects of the number
of nodes and heterogeneous capacity distribution in the system
on load balancing. We varied the number of nodes from 1000
to 8000 at a step size of 1000, and tested NU and load
movement factor when node capacities were heterogeneous
and homogeneous. Homogeneous node capacities are equal
capacities set as 50000, and heterogeneous node capacities are
determined by the default Pareto node capacity distribution.

Figure 11(a) shows that in the heterogeneous case, the
99.9th NUs are all around 1. It means that the LAR can
maintain nodes to be light in different network scales when
node capacities are heterogeneous. In the homogeneous case,
the 99.9th NU maintains around 1 when node number is
no more than 5000, but it grows linearly as node number
increases when nodes are more than 5000. It is somewhat
surprisingly that LAR can achieve better load balance in
large scale network when node capacities are heterogeneous
than when they are homogeneous. Intuitively, this is because
that in the heterogeneous case, very high load items can be
accommodated by large capacity nodes, but there’s no node
with capacity large enough to handle them in the homogeneous
case. The results are consistent with those in [6].

Figure 11(b) shows that in both cases, the load movement
factors increase as node number grows. Larger system scale
generates higher key imbalance, such that more load needs to
be transferred for load balance. The figure also shows that the
factor of the homogeneous case is pronounced less than that
in the heterogenous case. This is due to the heterogeneous
capacity distribution, in which some nodes have very small

capacities but are assigned much higher load, which is needed
to move out for load balance.

The results show that node heterogeneity helps, not hurts,
the scalability of LAR algorithm. LAR algorithm can achieve
good load balance even in large scale network by arranging
load transfer timely.

VIII. C ONCLUSIONS

This paper presents LAR load balancing algorithms to deal
with both of the proximity and dynamics of DHTs simulta-
neously. The algorithms distribute application load among the
nodes by “moving items” according to their capacities and
proximity information in topology-aware DHTs. We introduce
a factor of randomness in the probing process in a range
of proximity to deal with DHT churn. We further improve
the randomized load balancing efficiency by d-way probing.
Simulation results show the superiority of a locality-aware 2-
way randomized load balancing in DHTs with and without
churn. The algorithm saves bandwidth in comparison with ran-
domized load balancing because of its locality-aware feature.
Due to the randomness factor in node probing, it can achieve
load balance for SU as high as 90% in dynamic situations
by moving load up to20% of the system load, and up to
40% of the underlying DHT load moved caused by node joins
and departures. We further evaluate the LAR algorithm with
respect to a number of performance factors including load
balancing frequency, arrival/departure rate of items and nodes,
skewed item ID distribution, and node number and capacity
heterogeneity. Simulation results show that LAR algorithm can
effectively achieve load balance by moving a small amount of
load even in skewed distribution of items.

Although the LAR algorithm was tested on Cycloid-
structured DHTs, it is applicable to other DHT networks, as
well. It must be complemented by node clustering to cluster
DHT nodes together according to their physical locations so as
to facilitate LAR’s probing in a range of proximity. Section 6.1
presented a way of clustering in Cycloid. Readers are referred
to [16] for its generalization to other DHT networks.

We also note that the load balancing algorithms work for
key distribution load balancing. In file sharing P2P systems, a
main function of nodes is to handle key location query. Query
load balancing is a critical part of P2P load balancing; that is,
the number of queries that nodes receive, handle and forward is
based on their different capacities accordingly. We will explore
methods for this.

Acknowledgments:We are grateful to the anonymous re-
viewers for constructive comments. This research was sup-
ported in part by U.S. NSF grants ACI-0203592, CCF-
0611750, and MCS-0624849 and an NASA grant 03-OBPR-
01-0049. Preliminary results of this work were presented
in [15].

REFERENCES

[1] Y. Azar, A. Broder, and et al. Balanced allocations. InProc. of STOC,
pages 593–602, 1994.

[2] M. Bienkowski, M. Korzeniowski, and F. M. auf der Heide. Dynamic
load balancing in distributed hash tables. InProc. of IPTPS, 2005.

13

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Impulse Spread

Th
e

99
.9

th
 P

er
ce

nt
ile

 N
od

e
U

til
iz

at
io

n SU=0.5
0.6
0.7
0.8

(a) The 99.9th percentage node utilization

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Impulse Spread

Lo
ad

 M
ov

em
en

t F
ac

to
r

SU=0.5
0.6
0.7
0.8

(b) Load movement factor

Fig. 10. Impact of non-uniform item arrival patterns.

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1000 2000 3000 4000 5000 6000 7000 8000
Number of Nodes in the System

Th
e

99
.9

th
 P

er
ce

nt
ile

 N
od

e
U

ni
tli

za
tio

n

Homogeneous
Heterogeneous

(a) The 99.9th percentage node utilization

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1000 2000 3000 4000 5000 6000 7000 8000
Number of Nodes in the System

Lo
ad

 M
ov

em
en

t F
ac

to
r

Homogeneous
Heterogeneous

(b) Load movement factor

Fig. 11. Impact of the number of nodes in the system.

[3] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Topology-aware
routing in structured peer-to-peer overlay networks. InFuture Directions
in Distributed Computing, 2002.

[4] Fasttrack product description, 2001.
http://www.fasttrack.nu/indexint.html.

[5] S. Fu, C. Xu, and H. Shen. Random choices for churn resilient load
balancing in peer-to-peer networks. Technical report, ECE Department,
Wayne State University, September 2006.

[6] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica.
Load balancing in dynamic structured P2P systems.Performance
Evaluation, 63(3), 2006.

[7] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and
I. Stoica. The impact of DHT routing geometry on resilience and
proximity. In Proc. of ACM SIGCOMM, 2003.

[8] S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang. On the
placement of Internet instrumentation. InProc. of INFOCOM, 2000.

[9] D. Karger, E. Lehman, T. Leighton, M. Levine, and et al. Consistent
hashing and random trees: Distributed caching protocols for relieving
hot spots on the World Wide Web. InProc. of STOC, pages 654–663,
1997.

[10] D. R. Karger and M. Ruhl. Simple efficient load balancing algorithms
for Peer-to-Peer systems. InProc. of IPTPS, 2004.

[11] M. Mitzenmacher. On the analysis of randomized load balancing
schemes. InProc. of SPAA, 1997.

[12] A. Mondal, K. Goda, and M. Kitsuregawa. Effective load-balancing
of peer-to-peer systems. InProc. of IEICE DEWS DBSJ Annual
Conference, 2003.

[13] A. Rao and K. Lakshminarayanan et al. Load balancing in structured
P2P systems. InProc. of IPTPS, 2003.

[14] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-
aware overlay construction and server selection. InProc. of INFOCOM,
2002.

[15] H. Shen and C. Xu. Locality-aware randomized load balancing algo-
rithms for structured P2P networks. InProc. of ICPP, pages 529–536,
2005.

[16] H. Shen and C. Xu. Hash-based proximity clustering for load balancing
in heterogeneous DHT networks. InProc. of IPDPS’06, April 2006.

[17] H. Shen, C. Xu, and G. Chen. Cycloid: A scalable constant-degree p2p
overlay network. Performance Evaluation, 63(3):195–216, 2006. An
early version appeared in Proc. of IPDPS’04.

[18] I. Stoica, R. Morris, and et al. Chord: A scalable peer-to-peer lookup
protocol for Internet applications.IEEE/ACM Transactions on Network-
ing, 2003.

[19] M. Waldvogel and R. Rinaldi. Efficient topology-aware overlay network.
In Proc. of HotNets-I’02.

[20] C. Xu. Scalable and Secure Internet Services and Architecture. Chapman
& Hall/CRC Press, 2005.

[21] Z. Xu, M. Mahalingam, and M. Karlsson. Turning heterogeneity into
an advantage in overlay routing. InProc. of INFOCOM, 2003.

[22] Z. Xu, C. Tang, and Z. Zhang. Building topology-aware overlays using
global soft-state. InProc. of ICDCS, 2003.

[23] B. Yang and H. Garcia-Molina. Designing a super-peer network. In
Proc. of ICDE, 2003.

[24] E. Zegura, K. Calvert, and et al. How to model an Internetwork. In
Proc. of INFOCOM, 1996.

[25] Y. Zhu and Y. Hu. Efficient, proximity-aware load balancing for dht-
based p2p systems.IEEE TPDS, 16(4), 2005. An early version appeared
in Proc. of IPDPS’04.

