Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

]. Parallel Distrib. Comput. 69 (2009) 197-209

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A P2P-based intelligent resource discovery mechanism in Internet-based

distributed systems

Haiying Shen

Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, AR 72701, United States

ARTICLE INFO

ABSTRACT

Article history:

Received 13 February 2008
Received in revised form

14 May 2008

Accepted 5 June 2008
Available online 27 June 2008

Keywords:

Resource discovery

Internet-based distributed systems
Peer-to-peer

Distributed hash table

Grids

Internet-based distributed systems enable globally-scattered resources to be collectively pooled and used
in a cooperative manner to achieve unprecedented petascale supercomputing capabilities. Numerous
resource discovery approaches have been proposed to help achieve this goal. To report or discover a
multi-attribute resource, most approaches use multiple messages, with one message for each attribute,
leading to high overhead of memory consumption, node communication, and subsequent merging
operation. Another approach can report and discover a multi-attribute resource using one query by
reducing multi-attribute to a single index, but it is not practically effective in an environment with a
large number of different resource attributes. Furthermore, few approaches are able to locate resources
geographically close to the requesters, which is critical to system performance. This paper presents a
P2P-based intelligent resource discovery (PIRD) mechanism that weaves all attributes into a set of indices
using locality sensitive hashing, and then maps the indices to a structured P2P overlay. PIRD can discover
resources geographically close to requesters by relying on a hierarchical P2P structure. It significantly
reduces overhead and improves search efficiency and effectiveness in resource discovery. It further
incorporates the Lempel-Ziv-Welch algorithm to compress attribute information for higher efficiency.
Theoretical analysis and simulation results demonstrate the efficiency of PIRD in comparison with other
approaches. It dramatically reduces overhead and yields significant improvements on the efficiency of

resource discovery.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Advancements in technology over the past decade are leading
to a promising future for computing, where globally-scattered
resources such as computing resources and data resources
are collectively pooled and used in a cooperative manner to
achieve unprecedented petascale supercomputing capabilities.
Internet-based distributed systems, such as grid and peer-to-peer
(P2P) infrastructures, interconnect computers, clusters, storage
systems, instruments and so on to make possible the sharing of
resources such as CPU time, storage, memory, network bandwidth,
and data. Internet-based distributed applications, such as data
sharing, computational grids, navigation systems, multimedia
and telecommunications, have been widely used in scientific,
engineering and commercial areas. For example, the average
simultaneous global P2P application users are already over 9
million [3], and BitTorrent P2P file sharing system constitutes
roughly 35% of all traffic on the Internet [6].

A fundamental problem in these large, decentralized,
distributed resource sharing environments is efficient discovery

E-mail address: hshen@uark.edu.

0743-7315/$ - see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2008.06.010

of resources described by a set of attributes such as CPU speed,
memory, and OS version. Another challenge comes from the com-
plex environment characterized by large scale, dynamism, and ge-
ographically scattered resources. In such an environment, millions
of heterogeneous resources are scattered across geographically
distributed nodes, resource utilization and availability are contin-
uously changing, and nodes can enter or leave the system unpre-
dictably.

Centralized resource discovery approaches [14,26,17,10,4,27]
are insufficient to deal with these characteristics due to the
problem of a single point of failure and bottleneck. More and
more approaches resort to structured peer-to-peer (P2P) overlay
for resource discovery [1,5,40,31,7,8,28] due to its scalability,
efficiency, reliability, self-organization and dynamism-resilience
features.

A basic function of a resource discovery technology is to
marshal resource information for searching. Current P2P-based
methods can be classified into three categories based on the
methods of information marshalling. One group of methods [1,
5,40,31] use multiple P2P overlays with one overlay responsible
for each attribute name such as CPU and memory, and use the
attribute values or attribute descriptions as keywords to store
the information in multiple overlays. For example, for a resource

198 H. Shen /. Parallel Distrib. Comput. 69 (2009) 197-209

“CPU = 2 GHz and Memory = 512 MB”, these methods use two
messages to store the information of this resource in two overlays
responsible for CPU and memory by taking 2 GHz and 512 MB as
keywords, respectively. However, multiple P2P overlays require
high maintenance overhead, especially in dynamism. Another
group [7,8,28] takes both attribute name and value as keywords
(i.e. CPU, 2 GHz, Memory and 512 MB), and use four messages to
store the resource information in a single P2P overlay. However,
it could lead to imbalance of information and load distribution
since all resource information of one resource attribute name is
accumulated in a single node. For a resource query, the two groups
of approaches use multiple queries and present one query for each
keyword and then concatenate the results in a database-like “join”
operation. However, their efficiency is significantly degraded due
to separating a resource description into a number of keywords.
First, they lead to high overhead for information storage, reporting,
searching and subsequently merging operation. A resource with
m keywords in the description needs m messages to store its
information in m places. Later, a requester querying for such a
resource also needs m messages to search the resources, with one
message for each keyword, and then merges a tremendously high
volume of information to derive the outcome of the query. To
avoid attribute splitting, another class of approaches [34] searches
multi-attribute resource using one query by a dimension reducing
scheme that reduces multi-attribute to one index. However,
it assumes a small number of attributes, and is not effective
in a real environment with a tremendously large number of
resource attributes. In addition to inefficiency and ineffectiveness,
few approaches exploit proximity-aware searching to discover
geographically close resources to requesters which is critical to
high system performance.

This paper proposes a P2P-based intelligent resource discovery
mechanism (PIRD) that weaves all attributes into a set of indices
and maps the indices to one P2P overlay using locality sensitive
hashing (LSH) [19,18]. PIRD is object-oriented in that it regards
the description of a resource such as a computer or a file as
a whole entity. Rather than splitting multiple attributes of a
resource description, it conducts resource information reporting
and searching by taking the multiple attributes as an entire object.
PIRD significantly reduces the overhead of resource information
reporting, searching and storage, and improves resource discovery
efficiency in terms of the number of messages and nodes involved.
In addition, by taking advantage of the hierarchical structure of
a structured P2P overlay, PIRD can find resources geographically
close to requesters. PIRD further uses the Lempel-Ziv-Welch
(LZW) algorithm [41] to compress attribute information to reduce
overhead and improve efficiency.

The rest of this paper is structured as follows. Section 2 presents
a concise review of representative resource discovery in Internet-
based distributed systems. Section 3 presents the PIRD mechanism
including P2P overlay introduction, LSH and LZW algorithms.
Section 4 shows the performance of PIRD using a variety of metrics,
and analyzes the factors effecting resource discovery performance.
Section 5 concludes this paper.

2. Related work

There have been numerous resource discovery approaches in
Internet-based distributed systems. Systems such as Condor-G [15]
uses the Globus toolkit [14] to integrate with a grid computing
environment for resource management. A number of projects,
including Condor [26], XtremWeb [17], Entropia [10], AppLes [4],
and Javelin++ [27], have investigated resource searching for
computations on grid systems. However, relying on centralized
or hierarchical-based policies, these systems have limitations in
a dynamic multi-domain environment with variation of resource

availability and the presence of large-scale heterogeneity. To cope
with these problems, more and more distributed systems resort to
structured P2P middleware overlays for resource discovery due to
their scalability, reliability and dynamism-resilience.

Structured P2P overlays is an important class of the P2P overlay
networks that map keys to the nodes of a network based on a
consistent hashing function [21]. Structured P2P overlay is also
called Distributed Hash Table (DHT) overlay. Representatives of the
structured P2P overlays include CAN [29], Chord [38], Pastry [33],
Tapestry [44], Kademlia [25], Symphony [24], Bamboo [32] and
Cycloid [36].

To achieve multi-attribute range-query resource discovery,
some systems adopt multiple overlays with one overlay responsi-
ble for each attribute, and process multi-attribute queries in paral-
lel in corresponding P2P overlays [1,5,40,31]. Andrzejak and Xu [1]
extend the CAN-based DHT-system into an indexing infrastructure
which allows querying of ranges and supports efficient handling of
dynamic data. Furthermore, they use expressway routing [42] in
CAN to further cut down costs of searching and updating. The work
provides foundation for a self-organizing and scalable implemen-
tation of a grid information infrastructure as grid index informa-
tion service [11], which provides a coherent image of distributed
grid resources and allows searching for specific resources. Mer-
cury [5] is a scalable protocol for supporting multi-attribute range-
based searches. It differs from other range-based query systems in
that it supports multiple attributes as well as performs explicit load
balancing. To guarantee efficient routing and load balancing, Mer-
cury uses novel light-weight sampling mechanisms for uniformly
sampling random nodes in a highly dynamic overlay network. In
Mercury, each query is a conjunction of ranges in one or more
attributes. Mercury handles multi-attribute queries by creating a
routing hub for each attribute in the application schema. Each rout-
ing hub is a logical collection of nodes in the system. Queries are
passed to exactly one of the hubs corresponding to the attributes
that are queried, while a new data item is sent to all hubs for which
it has an associated attribute. This ensures that queries retrieve all
relevant data items present in the system. Furthermore, for sup-
porting range queries, Mercury organizes each routing hub into a
circular overlay of nodes and places data contiguously on this ring,
i.e., each node is responsible for a range of values for the particular
attribute. While the notion of a circular overlay is similar in spirit
to some existing DHT designs, due to placing data contiguously
to support range queries, data partitioning among nodes can be-
come non-uniform. Thus, explicit load-balancing mechanism was
further developed to balance the load between nodes. Talia and
Trunfio [40] proposed a DHT-based framework, the goal of which
is two-fold: to address discovery of multiple resources, and to
support discovery of dynamic resources and arbitrary queries in
grids. The framework introduced three type of queries: (1) Exact
match query, where attribute values of numeric, boolean, or string
types are searched; (2) Range query, where a range of numeric
or string values are searched; (3) Arbitrary query, where partial
phrase match or semantic search is carried out. The framework
uses flooding method for resource discovery of dynamic grid re-
sources and for arbitrary query. Because DHT overlays only sup-
port exact match lookups, Ratnasamy [31] proposed to construct
a Prefix Hash Tree (PHT) to support range queries over DHT over-
lays. PHT overlays use the hash-table interface of DHT overlays to
construct a search tree that is efficient and robust.

Though these methods have different features such as range
query, high efficiency and robustness, depending on multiple
P2P overlays for multi-attribute resource discovery leads to high
maintenance overhead for P2P overlay structures.

Another group of approaches [7,8,28] organize all resource
information into one structured P2P overlay and arrange a
node be responsible for all information of resources with

H. Shen /. Parallel Distrib. Comput. 69 (2009) 197-209 199

oo |otio 1001 1010
11

0100 o111 1000 1011
10 —

0011 0010 1101 1100
01

0000|0001 1110|1111
00

00 o1 0 1

Fig. 1. An example of SFC.

the same attribute. Chord offers efficient and scalable single
key-based registration and lookup service for decentralized
resources. However, it can not support range queries and multi-
attribute-based lookups. MAAN [7] addresses this problem by
extending Chord with locality preserving hashing and a recursive
multidimensional query resolution mechanism. For attributes with
numerical values, MAAN uses locality preserving hashing functions
to assign each attribute value an identifier in the m-bit space, and
then maps the value information to Chord. Cai and Hwang [8]
proposed a scalable grid monitoring architecture that builds
distributed aggregation trees (DAT) on Chord. By leveraging Chord
topology and routing mechanisms, the DAT trees are implicitly
constructed from native Chord routing paths without membership
maintenance. To balance the DAT trees, they proposed a balanced
routing algorithm on Chord that dynamically selects the parent of a
node from its finger nodes by its distance to the root. Oppenheimer
et al. [28] developed SWORD which is a Scalable Wide-Area
Overlay-based Resource Discovery service. SWORD has a scalable
and distributed query processor for satisfying the multi-attribute
range queries that describe application resource requirements. It
also has techniques for passively and actively balancing load in
the range query infrastructure to account for skewed values in
measurements.

This group of approaches could result in load imbalance among
nodes, and lead to high cost for searching resource information
among a huge volume of data in a single node. In most of these
works, attributes of a resource are separated and the resource
information is reported and stored in a P2P node indexed by
each attribute. When a requester searches a resource, it searches
each attribute of the resource and then merges the information.
For an m-attribute resource, these approaches need m reporting
messages, memory size for storing m pieces of information, and
m queries for a query, leading to a high number of messages and
routing nodes involved and high cost for storage and information
merging.

Hilbert space-filling curve (SFC)[2,42] is the main technique for
dimension reduction while still preserving the relative distances
among points in a multidimensional space. It maps points in an m-
dimension Cartesian space into a domain of real numbers; That is,
R™ — R!, such that the closeness relationship among the points
is preserved. This mapping can be regarded as filling a curve within
the m-dimensional space until it completely fills the space. Fig. 1
shows an example of SFC. The m-dimensional space is partitioned
into 2™ grids of equal size (where m refers to the number of
landmarks and x controls the number of grids used to partition
the landmark space), and each node is numbered according to the
grid into which it falls. This number is called the Hilbert number of
a node. The Hilbert number indicates the closeness of two points
in the space. The smaller the x, the larger the likelihood that two
points will have the same Hilbert number.

Based on SFC's feature of locality preserving, Schmidt and
Parashar [34] proposed a dimension reducing indexing scheme
relying on the SFC that maps the multidimensional information
space to P2P nodes, and proved the effectiveness of the SFC

adoption for resource discovery in 3-dimensional space. They also
indicated that SFC’s effectiveness will be degraded with increasing
dimension. This is the inherent feature of SFC. Intuitively, higher
dimension will make it harder to preserve the locality relationship
between points. Though the proposed scheme guarantees that all
existing data elements that match a query are found with bounded
costs in terms of the number of messages and nodes involved, it is
not effective when there are a large number of attributes because of
the degrading performance of the dimension reduction algorithm
in a high-dimensional space.

In practice, there are a huge number of different resources in-
cluding data resources such as files, videos and audios, computing
resources such as CPU time, storage. Therefore, the number of key-
words used to describe millions of various resources is enormously
high. Hence, SFC cannot be practically applied to resource discov-
ery where there are significantly large number of keywords.

More importantly, most current P2P-based methods are unable
to discover resources geographically close to the requester, which
is very important for resource sharing performance. Unlike the
current three groups of approaches, the PIRD mechanism is object-
oriented by regarding all attributes of a resource as an entire object.
Without separating attributes in a resource, it weaves all attributes
into a set of indices and maps the indices to one P2P overlay
for efficient resource discovery. PIRD achieves balanced load
distribution with low overlay structure maintenance overhead.
Furthermore, by taking advantage of P2P hierarchical structure,
PIRD clusters the resource information based on the proximity
of resource so that it can find geographically close resources to
requesters for high system performance.

3. PIRD: P2P-based intelligent resource discovery

PIRD is built on top of a single hierarchical Cycloid struc-
tured P2P overlay network [36] to achieve multi-attribute and
proximity-aware resource discovery. PIRD can also use a flat struc-
tured P2P overlay [36,38,44,33,29] such as Chord as a underlying
overlay; its details will be presented in Section 3.2. Before we be-
gin more detailed discussion of PIRD, we briefly describe struc-
tured P2P overlay networks and Cycloid. Structured P2P overlay
networks is a class of decentralized systems in the application-
level that partition ownership of a set of objects among partici-
pating nodes. The overlay networks can efficiently route messages
to the unique owner of any given object. Each object or node is
assigned an ID (i.e., key) that is the hashed value of the object or
node IP address using consistent hash function [21]. The overlay
network provides two main functions: Insert (ID,object) and
Lookup (ID) to store an object to a node responsible for the ID,
and to retrieve the object.

Cycloid is a lookup efficient overlay. It can have maximum n =
d - 2% nodes with d as its dimension. An ID of a Cycloid node or
object is represented by a pair of indices

ID = (IDcyCv IDeyy) = (k, Ag—1ag—3 . . . do),

where k is a cyclic index and ag_1a4_5...aq is a cubical index,
represented by D¢, and IDy, respectively. The ranges of the
cyclic index and cubical index are [0, d — 1] and [0, 2¢ — 1],
respectively. Given a Cycloid P2P overlay of d-2¢ nodes, the domain
of cyclic indices consists of d number, i.e., {0, 1, ..., d— 1}, and the
domain of cubical indices consists of 2¢ number, i.e., {0, 1, ..., 29—
2,29 — 1}. The right side of Fig. 5 shows the partial routing links
of a 11-dimensional Cycloid, where x indicates all possible cyclic
indices. The nodes with the same cubical index are ordered by their
ID¢yc mod d on a small cycle, which is called cluster. All clusters are
ordered by their ID.;, mod 2¢ on a large cycle. Thus, the nodes in
Cycloid are grouped into different clusters, which are identified by
the cubical indices. Within a cluster, the nodes are differentiated by

200 H. Shen /. Parallel Distrib. Comput. 69 (2009) 197-209

Distributed Applications

Distributed storage File sharing Distributed Multi-party video
systems systems computing conferencing
Controlled Application Interface E

Intelligent Resource Discovery
| Locality-preserving index determination |

| Resource information marshaling and searching l

‘ Hierarchical Structured P2P Infrastructure |
Internet-based Distributed Systems (Grids, P2P, etc.)
Network Layer

Fig. 2. High-level architecture of PIRD.

Memory | 1
§ Storage | 0
= 512MB 1
B RUFF 0 ‘ |Memory|512MB|CPU|2GHz|Bandwidth|10Mbps| ‘
S
; _‘S CPU 1
2 g Tom 0
E & |2GHz 1
S = =
Z €| [Banowid | 1 | 1010101101...0 (m bits) }
Q th
£
5 MAIN 0
= 10Mop | 1
E

Fig. 3. Resource vector generation.

the cyclic indices. Cycloid assigns a key to a node with the closest
ID to the key’s ID. For more information about Cycloid, please refer
to [36].

Fig. 2 shows a high-level view of the architecture of PIRD.
PIRD includes two characteristic components to efficiently and
effectively search resources for high performance Internet-based
distributed systems. The two components are locality-preserving
index determination and resource information marshaling and
searching.

Locality-preserving index determination. The fundamental func-
tionality of this component is to represent each resource and query
by a set of indices that preserve locality. Particularly, a resource or
query is described by a vector where each dimension is associated
with a distinct keyword. Usually, a resource attribute has a key-
word to represent itself. Resources without keywords such as a file
can use information retrieval methods [12] to get its vector. Similar
resources are considered to have similar vectors. The resource vec-
tor is then used to produce a small set of indices through LSH. Re-
sources and queries with similar vectors will have similar indices.

Resource information marshaling and searching. This component
provides resource reporting and retrieval capabilities. The func-
tionality of reporting is to store the information of each resource
automatically in a structured P2P overlay according to resource
attribute and proximity. The functionality of resource searching
is to locate desired resources for a given query in a distributed
and efficient manner. The P2P overlay lookup function facilitates
requesters to discover resources efficiently, and the hierarchical
overlay structure further enables requesters to locate geographi-
cally close resources for high performance.

3.1. Locality-preserving index determination

A key component of a resource discovery system is defining
an index space and deterministically mapping resources to this
index space. To support complex resource searches in a resource
discovery system, PIRD associates each resource with a set of

F

="~ Computational
resource

Bandwidth

v

Storage space

Fig. 4. A 3-D keyword space.

keywords and defines a mapping that preserves the similarity
among the keyword sets of different resources.

The keywords are common words to describe resource
attributes such as bandwidth and memory, and values of globally
defined resource attributes such as 10 Mbps and 512 MB. As
a result, each resource is represented by a keyword vector. All
keywords in the system form a multidimensional keyword space
where resources are points in the space and the keywords are the
coordinates. Fig. 4 shows an example of a 3-dimensional keyword
space [34]. The keywords can be viewed as base-2™ numbers,
where m is the total number of keywords in the resource discovery
system. Two resources are considered “local” if they are close
together in this keyword space. For example, “Memory 512 MB
CPU 2 GHz” and “Memory 1 GB CPU 2 GHz” are local since
they have many common keywords. Fig. 3 demonstrates how a
resource’s vector is determined. If a resource has a keyword in
a dimension of the m-dimensional keyword space, it has “1” in
that dimension. Otherwise it has “0” in that dimension. Finally, a
resource gets a resource vector with length of m bits.

The problem of resource discovery can be regarded as finding
the nearest neighbor of a query point in a high dimensional
keyword space mainly focusing on the Euclidean space with
Euclidean distance as metric: given n points in an m-dimensional
space, find the nearest neighbor of a query point. The next question
is how to transform resource vectors to indices in an index space.
To efficiently support queries using partial keywords, the index
space should preserve the locality of the points so that located
points can be refined by setting different neighbor distance ranges.
Locality-sensitive hashing (LSH) [19,18] is the main technology for
dimension reduction while still preserving the relative distances
among points in a multidimensional space.

Locality Sensitive Hashing. LSH is locality sensitive in that is
maps points in an m-dimensional space into one-dimensional
space while still preserving the closeness relationship among the
points. LSH is an algorithm for solving approximate and exact near
neighbor search in high dimensional spaces. The intuition of LSH
is: if two points are close (less than distance r), they hash to same
value with probability of at least py; if they are far away between
each other (more than distance r, > rq), they hash to same value
with probability of no more than p, < p;. Specifically, for adomain
S of the points set and distance measure D, the LSH family is defined
as follows, where U is an index space domain, B(q, r) represents
the scope with range r around point g, and Pr denotes probability.

Definition 1. A family # = {h : S — U} is LSH functions for
distance function D if for any two pointsv, q € S

- ifv € B(q, r1) then Pry[h(q) = h(v)] = py,

- ifv & B(q, r2) then Pry[h(q) = h(v)] < p»,

-rl <r2,pl > p2.

LSH-based resource index determination. In the following, we
discuss how to transform resource vectors to indices so that similar
resources have similar indices with high probability.

Different LSH families can be used for different distance func-
tions. PIRD relies on the LSH technique in Euclidean spaces [16].

H. Shen /. Parallel Distrib. Comput. 69 (2009) 197-209 201

Hashkfamlly Cycloid structured P2P overlay
N Bucket
: (hyhg.. by e T T
91 (NP () | hotv) hyv)-
L g5t (hy,hz.. hy) hy(v) | ha(v) hy(v)
gyt (hyha..hy) hd [hwy | | b
| :
H(h(v),h,(v),...h,(v)) = er'hi(v)Jmodprl‘me]mon“ =200
i=1
The second hash function
Fig. 5. Process of ID mapping in PIRD.
Based on this technique, a family # of hash functions is derived. necessary to achieve this goal. In the following, we first introduce

That is, hqp(v) = [‘“jl—f”], where a is an m-dimensional random the proximity information generation method to represent node
vector whose each entry is drawn from a Gaussian distribution closeness on the Internet by indices. We then introduce the
Ga(x) (x is generated randomly in [0,1]), w is a specified integer algorithms for resource information marshalling and searching.

value, and b is a random real number chosen uniformly from [0, Proximity information generation. Landmark clustering has been
w]. PIRD defines a function family G = {g : S — U*} such that widely adopted to generate proximity information [30,42,37]. It
g() = (h1(v), ..., hx(v)), where h; belongs to #, and k is a spec- is based on the intuition that nodes close to each other are
ified integer value. k represents a tradeoff between memory con- likely to have similar distances to a few selected landmark nodes,

sumption for storing resource information and time consumption although details may vary from system to system. In P2P overlays,
for pruning false positives. False positives are discovered points the landmark nodes can be selected by the overlay itself or the
that actually are not close to a query point. A false positive incurs Internet. More sophisticated strategies [20,9,13] can be used for
when LSH generates the same hash value for two points that are landmark nodes selection. We use a simple method with a distance
not close. Larger k leads to more memory consumption (also longer constraint between landmarks. We assume m = 14 landmark
time spent in computing hash values), but fine-grained points and nodes that are randomly scattered in the Internet. Each node
hence less false positives. On the other hand, smaller k leads to less measures its physical distances to the m landmarks, and use the
memory consumption (also shorter time spent in computing hash vector of distances (d, da, ..., dp) as its coordinate in Cartesian
values), but coarse-grained points and hence more false positives. space. Two physically close nodes will have similar landmark

Fig. 5 illustrates the mapping of a resource to a Cycloid P2P vectors. We use Hilbert space-filling curve (SFC) [2,42] to map
node in PIRD. A bucket is used to store a group of hashed values m-dimensional landmark vectors to Hilbert numbers. SFCs map
generated by a g (v). In other words, the hashed values of a resource points in an m-dimensional Cartesian space into a domain of real
vector v, h;(v)(1 < i < k), is stored in a bucket. Thus, L number of ~ numbers. That is, R™ — R, such that the closeness relationship
g(v) leads to L buckets, where L is a specified constant. Then PIRD among the node points is preserved. We use H to denote the Hilbert

uses another hash function H: number of a node. The Hilbert number indicates physical closeness
f nodes on the Internet. For instance, if the relationship of the
Dy = H(hi(v), hy(v), ..., h o O o

Ish (1}51)) 2(v) k() Hilbert numbers of nodes i, j and k is H; < H; < Hij, then node

_ . . d j is geographically closer to node k than node i.
- ((Z rih,(v)) mod pr1me> mod 2 Resource information marshalling algorithm. Recall that Cycloid
= consists of a number of clusters, which constitute a large cycle.
to compute the index of each bucket, denoted by ID;s. In the hash ~ PIRD lets each cluster be responsible for the information of
function, 2¢ represents the range of Cycloid cubical indices IDepy, similar resources, and divides the resource information among
prime denotes a prime number, and r’ is a random 32-bits unsigned nodes within the cluster based on geographical closeness of
integer number randomly generated in the range of [1, 22°] [23]. 1" the resources. In a Cycloid ID, the cubical indices differentiate

is fixed for all buckets. The indices of a resource vector v are its clusters, and the cyclic indices differentiate nodes in a cluster.
cubical indices of its final Cycloid IDs for mapping to Cycloid P2P PIRD uses cubical indices to represent different resources, and
overlay. In conclusion, given a resource vector v, PIRD hashesvto uses cyclic indices to represent the locations of resource host
L buckets of k hash values, and calculates the final L hash values nodes. Specifically, it defines a resource’s P2P identifier as ID =

through the hash function H on each of L buckets. Finally, similar (H, IDys,), where H is the Hilbert number of the resource host

resource vectors have similar IDjs. node. Recall that a P2P overlay network provides two main
functions: Insert(ID,object) and Lookup(ID) to store an
3.2. Resource information marshalling and searching object in a node responsible for the ID, and to retrieve the

object. PIRD lets nodes report their resource information to

After the indices of a resource vector are determined, the next the system by Insert (ID, (v,ip_addr)), where (v, ip_addr)
question is how to map the resource vector to a structured P2P represents the resource information. Based on Cyloid topology and
overlay for efficient multi-attribute and proximity-aware resource key assignment algorithm, the information of similar resources
searching. Locating geographically close resources is important will be stored in the same cluster. Within each cluster, the
to the performance of Internet-based distributed applications, information of resources in close proximity will gather together in
especially to time-critical applications, since some tasks may a node. We call the repository node directory node. For example, in
suffer from long distance delay. PIRD marshals the information Fig. 5, one of the resource’s ID;s, is 200, then the information of this
of physically close resources in one node to achieve proximity- resource is mapped to cluster with ID.;, equals to 200. Assume the
aware resource discovery. Proximity information generation is Hilbert number of the resource’s host node is 5, then the host node

202 H. Shen /. Parallel Distrib. Comput. 69 (2009) 197-209

of the resource uses the function Insert ((5, 200), (v, ip_addr)),
and the information (v, ip_addr) will be stored in node (5, 200).

Theorem 3.1. Ifnodes report their resource information by targeting
(H, IDys,), the information of similar resources will be stored in the
same cluster, and within each cluster, the information of resources in
close proximity will be stored in one node.

Proof. In a Cycloid ID (ID¢yc, IDqyp), cubical indices differentiate
clusters, while the cyclic indices differentiate nodes in one cluster.
In ID (H, IDy;), the ID;g, is determined by resource type, so similar
resources will be in a same cluster. Further, the H indicates the
proximity closeness of resource hosts, hence the information of
resources in close proximity will gather together in one node. ®

Specifically, given a resource with a keyword vector v and its
host node’s IP address, the PIRD maps v into L indices. Each of the
L indices (possibly duplicated) corresponds to a cubical index. The
physical position of the resource host node is mapped into a Hilbert
number, which corresponds to the cyclic index of the directory
node for the given resource. It implies that the L directory nodes
for a resource have the same cyclic index. For instance, a resource
of “Memory 512 MB CPU 2 GHz Bandwidth 10 Mbps” gets L indices,

IDispy, IDispy 5 - -« 5 IDyspy

using the LSH-based ID determination method. It then generates L
Cycloid IDs

IDy,ID,, ..., ID;, where ID; = (H, IDjs,).
After that, the node uses
Insert(IDq, (v, ip_addr)), ..., Insert(ID, (v, ip_addr))

to insert its resource information into L nodes in Cylcoid
P2P overlay. Algorithm 1 shows the pseudo-code of resource
information marshalling in PIRD.

Algorithm 1: Pseudo-code for resource information marshalling.

//convert a resource vector v to a set of IDjs,S
for each g[j] do { //g[j] is one of L groups of hash functions
IDiy[j1 =0
for each h[i] in g[j] do {//g[j] has k hash functions
IDgy[jl+ = (r/hlil(v) mod prime) mod 2% }
}
H=the Hilbert number of the host node of the resource
for each IDs[j] do {
//insert the resource information (v, ip_addr) into the P2P
overlay
ID[j] = (H, IDysp[j1)
Insert(ID[j],< v,ip_addr>)
1

Note that for two resource vectors vy and v,,

Prycy[h(v) = h(v2)] = sim(vy, va),

where “sim(vq, v2)” represents the similarity between v; and
vy. For L different groups g, g, ..., g of hash functions, the
probability that v and v, cannot produce the same indices for all
k hash functions € g; is 1 — p¥, where p denotes sim(v, v). The
probability that vy and v, can produce the same index for all k hash
functions of at least one of L groups is 1— (1 — p*)L. In other words,
the resource information marshalling can have resource vectors
with similarity p hashed to the same nodes with a probability no
less than 1 — (1 — p*)L. For example, if two resource vectors v; and
v, have a similarity p = 0.7, k = 5 and L = 5, the probability of
hashing the two vectors to at least one same node is 60% [45].
Resource information searching algorithm. We now discuss the
issue of how to locate resources for a resource query, given the

fact that all resources in the system are indexed to Cycloid overlay
according to their keyword vectors. The goal of PIRD is to answer
a query by consulting only a small number of nodes that are most
responsible for the query.

As described above, a resource in the system is associated with
a sequence of one or more keywords. The queries can consist
of a combination of keywords or partial keywords. For example,
(computer, network) and (computer, *) are all valid queries. A
query with partial keywords may include a huge number of
possible vectors. However, no matter how many possible vectors
there are, the PIRD will always generate only L hash values for
the query, and will locate all resources with keywords similar to
the query. The expected result of a query is the information of the
complete set of resources matching the user’s query.

Processing a query consists of two steps: translating the
keyword query to relevant Cycloid P2P IDs, and querying the
appropriate nodes in the overlay network for resource information.
Recall that a piece of resource information is stored in L directory
nodes responsible for (H, Dy,)(1 < i < L) in the structured
P2P overlay. Therefore, when discovering a resource, L resource
IDs should be generated for the queried resource using the
locality-preserving index determination method and proximity
information generation method. The resource IDs for a resource
query is (H, IDjs,)(1 < i < L), where H is the Hilbert number of
the requester node. The destination of the L IDs should be queried
for the resource information. Hence, when a node queries for
different resources, it sends out different requests using Lookup
(H, ID;s,) for each resource ID. A query message targeting each ID
is routed to the destination node based on structured P2P lookup
algorithm: given an ID for an object, the node responsible for
the object is located. The destination node is the directory node
responsible for the information of the resource in geographically
close proximity of the requester. No matter whether a query
consists of all keywords or partial keywords, it will be mapped to at
most L points in the ID space, which means that at most L nodes will
be visited for resource information. Finally, the nodes containing
the information of the queried resource receive the requests.

Algorithm 2: Pseudo-code for resource information searching.

//convert the query resource vector v to a set of IDisyS
for each g[j] do {//g[j] is one of L groups of hash functions
IDisp[j1 =10
for each h[i] in g[j] do {//g[j] has k hash functions
IDsilj1+ = (r/hlil(v) mod prime) mod 29 }

H=the Hilbert number of the requester
for each ID;s,[j] do {
//send a request to a node which is the destination of the ID[j] in
the P2P overlay
ID[j] = (H, IDysp[j1)
send Lookup(ID[j])
}
receive responses from all the destination nodes
merge the response information that satisfies the query-based
on ip_addr
prune the resource vectors whose vectors satisfy d(v, q) > r

For example, g is a resource vector for a resource query. PIRD
produces L P2P IDs from q using the same set of LSH hash functions.
Therefore, if a resource satisfies the query, its information will
be retrieved with very high probability. Note that the vectors of
resources and the query could be hashed to the same ID;y, with
high probability (i.e., 1 — (1 — p*)!). Thus, by having these IDyys
as the P2P cubical IDs in the structured P2P overlay’s function
Lookup(ID) (ID = (H,IDy,)), PIRD is able to retrieve desired
resources from the directory nodes that are responsible for these
IDs. For example, in Fig. 5, if one generated ID of a query is (5, 200),

H. Shen /. Parallel Distrib. Comput. 69 (2009) 197-209 203

node (5, 200) will receive a Lookup request. L is very small (e.g.,
5) in our system, which implies that a query can be answered by
consulting only a small number of nodes no more than L.

Upon receiving a request, each destination node checks locally
the list of tuples (v, ip_addr) and returns the ip_addr of nodes
that have resources similar to the query’s v. Then, the requester
merges the replies from all destination nodes based on ip_addr.

Let vq, ..., v; be the resource vectors after merging, PIRD then
computes the Euclidean space distance between q and vy, ..., v;
using

m
dw.q) =lv—ql= | > (-2

i=1

where v; and g; represents a value in one dimension, and r is a
pre-defined threshold of Euclidean distance between a neighbor
point and a query point. For each v, if v belongs to B(q, r), that
is, d(v,q) < r, then v is a neighbor point in range r, i.e, a
desired resource. Otherwise, v is not a resource that satisfies
query g. This refinement step is to prune false positive results.
The resource requester then requests resources from resource
hosts identified by ip_addr. Algorithm 2 shows the pseudo-code
of resource information searching in PIRD.

In addition to a hierarchical structured P2P overlay, PIRD can
also work on a flat structured P2P overlay such as Chord. In a flat
structured P2P overlay, when a node reports the information of its
resources, it also reports its Hilbert number H. Each destination
node organizes the information tuples in such a way that the tuples
are grouped locally based on their hosts’ Hilbert number. When
node i queries for a resource, it also sends its Hilbert number Hij
along with the request. After a destination node receives the query,
it only needs to check the group whose H =~ Hj. Consequently,
node i receives the information of resources that is located
geographically close to it. Communicating with geographically
close nodes, and using geographically close resources improve the
system performance significantly.

Comparative analysis. The following theorems compare the
performance of PIRD with MAAN [7] and Mercury [5] resource
discovery methods.

Theorem 3.2. For a resource with m attributes each of which has k
keywords, MAAN and Mercury store the information of the resource
inm x (1+ k) and m x k P2P nodes, respectively, while PIRD stores
the information of the resource in < L nodes.

Proof. For each piece of resource information including attribute
name and value (or string description), MAAN splits the keywords
and stores the information based on each keyword and attribute
name. Thus, it produces m x (1+ k) pieces of resource information
inm x (1 + k) nodes. Mercury depends on multiple P2P overlays
with one overlay responsible for each attribute name. It takes
attribute descriptions as the key for information reporting. Hence,
Mercury generates m x k messages. Regardless of the length of
a resource description, PIRD produces L IDs. Since the IDs might
have coincided ones, PIRD leads to < L nodes for storing resource
information. ®

Corollary of Theorem 3.2. For a resource with m attributes each of
which has k keywords, MAAN and Mercury need no less than m x k
messages to report the resource to or query the resource from directory
nodes, while PIRD only needs < L messages.

Proof. To query a resource, all information of the resource in the
system should be retrieved and merged. According to Theorem 3.2,
the Corollary of Theorem 3.2 is proven. B

Theorem 3.3. For any set of n nodes and m resource attributes, with
high probability," PIRD can improve the maintenance overhead of
resource discovery structure of multi-P2P-based resource discovery
methods (e.g. Mercury) by no less than a factor of m.

Proof. In PIRD, each node is responsible for maintaining approxi-
mately log(n) neighbors. In multiple-P2P-based resource discov-
ery, a node is a member of each of the multiple P2P overlays.
Therefore, a node is responsible for maintaining log(n) neighbors
for each P2P overlay. Hence, a node has m log(n) neighbors. m

Theorem 3.4. For any set of n nodes where n = d - 2%, and k pieces
of resource information of a resource, with high probability, PIRD
can reduce the load imbalance of resource information distribution of
single P2P-based resource discovery methods (e.g. MAAN) by a factor
d

of &5

Proof. Consistent hashing is proved to have a bound of € =
log(n) [38], which means statistically a node can at most be
mapped onto by (1 + e)% pieces of resource information with
high probability, given k pieces of total resource information of
a resource. For any set of n nodes where n = d - 29, and k
pieces of resource information of one resource, a node has k pieces
of resource information in single P2P-based resource discovery
methods based on Chord. In PIRD, a directory node for the resource
in a cluster will have at most (1 + log Zd)z% pieces of resource
information by regarding each cluster as a node in Chord. We
define load imbalance as the difference between the heaviest node
and lightest node measured by the pieces of resource information.
Therefore, PIRD can improve of the load imbalance of resource
information distribution of single P2P-based resource discovery

k2t
methods by a factor of Griogah | = T []

Theorem 3.5. For a resource with m attributes each of which has k
keywords, MAAN and Mercury need no less than mklog(n) routing
nodes to report the resource to or query the resource from destination
nodes, while PIRD only needs < Llog(n) routing nodes.

Proof. In the average case, the lookup path length of Chord [38]
and Cycloid [36] is log(n). Based on the Corollary of Theorem 3.2,
itis proven. H

3.3. Dynamism-resilient resource discovery

In a dynamic environment, nodes join in and leave the system
continuously and frequently. An efficient resource discovery
mechanism should be able to deal with dynamism. For example, a
node departure outdates resource information, or a failed directory
node makes the resource information unavailable. PIRD uses
Cycloid self-organization mechanism to maintain the middleware
architecture and resource information. It deals with node joins and
departures in a distributed manner, without requiring information
to be propagated through the entire network.

Recall that with the Cycloid’s key assignment protocol, the key
is stored in its owner that has the closest ID with the key’s ID. In the
Cycloid self-maintenance mechanism, when a key’s owner leaves,
it will forward the key to the key’s new owner before leaving. When
a node joins in the system, it receives the keys from its neighbors
that are in its responsible ID region. Therefore, a key is always
stored in its owner even in dynamism. Like a key, a resource also
has P2P IDs. PIRD transfers resource information along with the
keys in dynamism in the same manner as key transfer. That is,

T An event happens with high probability when it occurs with probability 1 —
o).

204 H. Shen /. Parallel Distrib. Comput. 69 (2009) 197-209

resource information is transferred to a node with ID closest to
the resource’s ID. Hence, resource information is always stored in a
directory node in the Cycloid even in a dynamic environment. For
example, in Fig. 5, when node (5, 200) leaves the system, it transfers
its resource information to nodes (3, 200) and (8, 200) which is the
new owner of the information based on the ID closeness. Typically,
the resource information in the range of (3, 200) and (5, 200) is
transferred to node (3, 200), and the resource information in the
range of (5, 200) and (8, 200) is transferred to node (8, 200). If node
(5, 200) is the only node in its cluster, it transfers its information
to its closest node in its closest cluster. If node (7, 200) joins the
system, then the resource information in the range (6, 200) and (7,
200) is transferred from node (5, 200) to the newly-joined node (7,
200). The consistent hashing for key assignment protocol requires
relatively little re-assignment of resource information as nodes
join and leave the system.

For node failures without warning, PIRD resorts to the
periodical resource information reporting by which the lost
resource information will be recovered in its new directory
node. When a directory node receives a resource request, if it
cannot locate requested resource in its own directory, it assumes
that the old directory node of the resource information has
failed, and waits for a period of time T which is the resource
information reporting period. Within the T time period, the lost
resource information will be reported to the node. To prevent the
information space from being flooded with outdated information
left behind by node failures, nodes execute garbage collection
periodically. Particularly, after a period of time, if a node has not
received resource information from another node, it deletes the
information of the node.

In addition to maintaining the resource information, Cycloid
self-maintenance mechanism also helps to maintain the Cycloid
architecture in dynamism. When a new node joins, it initializes
its routing table, and informs other related nodes of its presence.
Before a node leaves, it notifies its neighbors. The informed nodes
will update their corresponding neighbors. Like other structured
P2P overlays, Cycloid relies on stabilization for node failures in
which a node periodically updates its neighbors. For more details
of the Cycloid self-organization mechanism, please refer to [36].

Consequently, instead of relying on specific nodes for storing
resource information, PIRD always stores resource information
in directory nodes even in dynamic situation, and the Lookup
requests will always be forwarded to the directory nodes having
the required resource information. As a result, PIRD has high
capability to deal with dynamism in Internet-based distributed
systems.

3.4. Optimized PIRD

In an Internet-based distributed system with enormous number
of keywords, each resource will have a long vector even though it
has only a few keywords. Tremendously long vectors with sparse
keywords lead to inefficiency of vector processing in PIRD. For
instance, a resource query only wants memory and CPU in a
10,000-dimensional keyword space, then its resource vector will
have two 1 bits with all other bits equal to 0. PIRD needs to
be complemented by a compression algorithm to make it more
efficient. This is confirmed by Lemma 3.1. We leave the proofs for
the lemmas in this section to Appendix.

Lemma 3.1. PIRD has higher efficiency on shorter vectors than on
longer vectors.

To optimize PIRD in processing long and sparse vectors, we
adopt LZW dynamic compression algorithm [41] to reduce the
dimension of vectors and remove insignificant strings, i.e. “0”s.

Source vector — S ot recest (.
source vector
LZwW LSH
Compressed
Query vector — — query vector —

Fig. 6. Integration of LZW into LSH.

LZW is a universal lossless data compression algorithm. It
replaces repetitive substrings of characters with codes, while still
keeping the old string’s information in the compressed string.
The code consists of digital numbers that can be repetitive. For
example, for a string ABCCAABCDDAACCDB, if LZW uses 4 to
denote AB and 5 to denote CC, after compression, the string
becomes 45A4CDDAA5DB. Fig. 6 shows a model of the integration
of LZW algorithm to the LSH process. PIRD first uses LZW to
compress long resource or query vectors to shorter vectors before
using LSH to calculate the indices. Thus, the efficiency of PIRD is
enhanced.

LZW data compression algorithm. LZW encodes data by refer-
encing a string translation table that records the codes with their
corresponding substrings. LZW replaces a substring with its corre-
sponding code during compressing.

Algorithm 3: Pseudo-code for the LZW compression algorithm

code=0;
//initialize table with each character member
do{
P=next input character
if P is not in the translation table then{
put P into the translation table
assign code++ to P as its code}
while P is not the end of input string}

//compress the string
P= first input character
while it is not the end of input string do{
C=next input character
if P+C s in the string table then
P=P+C
else {
output the code of P
assign code++ to P+C as its code
add P+C to the translation table
P=C}
}
output the code of P

Algorithm 3 shows the pseudo-code for the LZW compression
algorithm [22]. Fig. 7 demonstrates a simple example of LZW
translation table and the process of the LZW algorithm. The input
string is “ABABABABBBABABA”. The translation table is initialized
with each character member of the string as well as “Clear” and
“End”. “Clear” means reconstructing the dictionary. “End” means
the scanning of the string is completed. Each character is assigned
a code starting from 0 in an increasing order. The input string
has character members “A” and “B”. Therefore, the translation
table is initialized with “A”, “B”, “Clear” and “End”. “A” is assigned
code “0”, “B” is assigned “1”, and so on. Then, the LZW algorithm
examines the string characters serially, and stores every unique
two-character (a code is also regarded as a character) string into
the translation table and assigns it a new code in an increasing
order. Specifically, whenever a previously-encountered string is
read from the input, the longest previously-encountered string is
determined, and the code for this string concatenated with the
extension character (the next character in the input) is stored
into the translation table and assigned a new code. The code for
the longest previously-encountered string is then output and the

H. Shen /. Parallel Distrib. Comput. 69 (2009) 197-209 205

Character Prefix Suffix String In table Code Output
A 0 -
B 1 -
Clear 2 -
End -- 3 -
A . A A yes - =
B A B AB no 4 A
A B A BA no 5 B
B A B AB yes -- -

A 4(AB) A 4A(ABA) no 6 4(AB)
B A B AB yes -
A 4(AB) A 4A(ABA) yes - -

B 6(ABA) B 6B(ABAB) no 7 6(ABA)
B B B BB no 8 B
B B B BB yes -- -

A 8(BB) A S8A(BBA) no 9 8(BB)
B A B AB yes -
A 4(AB) A 4A(ABA) yes =
B 6(ABA) B 6B(ABAB) yes - -
A 7(ABAB) A 7TA(ABABA) no 10 7

Fig. 7. Example of the LZW algorithm.

extension character is used as the beginning of the next string. For
example, “A” is read from the string at first. Then, “B” is read from
the string. The prefix is “A”, the suffix is “B”, and the concatenated
string is “AB”. Since “AB” is not in the translation table, “A” is
output and “B” becomes the prefix of the next string. Also, “AB”
is added to the translation table and assigned code “4”. In the
next string, the second “A” is read from the string, which is the
suffix. Combining the prefix and suffix, “BA” is generated. Since
“BA” is not in the translation table, “B” is output and “A” becomes
the prefix of the next string. Similarly, “BA” is added into the
translation table and assigned code “5”. In the subsequent step, “B”
is read from the string, which is the suffix. The combined string
“AB” is already in the translation table with code “4”, then there is
no output and “4(AB)” becomes the prefix of the next step. “4(AB)”
means “4” is equivalent to “AB”. The same to the other parenthesis
notations. This process is repeated until the end of the input string
is reached. After compression, the string turns to AB46B87.

Analysis of the integration of LZW into LSH. We analyze the
effectiveness of the integration of LZW into LSH. Compression rate
is used to represent the factor that the length of a string is reduced.
More repetitive characters or substrings in a string will lead to
higher compression rate.

Whether LZW can be incorporated into LSH for effective
resource queries is determined by whether LZW is locality
preserving; that is, whether the similarity of two strings remains
the same after compression. Based on the LZW operation, we
proved that LZW is locality preserving as shown in Lemma 3.2.

Lemma 3.2. The similarity between two strings remains the same
before and after the compression using the LZW algorithm.

Therefore, LZW Kkeeps the locality preserving property of LSH
for resource discovery. The next question is whether the adoption
of LZW in LSH will lead to improvement on LSH’s efficiency. We
analyzed the impact of LZW on resource vectors, and concluded
that LZW can be exploited to its full capacity on LSH. The details
are demonstrated in Lemma 3.3.

Lemma 3.3. The LZW algorithm has a higher compression rate for
a string that contains a larger number of repetitive substrings, and
thus leads to a high compression rate for long resource vectors with
repetitive “0”s and “1"s.

We analyzed the time complexity of PIRD with LZW, and found
that LZW can improve the efficiency of LSH dramatically.

Lemma 3.4. The performance of PIRD is improved after the resource
and query vectors are compressed by the LZW algorithm.

4. Performance evaluation

We designed and implemented a simulator in Java for
evaluation of PIRD and optimized PIRD (OPIRD) based on Cycloid
hierarchical P2P overlay [36] and E2LSH 0.1 [23]. E2LSH 0.1 is a
simulator for the high-dimensional near neighbor search based
on LSH in the Euclidean space. We compared the performance
of PIRD with MAAN [7] and Mercury [5] on Chord [38], in
terms of storage requirement for resource information polling,
load balance, structure maintenance cost, the number of nodes
involved for information marshalling, resource search latency,
and proximity-aware performance for geographical close resource
discovery. MAAN relies on one Chord and maps each resource
keyword to a P2P node for resource information marshalling.
Mercury depends on multiple P2P overlays with each P2P overlay
responsible for an attribute name, and maps attribute value to
a P2P node for resource information marshalling. We conducted
an experiment on SFC [34], and found that SFC is not effective in
a large dimension space. All resource vectors are hashed to the
same value. This is consistent to the statement in [34] that the SFC
works well in finding nearest neighbors in low dimensions but its
performance degrades when the number of dimensions increases
to a large number.

We used two transit-stub topologies generated by GT-ITM
developed by Georgia Tech research group [43]. A routing domain
in the Internet can be classified as either a stub domain or a
transit domain. A stub domain carries only traffic that originates
or terminates in the domain. Transit domains do not have this
restriction. The purpose of transit domains is to interconnect
stub domains efficiently. Stub domains generally correspond to
campus networks or other collections of interconnected LANs
while transit domains are almost always wide or metropolitan area
networks such as WANs and MANSs. The two topologies used in the
simulation are “ts5k-large” and “ts5k-small” with approximately
5000 nodes each. “ts5k-large” has 5 transit domains, 3 transit
nodes per transit domain, 5 stub domains attached to each transit
node, and 60 nodes in each stub domain on average. “ts5k-small”
has 120 transit domains, 5 transit nodes per transit domain, 4
stub domains attached to each transit node, and 2 nodes in each
stub domain on average. “ts5k-large” has a larger backbone and
sparser edge network (stub) than “ts5k-small”. “ts5k-large” is used
to represent a situation in which a system consists of nodes from
several big stub domains, while “ts5k-small” represents a situation

206 H. Shen /. Parallel Distrib. Comput. 69 (2009) 197-209

120000 -

-+ MAAN
100000 | |=-PIRD e
—&— OPIRD

=% Mercury

80000

60000

B
o
o
s
=3
»>

Number of resource information pieces

[
4000

5000 6000 7000 8000 9000 10000

» 1000000 -
8
e - o @
= 100000 ¥*
j=5
2
= |
= 10000 - Mercury
<] -5 OPIRD
® 1000 -4 MAAN |
'g < PIRD
k= 100
E
(4] A
g 10 ﬁtg- A 4
>
= 14 ‘ . ;
100 1100 2100 3100 4100
Number of nodes

Number of comr ional resources

(a) Num. of information pieces.

(b) Average outlinks.

n

o

=]
1

200

150

[1 {l\

Pieces of resource information per node

2000 4000

TR ary a

6000
Total pieces of resource information

8000 10000

(c) Information distribution balance.

Fig. 8. Overhead of different resource discovery methods.

Table 1
Simulated environment and parameters

Parameter Default value

Object arrival location Uniform over ID space

Number of nodes 2048
Number of keywords 20,591
Number of resources 10,000
Number of queries 100

L 5

k 2
Distance threshold r 3

in which a system consists of nodes scattered in the entire Internet
and only few nodes from the same edge network join in the system.

Our testing data set is obtained from Acxiom Corporation which
is one of the major providers of integrated customer information in
the world. Table 1 lists the parameters of the simulation and their
default values for all methods, unless otherwise specified.

4.1. Overhead of resource discovery methods

Fig. 8(a) shows the total number of information pieces stored
in the system for all available resources. We can see that PIRD
and OPIRD generate the same number of information pieces, and
their results are much lower than Mercury. In addition, Mercury
generates lower number than MAAN. Recall that PIRD and OPIRD
change each resource description to L hash values regardless of
the number of the keywords in the resource description. Therefore,
each resource needs L messages for resource reporting, and there
will be L pieces of resource information in the system. Rather than
regarding a whole resource description with multiple attributes as
an entity, MAAN hashed each keyword in the resource, and stores
the resource information in a node responsible for the hashed
value. As a result, for a resource description having m keywords,
MAAN needs m messages to store m pieces of information. Some
resource attributes are described by attribute values such as 1.2
GHz for CPU. Mercury groups attribute name and corresponding

value and takes attribute name as keyword to report resource.
Therefore, it leads to fewer information pieces than MAAN. Since
the average attribute names are greater than L in the experiment,
Mercury needs more storage space for the resource information.
The results are in agreement with Theorem 3.2 and the Corollary
of Theorem 3.2.

Structured P2P overlay maintenance cost constitutes a large
part of the overhead of resource discovery mechanisms. In a struc-
tured P2P overlay, every node needs to maintain a number of
outlinks to connect with its neighbors. Fig. 8(b) plots the average
outlinks maintained by a node in different resource discovery ap-
proaches. The results show that each node in Mercury maintains
dramatically more outlinks than in others. Recall that Mercury has
multiple P2P overlays with one P2P overlay responsible for each re-
source attribute name, such that a node has a routing table for each
P2P overlay, and it has a total number of outlinks equal to the prod-
uct of routing table size and the number of P2P overlays. The results
are consistent with Theorem 3.3 in that PIRD/OPIRD can save the
outlink maintenance overhead by no less than a factor of m.

Fig. 8(c) plots the average and the 1st and 99th percentiles of the
number of information pieces per node versus the total number
of resource information pieces in the system. Two observations
can be made from the figure. First, the average size of MAAN
is much higher than others due to the same reason observed in
Fig. 8(a). Second, MAAN exhibits significantly larger variance than
Mercury and PIRD/OPIRD. MAAN maps resource information to
a flat structured P2P overlay. Some attribute names appear very
frequently such as CPU and Memory, while others are infrequently
used such as file name, leading to much more resource information
stored in some nodes while only a few stored in others. On the
other hand, Mercury uses one structured P2P overlay for each
resource attribute, and classifies resource information based on
attribute value in each structured P2P overlay. The widespread
value ranges help to distribute resource information evenly. Taking
advantage of the hierarchical structure of Cycloid, PIRD/OPIRD
lets different clusters be responsible for resource information and
allocates information to nodes within a cluster based on node

H. Shen /. Parallel Distrib. Comput. 69 (2009) 197-209

207

1200000 +

@ - MAAN
e
2 1000000 1 & PIRD 1
. A OPIRD
E = - Mercu
S @ 800000
B 2
= 2 / /
o @
£ E so0000
25 /
8 g 4
2 £ 400000 ———
°E E &
= e
£ 200000 +——— ——
5
= T
0+ .

4000 5000 6000 7000 8000 9000 10000

Number of computational resources

25000

~& MAAN

- PIRD /
20000 11 4 OPIRD

—>¢ Mercury /

15000

10000

5000

L T

10 100 1000 10000

Query latency (microseconds)

Number of queries

(a) Num. of nodes for marshalling.

(b) Total query time.

A

3

A resource query

4 5

(c) Num. of discovered resources.

Fig. 9. Efficiency of different resource discovery methods.

geographical closeness. Therefore, Mercury and PIRD/OPIRD can
achieve more balanced distribution of load caused by resource
information maintenance and resource discovery operation. The
results are in agreement with Theorem 3.4. Considering that
Mercury has dramatically high architecture maintenance cost,
PIRD/OPIRD should be the most effective with regards to both
maintenance overhead and load distribution.

4.2. Efficiency of resource discovery methods

Fig. 9(a) plots the routing nodes involved in resource mar-
shalling. More reporting messages results in more nodes involved
for message routing. Thus, we can make the same observations
from the experiment results as in Fig. 8(a) due to the same rea-
sons. The results confirm that PIRD and OPIRD need significantly
less overhead for resource information polling. This result is con-
sistent with Theorem 3.5.

Fig. 9(b) depicts the query latency of different resource
discovery methods versus the number of queries. The figure
shows that MAAN generates the highest query latency, followed
by Mercury, then PIRD and OPIRD. For a query consisting of
m keywords, MAAN generates m queries for all keywords. For
example, for a query of workstations described by “Memory 2048
MB CPU 3 GHz”, MAAN sends a request for each keyword, collects
the resource information for each keyword, and then merges
the information to find workstations with indicated features.
However, a tremendously high volume of information will be
collected, therefore MAAN needs a very long time to prune useless
information in the merging phase. Mercury takes both of attribute
name and value to request for resource information. Therefore,
the information located satisfies both the specified attribute name
and values. Thus, Mercury does not need a long time for the
final pruning. PIRD sends L requests regardless of the number of
keywords in a query. In addition, its refinement further removes
the information for resources not satisfying the query. As a result,
PIRD improves the query efficiency significantly. Incorporating
LZW compression algorithm, OPIRD has much shorter vectors and

hence shorter latency for LSH processing, leading to dramatic query
latency reduction.

Experiment results show that all discovery methods can return
the right results. An effective method should return fewer false
positives. Fig. 9(c) shows the number of returned results. We
can see that MAAN generates the highest number of turned
results, and Mercury leads to more results than PIRD. Since MAAN
splits attributes of a resource for resource information collection
and query, it returns tremendously high volume of information.
On the other hand, Mercury combines resource attribute name
and value, so it returned relatively less results. PIRD groups
resource information based on their similarity and maps each
group to a node in a P2P node, such that it has much fewer false
positive results, which means most of its returned results are the
information of requested resource.

OPIRD reduces the number of returned resources of PIRD signif-
icantly due to its feature of compressed vectors. Because of large
dimension and resource vector sparsity, PIRD may locate some re-
sources which do not have common keywords with the query,
generating false positives. With appropriate locality-preserving
compression, OPIRD can greatly improve the effectiveness of PIRD
by eliminating the false positives in its located resource set.

Fig. 10 plots the memory size needed for resource vectors in
PIRD and OPIRD. It shows that OPIRD has significantly less memory
requirement for vector storage. This confirms the effectiveness of
integration of LZW compression algorithm into PIRD for memory
reduction. With LZW, the lengths of resource vectors are reduced,
hence the memory needed to store resource vectors is reduced
greatly.

4.3. Proximity-aware resource discovery

This experiment shows the effectiveness of PIRD/OPIRD in
proximity-aware resource discovery, in which resources geo-
graphically close to requester nodes are located. In the experi-
ment, we randomly generated 5000 resource requests. Fig. 11(a)
and (b) show the Cumulative Distribution Function (CDF) of the

208 H. Shen /. Parallel Distrib. Comput. 69 (2009) 197-209

9.00E+08 -
A -& PIRD m
@
= 8.00E+08 T, npiRD
@ 7.00E+08
S
$ 6.00E+08
@
£ 5.00E+08
3
8 4.00E408 !/
 3.00E+08
N
:; 2.00E+08
£ 1.00E+08
=
0.00E+00 r & - & - A
4000 5000 6000 7000 8000 9000 10000,
Number of computational resources

Fig. 10. Memory for resource vectors.

100 4 = H—I-Ij_’*‘
% 90
;.;- 80 -/" f’
8 70 - ({" /
gﬁ 60
¢ 50 /" /‘/
5 40
B] 't
2 30 ‘ / % PIRD |-
< 20 i + MAAN
g 10 +- Mercury -
o D1 et tee ‘/‘ |
0 5 10 15 20
Physical distance by hops

(a) ts5k-large.

@ 100 4

g 9

=

g 80

© 70

e

3. 60

g2 50

5 40 |

2 4 £ ‘= PIRD

£ 5 P a -+ MAAN

] 10 P & Mercury

< 0 ,w#"‘ . . ‘
0 5 10 15 20

Physical distance by hops
(b) ts5k-small.

Fig. 11. Proximity-aware performance.

percentage of resource requests versus the physical distances be-
tween resource requesters and providers in “ts5k-large” and “ts5k-
small”, respectively. In the figure, PIRD also represents OPIRD due
to their similar performance. We can see that in “ts5k-large”, PIRD
is able to locate 97% of total resource requested within 11 hops,
while others locate only about 15% within 10 hops. Almost all al-
located resources are found within 15 hops from requesters in
PIRD, while 19 hops in others. The results show that PIRD can lo-
cate most resources within short distances from requesters, while
others locate most resource in long distances. From Fig. 11(b), we
can make the same observations as in “ts5k-large”, although the
performance difference between approaches is not so significant.
The more resources are located in shorter distances, the higher
proximity-aware performance of a resource discovery method. The
results indicate that the performance of PIRD mechanism is better
than Mercury/MAAN in terms of discovering resources physically
close to resource requesters.

5. Conclusions

A key hurdle that must be overcome in resource sharing in the
Internet-based distributed computing is efficient resource discov-

ery. In spite of the efforts to develop resource discovery methods,
most of them lead to low efficiency and high overhead, while oth-
ers are not effective in an environment with tremendous num-
ber of different resources. In addition, few works can locate re-
sources geographically close to requesters, which is critical to over-
all system performance. This paper presents a P2P-based intelli-
gent resource discovery mechanism (PIRD) for Internet-based dis-
tributed systems. Rather than splitting resource attributes in a re-
source description, PIRD regards the description of a resource as
a whole entity. It relies on locality-preserving LSH hash function
and LZW compression function to cluster information of resources
with similar attributes together to facilitate efficient resource dis-
covery with low overhead and short query latency. In addition, de-
pending on a hierarchical P2P overlay structure, it further clusters
the information of geographically close resources to support geo-
graphically proximity-aware resource discovery. Theoretical anal-
ysis and experiment results demonstrate the efficiency and effec-
tiveness of PIRD in comparison with other approaches. It dramati-
cally reduces overhead and yields significant improvements in ef-
ficiency, and provides high guarantees for resource discovery. Its
object-oriented feature, low overhead and high efficiency are par-
ticularly attractive to the deployment of Internet-based distributed
systems.

Acknowledgments

This research was supported in part by the Acxiom Corporation.
We would like to thank the anonymous reviewers for their helpful
comments on the draft of this paper. We also thank Ze Li, Ting Li
and Yingwu Zhu for their help on the work of LSH and LZW. An
early version of this work [35] was presented in the Proceedings of
ICDCS’08.

Appendix. Proofs of the effectiveness of LZW

Lemma A.1. PIRD has higher efficiency on shorter vectors than on
longer vectors.

Proof. In PIRD, the distance between a located resource vector
and a query vector is calculated by d(v,q) = (v — q| =

Zle(v,- — g;)2. During the distance calculation process, once

d > r,the process is stopped and this located resource is discarded.
Therefore, the distance calculation is equivalent to finding how
many “1”s in the difference of two vectors. We use p to denote the
distribution density of “1”s in a vector. Assume r = ﬁ and there
are ten “1”s in the difference of two vectors with length of 20 000,
then p = 0.0005. The probability that there are three “1”s in the
first 300 characters is P(X = 300) = C3,,p*(1—p)*”’ ~ 4.5%107%,
which is very small. The probability that three “1”s belonging to
the first 300 positions decreases as p decreases. If P(X = n) =
C2 % 1071° ~ 1, n ~ 4000. That is, to identify a substring contain
three “1”s with 100% probability, 4000 bits should be scanned.
The length of scanned bits increases as p decreases. The time
complexity and space complexity of the vectors are O(l), where |
is the length of a vector. Both complexities of shorter vectors are
smaller than those of longer vectors. ®

Lemma A.2. The similarity between two strings remains the same
before and after the compression using the LZW algorithm.

Proof. The basic function of the LZW algorithm is to replace the
longest repetitive substring with a code in the string translation
table. Therefore, each substring corresponds to a code in the
translation table. If two original strings have the same substrings,
the substrings are compressed into identical codes, maintaining
the similarity between the original strings. ®

H. Shen /. Parallel Distrib. Comput. 69 (2009) 197-209 209

Lemma A.3. The LZW algorithm has a higher compression rate for
a string that contains a larger number of repetitive substrings, and
thus leads to a high compression rate for long resource vectors with
repetitive “0”s and “1"’s.

Proof. If a string has many repetitive substrings, all identical
substrings can be replaced by one code. If the prefix of the substring
has length of I, and is mapped to a code with length of 1, the
compression rate of the substring is [/1. The compression rate
increases as [increases. Consider a string with m repetitive “0’s.
We use code i for (00), code (i + 1) for (000), code (i + 2) for
(0000), ..., code (i + n — 2) for string (000 . ..00000) which has
n “0”s, therefore
1+2+3—|—~~~n=m:>(l+n)n/2=m:>n%\/ﬁ.

If m = 20000, then n = 200. Therefore, the compression rate
is 200. If a resource has only a few dimension attributes in a
tremendously high dimension space, it will have a vector with a
very large number of “0”s. Using LZW to compress these repetitive
“0”s will lead to a high compression rate. B

Lemma A.4. The performance of PIRD is improved after the resource
and query vectors are compressed by the LZW algorithm.

Proof. LZW takes 1.5 cycles per input character and per output
code [41]. Therefore, compressing a string with length of n takes
1.5n cycles. Suppose the compression rate of LZW on sparse
resource vector is 100, which means the length of the compressed
string is 0.01 * n. Normally, the cycles for each corresponding
character during distance calculation is at least 4 cycles [39].
Therefore, the time saved on the distance calculation of the original
string is atleast4n(1—0.01) = 3.96n. Consequently, the total time
saving of the whole process is 3.96n — 1.5n = 2.46n cycles, where
1.5n is the LZW compression time in cycles. H

References

[1] A. Andrzejak, Z. Xu, Scalable, efficient range queries for grid information
services, in: Proc. of P2P, 2002, pp. 33-40.

[2] T. Asano, D. Ranjan, T. Roos, E. Welzl, P. Widmaier, Space filling curves and
their use in geometric data structure, Theoretical Computer Science 181 (1)
(1997) 3-15.

[3] Average simultaneous global P2P users. http://www.slyck.com/misc/p2p_
history_sep-06_average.xls.

[4] F. Berman, et al., Adaptive computing on the grid using AppLeS, TPDS 14 (4)
(2003).

[5] A.R. Bharambe, M. Agrawal, S. Seshan, Mercury: Supporting scalable multi-
attribute range queries, in: Proc. of ACM SIGCOMM, 2004, pp. 353-366.

[6] Bittorrent. http://en.wikipedia.org/wiki/Bittorrent.

[7] M. Cai, M. Frank, P. Szekely, MAAN: A multi-attribute addressable network for
grid information services, Grid Computing 2 (1) (2004) 3-14.

[8] M. Cai, K. Hwang, Distributed aggregation algorithms with load-balancing for
scalable grid resource monitoring, in: Proc. of IPDPS, 2007.

[9] Yan Chen, Randy Katz, On the placement of network monitoring sites, http://
www.cs.berkeley.edu/yanchen/wnms, 2001.

[10] A.Chien, B. Calder, S. Elbert, K. Bhatia, Entropia: Architecture and performance
of an enterprise desktop grid system, JPDC 63 (5) (2003).

[11] K. Czajkowski, S. Fitzgerald, 1. Foster, C. Kesselman, Grid information services
for distributed resource sharing, in: Proc. of the 10th IEEE International
Symposium on High Performance Distributed Computing, HPDC, 2001.

[12] Z. Drmac, M.W. Berry, E.R. Jessup, Matrices, vector spaces, and information
retrieval, SIAM Review 2 (1999) 335-362.

[13] T.S. Eugene Ng, H. Zhang, Towards global network positioning, in: Proc. of the
1st ACM SIGCOMM Workshop on Internet Measurement, 2001.

[14] I Foster, C. Kesselman, Globus: A metacomputing infrastructure toolkit, Int. J.
High Performance Computing Applications 2 (1997) 115-128.

[15]]. Frey, T. Tannenbaum, I. Foster, M. Livny, S. Tuecke, Condor-G: A computation
management agent for multiinstitutional grids, in: Proc. IEEE HPDC, 2001.

[16] A. Fu, P.M.S. Chan, Y.L. Cheung, Y.S. Moon, Dynamic VP-tree indexing for n-
nearest neighbor search given pair-wise distances, VLDB Journal 2 (2000)
154-173.

[17] C.Germain, V. Neri, G. Fedak, F. Cappello, XtremWeb: Building an experimental
platform for global computing, in: Proc. of IEEE/ACM Grid, December 2000.

[18] A. Gionis, P. Indyk, R. Motwani, Similarity search in high dimensions via
hashing, The VLDB Journal (1999) 518-529.

[19] P. Indyk, R. Motwani, Approximate nearest neighbors: Towards removing the
curse of dimensionality, in: Proc. of ACM STOC, 1998, pp. 604-613.

[20] S.Jamin, C.Jin, Y. Jin, D. Raz, Y. Shavitt, L. Zhang, On the placement of Internet
instrumentation, in: Proc. of INFOCOM, 2000.

[21] D. Karger, E. Lehman, et al. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the world wide web, in: Proc. of
STOC, 1997, pp. 654-663.

[22] Lempel-Ziv-Welch Algorithm, http://en.wikipedia.org/wiki/LZW.

[23] LSH Algorithm and Implementation (E2LSH). website http://web.mit.edu/
andoni/www/LSH/index.html.

[24] G.S. Manku, M. Bawa, P. Raghavan, Symphony: Distributed hashing in a small
wold, in: Proc. of the 4th USENIX Symposium on Internet Technologies and
Systems, USITS, 2003.

[25] P. Maymounkov, D. Mazires, Kademlia: A peer-to-peer information systems
based on the XOR metric, in: Proc. of IPTPS, 2002.

[26] M. Mutka, M. Livny, Scheduling remote processing capacity in a workstation-
processing bank computing system, in: Proc. of ICDCS, September 1987.

[27] M.O. Neary, S.P. Brydon, P. Kmiec, S. Rollins, P. Capello, Javelin++: Scalability
issues in global computing, Future Generation Computing Systems Journal 15
(5-6)(1999) 659-674.

[28] D. Oppenheimer,]. Albrecht, D. Patterson, A. Vahdat, Scalable wide-area
resource discovery, Technical Report TR CSD04-1334, Univ. of California, 2004.

[29] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable content-
addressable network, in: Proc. of ACM SIGCOMM, 2001, pp. 329-350.

[30] S. Ratnasamy, M. Handley, R. Karp, S. Shenker, Topologically-aware overlay
construction and server selection, in: Proc. of INFOCOM, 2002.

[31] S.Ratnasamy, .M. Hellerstein, S. Shenker, Range queries over DHTs. Technical
Report IRB-TR-03-009, Intel Corporation, 2003.

[32] S.Rhea, D. Geels, T. Roscoe,]. Kubiatowicz, Handling Churn in a DHT, in: Proc.
of the USENIX Annual Technical Conference, 2004.

[33] A. Rowstron, P. Druschel, Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems, in: Proc. of Middleware, 2001,
pp. 329-350.

[34] C. Schmidt, M. Parashar, Flexible information discovery in decentralized
distributed systems, in: Proc. of HPDC, 2003, pp. 226-235.

[35] H.Shen, Z.Li, T. Li, PIRD: P2P-based intelligent resource discovery in Internet-
based distributed systems, in: Proc. of the 28th International Conference on
Distributed Computing Systems, ICDCS, 2008.

[36] H. Shen, C. Xu, G. Chen, Cycloid: A scalable constant-degree P2P overlay
network, Performance Evaluation 63 (3) (2006) 195-216.

[37] H. Shen, C.-Z. Xu, Hash-based proximity clustering for efficient load
balancing in heterogeneous DHT networks, Journal of Parallel and Distributed
Computing (JPDC) (2008).

[38] L Stoica, R. Morris, D. Liben-Nowell, et al., Chord: A scalable peer-to-peer
lookup protocol for internet applications, TON 1(1) (2003) 17-32.

[39] J. Suh, D. Kang, S.P. Crago, Efficient Algorithms for Fixed-Point Arithmetic
Operations in an Embedded PIM. SCI, 2001.

[40] D.Talia, P. Trunfio, J. Zeng, M. Hogqvist, A DHT-based Peer-to-Peer framework
for resource discovery in grids. Technical Report TR-0048, Univ. of California,
2006.

[41] Terry A. Welch, A technique for high performance data compression, IEEE
Computer 6 (1984) 8-19.

[42] Z. Xu, et al. Turning heterogeneity into an advantage in overlay routing, in:
Proc. of INFOCOM, 2003.

[43] E.Zegura, K. Calvert, S. Bhattacharjee, How to model an internetwork, in: Proc.
of INFOCOM, 1996.

[44] B.Y.Zhao, L. Huang, et al., Tapestry: An infrastructure for fault-tolerant wide-
area location and routing,]-SAC 12 (1) (2004) 41-53.

[45] Y. Zhu, Y. Hu, Efficient semantic search over DHT overlays, Journal of Parallel
and Distributed Computing (JPDC) (2007).

Haiying Shen received the B.S. degree in Computer Sci-
ence and Engineering from Tongji University, China in
2000, and the M.S. and Ph.D. degrees in Computer Engi-
neering from Wayne State University in 2004 and 2006,
respectively. She is currently an Assistant Professor in
the Department of Computer Science and Computer En-
gineering of University of Arkansas. Her research inter-
ests include distributed and parallel computer systems
and computer networks, with an emphasis on peer-to-
peer and content delivery networks, wireless networks,
and resource management in cluster and grid computing.
Her research work has published in top journals and conferences in these areas. She
was a co-Chair of the RFID track in IEEE-CASE 2008, a PC member of many confer-
ences such as ICPP and EUC. She is a member of IEEE and ACM.

