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a b s t r a c t

File replication is a widely used technique for high performance in peer-to-peer content delivery
networks. A file replication technique should be efficient and at the same time facilitates efficient file
consistency maintenance. However, most traditional methods do not consider nodes’ available capacity
and physical location in file replication, leading to high overhead for both file replication and consistency
maintenance. This paper presents a proactive low-overhead file replication scheme, namely Plover. By
making file replicas among physically close nodes based on nodes’ available capacities, Plover not only
achieves high efficiency in file replication but also supports low-cost and timely consistencymaintenance.
It also includes an efficient file query redirection algorithm for load balancing between replica nodes.
Theoretical analysis and simulation results demonstrate the effectiveness of Plover in comparison with
other file replication schemes. It dramatically reduces the overhead of both file replication and consistency
maintenance compared to other schemes. In addition, it yields significant improvements in reduction of
overloaded nodes.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

Over the past years, the immense popularity of the Internet
has produced a significant stimulus to peer-to-peer (P2P) content
delivery overlay networks. A recent study shows that more than
49%–83% of Internet traffic is generated by P2P applications.
The percentage of such traffic in the total aggregate traffic
on the Internet has increased significantly and become almost
pervasive [27]. Furthermore, the access to these objects is highly
repetitive and skewed towards themost popular ones. Such objects
can exhaust the capacity of a node. The capacity of a node
means the ability of the node to handle queries in a given time
interval. The capacity is determined by a nodes access bandwidth,
processing power, disk speed, etc. If a node receives a large volume
of requests for an object at one time, it becomes a hot spot, leading
to delayed response. File replication techniques to replicate a hot
file to some other nodes have been widely used to avoid such hot
spots by distributing the file query load among a number of nodes.
In addition to file replication, an effective consistency main-

tenance method is also highly demanded by P2P content de-
livery overlay networks. Without effective replica consistency
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maintenance, a P2P content delivery network is limited to pro-
viding only static or infrequently-updated file sharing. On the
other hand, newly-developed P2P applications need consistency
support to deliver frequently-updated contents, such as direc-
tory service [42], online auction [12,26], and remote collabora-
tion [49]. Therefore, a file replication technique should be efficient
and farseeing enough to facilitate low-overhead and timely file
replica consistency maintenance.
However, the two issues of file replication and file consistency

maintenance have been typically addressed separately, despite
the significant interdependency of file consistency maintenance
on file replication. Most traditional file replication methods in
structured P2P content delivery networks determine replica nodes
based on node IDs [31,7,16,28,14] or query path [36,15,30,46].
ID-based methods determine replica nodes based on the relation-
ship between the node ID and the file’s ID, and path-basedmethods
choose replica nodes in the file query path from the file requester to
the file provider. Both groups ofmethods assume that replica nodes
have available capacity for replicas. This assumption will make the
problem of hot spots even more severe since replica nodes may be
overloaded nodes. These methods also make file replication with-
out considering node locality, which is a vital factor for efficiency
of file replication and consistency maintenance.
This paper presents a proactive low-overhead file replication

scheme, namely Plover. Plover not only achieves high efficiency in
file replication but also supports low-overhead and timely con-
sistency maintenance. It makes file replication among physically
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close nodes based on node available capacities. With nodes’ avail-
able capacity consideration, it avoids exacerbating the hot spot
problem by choosing nodes which have sufficient capacity for the
replicas. In addition, it determines the number of file replicas based
on nodes’ available capacity which eliminates unnecessary repli-
cas, resulting in less consistency maintenance overhead. With lo-
cality consideration, it enables the file replication and consistency
maintenance to be conducted among physically close nodes, lead-
ing to considerable reduction of overhead. Plover further adopts a
lottery scheduling method to achieve file query load balance be-
tween replica nodes.
The rest of this paper is structured as follows. Section 2 presents

a concise review of representative file replication approaches for
structured P2P systems. Section 3 presents the Plover file replica-
tion scheme, corresponding consistency maintenance method and
query redirection algorithm. Section 4 shows the performance of
Plover in comparison with representative file replication schemes
in terms of a variety of metrics, and analyzes the factors effecting
file replication performance. Section 6 concludes this paper with
remarks on possible future work.

2. Related work

Driven by tremendous advances of P2P file sharing systems,
numerous file replication methods have been proposed for
structured P2P content delivery networks. One group of file
replication methods determines the replica node based on IDs [31,
7,16,28]. In PAST [31], each file is replicated on a set number
of network nodes whose IDs match most closely to the file’s ID.
The number is chosen to meet the availability needs of a file,
relative to the expected failure rates of individual nodes. It has a
load balancing algorithm for non-uniform storage node capacities
and file sizes. CFS [7] stores blocks of a file and spreads blocks
evenly over the available servers to prevent large files from causing
unbalanced use of storage. It uses a distributed hash function
to replicate each block on servers immediately after the block’s
successor on the Chord ring in order to increase availability.
LessLog [16] determines the replicated nodes by constructing a
lookup tree based on IDs to determine the location of the replicated
node. In HotRoD [28], hot arcs of peers are replicated and rotated
over the identifier space. Ghodsi et al. [14] proposed a symmetric
replication scheme in which a number of IDs are associated with
each other, and any item with an ID can be replicated in nodes
responsible for IDs in this group.
Another group of file replication methods [36,15,30,46,4,37]

chooses replica or caching nodes based on file query path. Stading
et al. [36] proposed the Backslash system, in which a node pushes
a cache to one hop closer to requester nodes when overloaded.
LAR [15] let overloaded nodes replicate at the query initiator and
create routing hints on the reverse path. CUP [30] and DUP [46]
cache metadata along the lookup path with consistency support.
Rigid assumptions on how replications of objects happen in the

system such as those based on ID, requester or pathmay evenmake
the overload problem severe, as the replica nodes may be already
overloaded. Allowing for more proactive replications of objects,
where an object may be replicated at a node without restriction,
avoids such problems. Oceanstore [18], objects are replicated and
stored onmultiple servers for security concernswithout restricting
the placement of replicas. It uses a different approach to handling
updates by introducing some degree of centralization. In [6], a
decentralized replication solution is used to achieve practical
availability in unstructured P2P systems. It uses randomized
decisions extensively together with a novel application of the Reed
Solomon erasure codes, without considering replica consistency.
Another group of work connects file replicas number with file

popularity. Lv et al. [23] and Cohen and Shenker [5] considers
static replication in combination with a variant of Gnutella
searching using randomwalkers in order to reduce random search
times. The authors show that replicating objects proportionally
to their popularity achieves optimal load balance but has varied
search latency, while uniform replication has the same average
search latency for all files but causes load imbalance. Square-
Root replication replicating files proportionally to the squareroot
of their popularity is such that both average search size and
utilization rate vary per object, but the variance in utilization
is considerably smaller than with Uniform, and the variance in
average search size is considerably smaller thanwith Proportional.
Tewari and Kleinrock [39–41] showed that proportional

replication in which the number of replicas is proportional to the
file request rates can optimize flooding-based search, download
time, and workload distribution. They also showed that local
storage management algorithms like the least recently used policy
(LRU) automatically achieve near-proportional replication and that
the system performance with the replica distribution achieved by
LRU is very close to optimal. APRE [43] adaptively expands or
contracts the replica set of an object in order to improve the sharing
process and achieve a low load distribution among the providers.
To achieve that, it utilizes search knowledge to identify possible
replication targets inside query-intensive areas of the overlay.
File systems other than P2P systems also replicate content

at multiple sites to decrease access latency seen by end-users
and optimal allocation of system storage (e.g. [20]). Sandhu and
Zhou [33] proposed a cluster-baseddynamic file replication system
called Frolic. Instead of keeping copies of a widely shared file
at each client workstation, these files are dynamically replicated
onto the cluster file servers, so that they become locally available.
In the Frolic system, the dynamic replication of unstable files
can be effectively used for improving file access times in large-
scale distributed file system environments. Plover is similar
to the Frolic system in terms of relying on cluster structure.
Unlike on the Frolic system that distributes replicas among
servers, Plover distributes replicas among cluster nodes as well
as cluster servers. Most importantly, it takes into account file
popularity and update frequency for economical file replication.
The Ivy system [24] stores all file data in a set of logs using
the DHash distributed hash table with little control on data
consistency. The Om system [47] is for replica regeneration,
i.e., creating new replicas in response to replica failures for
reducing management costs and improving the availability of
large-scale distributed systems. The work in [29] developed an
analytical optimization theory for benchmarking the performance
of replication/replacement algorithms, including algorithms that
employ erasure codes. FarSite [1,9,10] is a distributed file system
with the strong persistence and availability of a traditional file
system. The FarSite filesystem uses the same number of replicas
(i.e., three) for each file. In contrast to a file system, the goal of
a P2P community is not to provide strong file persistence, but
instead, maximal content availability. Thus, in a P2P community,
the number of replicas of a file depends on the popularity of the
file. Pangaea [32] creates replicas aggressively to improve overall
performance. By organizing all replicas of a file in a strongly-
connected graph, it propagates an update from one server to the
others through flooding, which does not scale well with a large
number of replicas. In [13], Gedik et al. used a dynamic passive
replication scheme to provide reliable service for a P2P Internet
monitoring system, where the replication list is maintained by
each Continual Queries owner. Coda [17] uses replication to
improve availability at the expense of consistency and introduce
specialized conflict resolution procedures. Sprite [25] also uses
replication and caching to improve availability and performance,
but has a guarantee of consistency that incurs a performance
penalty in the face of multiple writers.
The rigid ID-based or path-based replica node determination in

structured P2P systems may make the overloaded problem even
more severe, since the replica nodes chosenmight not have enough
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available capacity for a replica. Although PAST employs a load
balancing algorithm, and CFS adopts file division, these strategies
come at a price of extra overhead and complexity. In addition to
the nodes’ available capacity, these file replication schemes do
not take locality into account. Fessant et al. [11] indicated that
geographical clustering is present and can be leveraged in order
to yield significant performance improvements. Based on this
principle, this paper presents the Plover file replication scheme.
By considering nodes’ available capacity and locality, Plover not
only achieves high efficiency in file replication but also proactively
avoids extra overhead and facilitates efficient file consistency
maintenance.
Along with file replication, numerous file consistency main-

tenance methods have been proposed. Lan et al. [19] proposed
to use flooding-based push for static files and polling for dy-
namic files. In a hybrid push/poll algorithm [8], flooding is substi-
tuted by rumor spreading to reduce communication overhead. Li
et al. [21] presented a scheme that forms the replica nodes into a
proximity-aware hierarchical structure (UMPT). SCOPE [2] builds
a replica-partition-tree for each key based on its original P2P sys-
tem. CUP [30] is a protocol for performing Controlled Update Prop-
agation to maintain caches of metadata in peer-to-peer networks.
To improve CUP, Yin and Cao proposed the Dynamic-tree based
Update Propagation (DUP) scheme [46], which builds a dynamic
update propagation tree on top of the existing index searching
structure with very low cost. In Freenet [3], an update is routed
to other nodes based on key closeness.

3. The design of Plover

3.1. Proactive low-overhead file replication

Plover realizes locality-aware file replication through building
a supernode network which clusters physically close nodes.
In general, supernodes are nodes with high capacity and fast
connections. For simplicity, we define a node with capacity
greater than a predefined threshold as supernode; otherwise a
regular node. Based on hash-based proximity clustering [34],
Plover assembles all supernodes into a self-organized structured
P2P for file replication. The supernode network can also serve other
purposes such as load balancing and express routing.
Before we present the details of the supernode network

construction, let us introduce a landmarking method to represent
node closeness on the Internet by indices. Landmark clustering
has been widely adopted to generate proximity information [45].
It is based on the intuition that nodes close to each other are
likely to have similar distances to a few selected landmark nodes.
We assume m landmark nodes that are randomly scattered in
the Internet. Each node measures its physical distances to the m
landmarks, and uses the vector of distances 〈d1, d2, . . . , dm〉 as its
coordinate in Cartesian space. Two physically close nodeswill have
similar landmark vectors. A Hilbert curve [45] is further used to
map m-dimensional landmark vectors to real-numbers. That is,
Rm 7−→ R1, such that the closeness relationship among the points
is preserved. We call this number the Hilbert number of the node.

———————————————————————————————————–
Algorithm 1: Pseudo-code for node joining in Plover
supernode structured P2P network containing node n’.
———————————————————————————————————–
n.join(n’){
ID=n.Hilbertnum;
//find the supernode closest to n
s=n’.find_supernode(n.ID);
if n’s capacity<a predefined threshold then {
//n is a regular node, taking s as its supernode
supernode=s;
supernode.addto_clientlist(n); }

else
//n is a supernode
if n.ID==s.ID then
s.addto_backuplist(n);

else
//join in supernode network, initialize neighbors
predecessor=nil;
//find its successor
if s.ID%2d >n.ID%2dthen
successor=s;

else
successor=s.successor;

}

———————————————————————————————————–

———————————————————————————————————–
Algorithm 2: Pseudo-code for node n leaving from
Plover supernode structured P2P network.
———————————————————————————————————–
n.leave( ){
if successor!=nil then
//n is a client
supernode=nil;

else
//n is a supernode
if backuplist.size>0 then {
s=backuplist.getone();
//choose one backup, transfer supernode information to it
s.clientlist=clientlist;
s.backuplist=backuplist; }

else
//no backup supernode, transfer regular nodes accordingly
for i = 0 up to clientlist.size do {
client=clientlist[i];
if predecessor is closer to client than successor then
move client to predecessor;

else
move client to successor; }

}

//n is notified of supernode change
n.supernode_change_notify(s){
supernode=s;
supernode.addto_clientlist(n);
}

———————————————————————————————————–

Plover directly uses a node’s Hilbert number as its logical node
ID, and let supernodes and regular nodes act as the nodes and
keys in the top-level supernode structured P2P respectively. The
supernode network can be any type of structured P2P such as
Chord and Pastry. Based on the key assignment protocol that a key
is stored in a node whose ID is the closest to the key, a regular
node is assigned to a supernode whose ID is closest to the node’s
ID. Since node ID represents node physical location closeness, thus
regular nodes are connected to their physically closest supernode.
As a result, the physically close nodes will be in the same cluster
or in nearby clusters with supernodes. In the case when a number
of supernodes have the same Hilbert numbers, one supernode is
chosen and others become its clients while acting as its backup
nodes. The consistent hashing for key assignment protocol requires
relatively little re-association of regular nodes to dynamically
designated supernodes as nodes join and leave the system. As a
result, nodes in one cluster are physically close to each other, close
clusters/supernodes in logical ID space are also physically close
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Fig. 1. Supernode structured P2P in Plover.

to each other, and the application-level connectivity between the
supernodes in the top-level supernode network is congruent with
the underlying IP-level topology.
To find a supernode responsible for an ID, a regular node

forwards a query to its supernode, which uses structured P2P
routing algorithmon supernode network. Structured P2P protocols
dealing with node and item joins and departures can be directly
used to handle supernode and regular node joins and departures in
the supernode network. When a supernode or regular node joins
the supernode structured P2P, it must know at least one node, and
uses the supernode network routing algorithm to find its place.
Algorithm1 and 2 show the pseudocode of node join and departure
in the supernode network respectively. The algorithms help to
maintain the mapping between regular nodes and supernodes in
dynamism where nodes join, leave and fail.
Fig. 1 shows an example of a supernode structured P2P in

Chord. By taking advantage of Hilbert number and key assignment
protocol, physically close nodes are grouped into a cluster with a
supernode and all supernodes constitute Chord. Each supernode
functions as a node in a flat Chord. If n40 wants to join in the
system, n40 asks its known node n2 to find the supernode with ID
closest to 40, which is n45. If n40 is a supernode, n45moves n41 to
n40. The maintenance of supernode network is the same as that of
Chord. If n40 is a regular node, it becomes a client of n45. If a node,
say n45, wants to leave the system, it moves n41 to n34, and n50 to
n63. If n41 wants to leave the system, it only needs to disconnect
its link to n45. The following theorems illustrate the performance
of these operations.

Theorem 3.1. With high probability1, the number of nodes that must
be contacted for a node to find its supernode in an Ns-supernode
structured P2P network is O(logNs).

Proof. It was proved in [38] that in Chord, w.h.p, the number of
nodes that must be contacted to find a successor in an N-node
network is O(logN). In an Ns-supernode structured P2P network,
a node first needs to contact an existing node which will forward
the join message to its supernode. The number of supernodes
that must be contacted to find the supernode of the newly-joined
node is O(logNs). Therefore, the total contacted nodes number is
O(logNs)+ 1 ≈ O(logNs). �

Theorem 3.2. With high probability, any supernode joining or
leaving an Ns-supernode structured P2P network will use O(log2 Ns)
messages to re-establish the supernode structured P2P network
routing information.

Proof. It was proved in [38] that in Chord, w.h.p, any node joining
or leaving an N-node Chord network will use O(log2 Ns)messages
to re-establish the Chord routing information. It can be applied to
an Ns-supernode Chord network directly. �

1 An event happenswith high probability (w.h.p.) when it occurswith probability
1− O(n−1).
Theorem 3.3. With high probability, if a successor list of length r =
O(logNs) in a supernode structured P2P network that is initially
stable, and then if every supernode fails with probability 1/2, the
expected time for a node to find its supernode in the failed network
is O(logNs).

Proof. It was proved in [38] that in Chord, w.h.p, if a successor list
of length r = O(logN) in a Chord network that is initially stable,
and then every node fails with probability 1/2, then the expected
time execute find_successor in the failed network isO(logN). It can
be applied to the supernode structured P2P network. �

Plover relies on the supernode network for locality-aware file
replication. We assume that node i’s capacity, Ci, is a quantity
that represents the number of bits that node i can transfer during
a given time interval T . We define the load of node i, Li, as the
number of bits needed to transfer due to file queries it receives
over time T . We refer to node with load Li ≤ Ci as a light node;
otherwise a overloaded node. Specifically, each overloaded node
reports the information of its hot files, and each lightly loaded node
reports its available capacity C − L to its supernode periodically. As
a result, the information of physically close nodes gathers together
in the supernode. For example, nodes n61 and n62 report their load
information to n63 periodically, which conduct node mapping for
file replication, and notify heavy nodes to replicate files to light
nodes. The supernode conducts node mapping with node capacity
consideration for file replication, and notifies overloaded nodes to
replicate files to lightly loaded nodes.

———————————————————————————————————–
Algorithm 3: Pseudo-code executed by node n for file
replication in Plover.
———————————————————————————————————–
n.replicate( ){
if n is a regular node then{
if Cn > Ln then{
//n is a lightly loaded node
report n’s available capacity1Cn = Cn − Ln}
else { //n is an overloaded node
//find hot files and report their sizes and visit rates
order its files in a descending order based on S × V in f[ ]
L=0
for each f[i++] do {
L+=f[i].l //l represents the load of f[i]
if L ≥ Ln − Cn then
break}

report the size and visit rate of files from f[0] to f[i]
to its supernode } }

else n is a supernode then{
receive1C and S and V of hot files from n’s regular nodes
order1C in descending order in1C[ ]
//top item is1C[m]
order hot files in descending order based on V in f [ ]
//assign hot files to lightly loaded nodes for file replication
for each f[i++] do {
restV=f[i].V
while restV>0 {
//restV is the visit rate has not been resolved
v=restV //v is the visit rate to be resolved
restV=0
//find the number of visits that can be assigned to
the node with1C[m]
while f [i].S × f [i].V > 1C[m] && v 6= 0 {
v−−
restV++ }

if v==0 then {
//no node in n’s cluster has sufficient capacity
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to replicate the file
contact predecessors and successors for replica node
get replica node
assign the file to be replicated to the replica node }

else{
//assign the file to be replicated to a node in n’s cluster
assign f[i] to be replicated to the node with1C[m]
put the1C[m] − f [i].l back to the1C[ ]
and reorder1C[ ] }}}}

}

———————————————————————————————————–

———————————————————————————————————–
Algorithm 4: Pseudo-code executed by an original file
owner n for query redirection in Plover.
———————————————————————————————————–
n.redirect( ){
//assume n has m replica nodes rn[0]-rn[m] for its file f
receive file query for file f
if n is not overloaded then
reply the requester with file f

else { //n is overloaded
//get the total visit rates responsible by all replica nodes
for each rn[i++] do
totalV+=rn[i].V
//choose a replica node using lottery scheduling
//for query redirection
randomly choose a value r within [0,totalV-1]
i=0
for each rn[i++] do {
sum+=rn[i].V
if sum≥ r then{
//rn[i] is the replica node for query redirection
redirect the file query to replica node rn[i]
break }}}

}

———————————————————————————————————–

During the mapping, a node is chosen as a replica node for
a file only if it has sufficient capacity for the file, which avoids
exacerbating the hot spot problem. In addition, nodes with higher
available capacity have a higher priority to be replica nodes, which
helps to reduce unnecessary node replicas. The load caused by
file access should be measured by the number of bits needed
to be transferred during time interval T . Therefore, the load is
determined by file size and file popularity. File popularity can be
measured by file visit rate which is the number of visits during a
certain time period, say one second. Let Vi,k denote the visit rate
of file k in node i, Li,k denote its load and Si,k denote its size. Then,
Li,k = Si,k × Vi,k. For instance, a supernode needs to find a replica
node for a hot file with V = 3. If there are three options i, j and k,
which can afford load of 3 visit rate, 2 visit rate and 1 visit rate of
this file respectively, then node i will be selected as replica node
for this file. Therefore, providing higher available capacity nodes
higher priority to be replica nodes can reduce redundant replicas,
and hence help to reduce file consistency maintenance overhead.
In this node mapping phase, node location can also be considered,
in which a node frequently receives queries for a specific file can
have a replica of the file. These techniques are orthogonal to our
study in this paper.
All hot files in a cluster may not be resolved in their cluster.

As mentioned earlier, the distances between a supernode and its
successors or predecessors in the supernode network represent
their physical distances. The distances between a node and its
sequential nodes are usually smaller than distances between the
node and randomly chosen nodes in the entire ID space. Therefore,
for locality consideration, a supernode probes its physically nearby
supernodes by probing its successors or predecessors in sequence
for unresolved hot files. The supernode structured P2P enables
nodes to communicate and conduct file replication between
physically close nodes. It not only enhances the efficiency of
file replication but also file consistency maintenance. The load
balancing algorithm in [35] can adopted into Plover to handle
the load imbalance problem. Algorithm 3 demonstrates the
pseudocode executed by a node for file replication in Plover.
Theorem 3.4 sheds insight into the subtleties of the Plover file

replication scheme.

Theorem 3.4. W.h.p., in a N-node structured P2P network, to
replicate a file with S size and V visit rate, ID-based methods
(e.g. PAST) will produce V replicas, path-based methods (e.g. LAR)
will yield V logN replicas, and Plover will generate replicas 6 V on
average.

Proof. In ID-based methods such as PAST, the number of replicas
is chosen to meet the availability needs of a file, which is the visit
rate. In path-based method such as LAR, a file is replicated along
its routing path. Structured P2P networks have logN lookup path
length on average, therefore LAR yields V logN replicas on average.
Plover considers nodes’ available capacity. If it can find a node
whose available capacity is > V · S, the node is the only replica
node for the file. Hence, Plover generates replicas 6 V . �

3.2. File consistency maintenance

Plover eliminates the need for a specific file consistency main-
tenancemethod such as [30,46,21,2,22] and facilitates efficient file
consistency maintenance. Currently, most file consistency main-
tenance methods build a structure for each file. In this case, there
is no unnecessary update message sent to non-replica nodes, but
maintaining structure incurs cost overhead. On the other hand,
push/pull or flooding method does not need structure mainte-
nance, but more overhead is needed for propagation and some
non-replica nodes may get update messages.
To combine the advantages of both methods, Plover specifies a

threshold T for the number of replica nodes. If there are replica
nodes of a file in a group of clients of a supernode, the supernode
chooses the highest-capacity replica node and notifies the file
owner of this node. If the number of replica nodes of a file in the
group of clients of the supernode is larger than T , the supernode
builds a k-nary tree structure consisting of the replica nodes with
the highest-capacity replica node as the tree root. Otherwise, the
supernode notifies the highest-capacity replica node of all other
replica nodes.
When the number of highest-capacity replica nodes received by

a file owner exceeds T , the file owner forms these roots into a k-
nary tree taking itself as the tree root. Thus, a hierarchical structure
is constructed. In the upper level of the structure, a tree is formed
by the highest-capacity replica nodes from different clusters of
physically close nodes, and the file owner is the tree’s root. In the
lower level of the structure, a tree is formed by physically close
replica nodes. For a file update, if there is a tree in the upper
level, the file owner propagates the update message downwards
along the tree. Otherwise, it uses broadcasting to send update
messages to the highest-capacity replica nodes. After a highest-
capacity node receives the update message, if it is a tree root, it
further propagates the message downwards along the trees in the
lower level. Otherwise, it broadcasts the messages to the replica
nodes in its group.
Fig. 2 shows an example to build a 2-nary tree from a number

of nodes. First, the nodes are put into a list with the tree root in
the middle. This step is shown in Fig. 2(a). Node 5 becomes the
tree root. Then, the index space [0, 10] of the list is partitioned into
k = 2 parts: [0, 4] and [6, 10]. The node in themiddle of each index
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(a) Step 1. (b) Step 2.

(c) Step 3. (d) Step 4.

Fig. 2. Update tree construction.
Fig. 3. Example of lottery scheduling.
space part becomes the child of node 5. The nodes are node 2 and
node 8. This step is shown in Fig. 2(b). After that, index space [0,
4] is further partitioned into k = 2 parts: [0, 1] and [3, 4], and the
nodes in themiddle of the two parts become node 2’s children. The
two nodes are node 0 and node 3. Index space [6, 10] is also further
partitioned into k = 2 parts: [6, 7] and [9, 10], and the nodes in the
middle of the two parts become node 8’s children. The two nodes
are node 6 and node 9. This step is shown in Fig. 2(c). In the last
step, the rest node in each part becomes the child of the previous
level node. Finally, the tree is constructed as shown in Fig. 2(d).
Since the replica nodes in the same group are physically close

nodes, message propagation among these nodes reduces update
propagation overhead. Therefore, Plover facilitates low-overhead
and timely consistency maintenance because update messages
travel along short physical distances.

3.3. Query redirection for load balance

If an overloaded original file owner receives a file request,
it will forward the request to one of the file’s replica nodes. A
question is how to choose the replica node so that the query
load can be distributed based on nodes’ available capacity. An
efficient query redirection algorithm should effectively allocate
the query load to replica nodes in balance. Plover adopts lottery
scheduling [44] for query redirection. Lottery scheduling is a
method that efficiently implements proportional-share resource
management. In the scheduling, a node has tickets, and its
allocated resource is proportional to the number of tickets that it
holds. Plover regards the visit rate of a file as tickets. The number
of tickets a replica node holds equals the visit rate it is responsible
for. The overloaded node selects a replica node by picking a ticket
from the replica nodes at randomand chooses the replica node that
holds this winning ticket which is randomly generated. The visit
rate ratios among replica nodes is the expected ratios of load that
are responsible for.
Fig. 3 shows an example [44] of lottery scheduling, where
the third replica node is selected. In the example, the original
file owner has four replica nodes for its file. The file’s visit rates
responsible by the replicas nodes are 5, 4, 3 and 2 respectively.
Then, the total visit rate of the file responsible by all replica nodes is
14. When the original file owner receives a query for the file, if it is
overloaded, it will choose a replica node to redirect the query. First,
it randomly chooses a value within [0,13]. Let us say the random
number is 11. It then accumulates the visit rates of replica nodes
one by one until the sum is no less than 11. Specifically, because
the visit rate of the first replica node is 5 which is less than 11,
the original file owner adds the visit rate of the second replica
node 4 to 5, getting 9. Because 9 is less than 11, the original file
owner then adds the visit rate of the third replica node 3 to 9,
getting 12. Because 12 is larger than 11, then the third replica node
should be the replica node to redirect the file query. Algorithm 4
demonstrates the pseudocode executed by an original file owner
for query redirection in Plover.
It was proved that scheduling by lottery is probabilistically

fair [44]. The expected allocation of load to replica nodes is
proportional to the number of tickets that they hold. The number
of lotteries won by a client has a binomial distribution. The
probability p that a client holding t tickets will win a given lottery
with a total of T tickets is simply p = t/T . After n load assignment,
the expected number of winsw is E[w] = np, with variance σ 2w =
np(1− p). The coefficient of variation for the observed proportion
of wins is σ 2wE[w] =

√
(1− p)/np. Thus, a replica nodes load of

the replica file is proportional to its ticket allocation, with accuracy
that improves with

√
n.

4. Performance evaluation

We designed and implemented a simulator in Java for
evaluation of the Plover based on Chord supernode structured P2P.
There are mainly two classes for file replications: ID-based and
path-based, and PAST [31] and LAR [15] are representative of each
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(a) ts5k-large. (b) ts5k-small.

Fig. 4. CDF of total load distribution of replicated file.
Table 1
Simulated environment and algorithm parameters.

Parameter Default value

System utilization 0.5–1
Object arrival location Uniform over ID space
Number of nodes 4096
Node capacity Bounded Pareto: shape 2

lower bound:25000, upper bound: 25000*10
Supernode threshold 50000
Number of items 20480
Existing item load Bounded Pareto: shape: 2,

lower bound: mean item actual load/2
upper bound: mean item actual load/2*10

class. We compared the performance of Plover with PAST, and LAR
in Chord in terms of locality-aware file replication performance,
load balance performance and file consistency maintenance cost.
In the experiment, we set the number of replicas of a file equal to
its visit rate in PAST. We assume LAR replicates a file along a path.
Table 1 lists the parameters of the simulation and their default
values. This bounded Pareto distribution reflects the real world
where there are machines with capacities that vary by different
orders of magnitude. We used node utilization to represent the
fraction of its capacity that is used, which is L/C , and used system
utilization to represent the fraction of the system’s total capacity
that is used, which equals to

∑n
i=1 Li/

∑n
i=1 Ci.

We used two transit-stub topologies generated by GT-ITM [48]:
‘‘ts5k-large’’ and ‘‘ts5k-small’’. ‘‘ts5k-large’’ has 5 transit domains,
3 transit nodes per transit domain, 5 stub domains attached to
each transit node, and 60 nodes in each stub domain on average.
‘‘ts5k-small’’ has 120 transit domains, 5 transit nodes per transit
domain, 4 stub domains attached to each transit node, and 2 nodes
in each stub domain on average. ‘‘ts5k-large’’ has a larger backbone
and sparser edge network (stub) than ‘‘ts5k-small’’. ‘‘ts5k-large’’ is
used to represent a situation in which P2P consists of nodes from
several big stub domains, while ‘‘ts5k-small’’ represents a situation
in which P2P consists of nodes scattered in the entire Internet and
only few nodes from the same edge network join the overlay. To
account for the fact that interdomain routes have higher latency,
each interdomain and intradomain hop counts as 3 and 1 hops of
latency units respectively.

4.1. Locality-aware file replication

In this section, we will show Plover ’s effectiveness in achieving
locality-aware file replication between physically close nodes.
Fig. 4(a) and (b) show the cumulative distribution function
(CDF) of the total load of replicated files with system utilization
approaching 1 in ‘‘ts5k-large’’ and ‘‘ts5k-small’’ respectively. We
can see that in ‘‘ts5k-large,’’ Plover is able to replicate 95% of
the total load of replicated files, while LAR replicates about 30%
and PAST replicates only about 20% within 10 hops. Almost all
replications in Plover are within 15 hops, while LAR and PAST
scheme replicate only 80% of the total file load within 15 hops. The
results show that Plover replicates most files in short distances but
LAR and PAST replicate most files at long distances. From Fig. 4(b),
we can have the same observations as in ‘‘ts5k-large,’’ although the
performance difference between schemes is not so significant as in
‘‘ts5k-large’’. The more a file is replicated in a shorter distance, the
higher the locality-aware performance of a file replication scheme.
The results indicate that Plover performs better than LAR and PAST
with regards to locality-aware file replication either when nodes
are from several big sub domains or when nodes are scattered in
the entire Internet.
Fig. 5(a) and (b) show the CDF of the distribution of total

messages for file replication with system utilization approaching
1 in ‘‘ts5k-large’’ and ‘‘ts5k-small’’ respectively. We can see that in
‘‘ts5k-large’’, PAST restricts the physical distance by hops traveled
by a message to 9, while the maximum physical distance of Plover
and LAR is 99. In PAST, a file owner only needs to contact with
its neighbor, which takes one logical hop. Thus, the maximum
physical distance that a message travels is the maximum physical
distance between two nodes. In contrast, in Plover, physically
nodes report the information of their hot files and available
capacity to the same supernodewhich is not necessarily physically
close to them. A message of the information is routed to the
supernode by DHT lookup algorithm, which takes a number of
logical hops (log n in the average case). The physical distance a
message travels is the sumof physical distances of all pairs of nodes
in the lookuppath. Therefore, in Plover, although files are replicated
among physically close nodes, a report message needs to travel
long physical distance. LAR replicates a file along a lookup path.
Thus, the logical distance that a message travels is the number of
hops in the lookup path. The physical distance is the sum of the
physical distances of all pairs of nodes in the lookup path. As a
result, as Plover, LAR leads to long physical distance for message
traveling.We can also observe that the curve of Plover is above that
of LAR, which means that most messages in Plover travel a shorter
physical distance than in LAR. For instance, 43% of messages in
total travel within 40 hops in Plover, while 20% of messages in total
travel within 40 hops in LAR. Plover enables 64% of messages in
total to travel within 60 hops, while LAR allows 36% of messages in
total to travel within 60 hops.
From Fig. 5(b), we can have the same observations as in ‘‘ts5k-

large’’. Compared to Fig. 5(a), we find that themaximum amessage
travels in PAST is 99 rather than 9 in ‘‘ts5k-large’’. In ‘‘ts5k-large’’,
nodes are from several big stub domains, while in ‘‘ts5k-small’’,
nodes are scattered in the entire Internet and only few nodes
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(a) ts5k-large. (b) ts5k-small.

Fig. 5. CDF of the distribution of total messages.
Fig. 6. Total replicas.

Fig. 7. Node utilization.

are from the same edge network. Therefore, the physical distance
between a pair of arbitrary nodes is short in ‘‘ts5k-large’’, but is
much longer in ‘‘ts5k-small’’. This is the reason that PAST generates
a much longer physical distance for a message traveling in ‘‘ts5k-
small’’ than in ‘‘ts5k-large’’. The curve of Plover is still above that of
LAR, although the performance difference between the schemes is
not so significant as in ‘‘ts5k-large’’. It implies that more messages
travel in shorter physical distances in Plover than LAR. The results
indicate that PAST enables messages to travel along short physical
distances due to its one-hop replication distance. Plover performs
better than LAR with regards to the overhead caused by message
traveling.

4.2. Capacity-aware file replication

Fig. 6 shows the total number of file replicas versus system
utilization. We can observe that LAR generates dramatically more
replicas than PAST, which produces much more replicas than
Plover. We also measured the maximum node utilizations of all
nodes, orders the values, and took the 99.9th percentile as the
maximum 99.9th percentile node utilization. Fig. 7 plots the
maximum99.9th percentile node utilizations of different schemes.
It illustrates that the utilization rate of LAR is higher than PAST, and
that of PAST is higher than Plover. In addition, the rate of Plover is
around 1. The results imply that LAR and PAST incur much more
overloaded nodes, while Plover can keep nodes lightly loaded.
Recall that PAST and LAR do not consider nodes’ available

capacity during file replication. LAR makes replications along the
lookup path once a node is overloaded, and PAST determines
the number of replicas based on file availability. Determining
the number of file replicas without considering nodes’ available
capacity will result in unnecessary file replication. For instance, if
a hot file has 3 visit rate load and a node has available capacity
to handle the 3 visit rate load, then one replica is enough and the
file does not need to be replicated in three nodes. Though PAST
uses load balancing afterwards, it will generate extra overhead.
The neglect of nodes’ available capacity in file replication leads
to more replicas, more overloaded nodes, and extra overhead for
load balancing and file consistencymaintenance. In contrast, Plover
proactively takes into account nodes’ available capacity during file
replication. It not only avoids unnecessary file replication, but also
avoids exacerbating the hot spot problem by choosing nodes with
enough available capacity as replica nodes. Thus, it outperforms
LAR and PAST by controlling the overloaded nodes and extra
overhead for load balancing and file consistency maintenance.

4.3. Low-overhead file consistency maintenance

File consistency maintenance cost constitutes a major portion
of structured P2P systemoverhead. The cost is directly relatedwith
message size and physical path length of the message traveled; we
use the product of these two factors of all file update messages
to represent the cost. It is assumed that the size of a update
message is 1 unit. In the experiment, we updated every file
once. To make results of file replication algorithm comparable,
we used broadcasting for file update in all approaches. This
experiment is to show the effect of file replication on the cost
of file consistency maintenance caused by the number of replicas
and physical distances for message propagation. Fig. 8(a) and (b)
plot the file consistency maintenance cost of Plover, PAST and LAR
in ‘‘ts5k-large’’ and ‘‘ts5k-small’’ respectively. From these figures,
we can see that the cost increases with system load, LAR needs
dramatically higher cost for file consistency maintenance than the
others, and Plover incurs the least cost. There are two reasons for
the results. First, LARmakes a replicate of each file along its lookup
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(a) ts5k-large. (b) ts5k-small.

Fig. 8. File consistency maintenance cost.
(a) The number of messages. (b) CDF of message distribution.

(c) Physical bandwidth.

Fig. 9. Performance of file consistency maintenance in ‘‘ts5k-large’’.
path length, while PAST replicates file based on its availability.
With node capacity consideration, Plover generates fewer replicas.
This result is consistent with Theorem 3.4. Second, because
LAR and PAST neglect locality in file replication, they render a
significantly higher cost for file update since messages travel long
physical distances. In contrast, Plover proactively considers locality
in file replication, such that the update messages only travel
amongphysically close nodes. Its short physical distance for update
messages and lower number of replicas result in low-overhead and
timely file consistency maintenance.
The next experiment is to show the effectiveness and efficiency

of the proposed consistency maintenance algorithm in Plover,
denoted by Tree. We evaluated the performance of a consistency
maintenance algorithm, denoted by Hierarchical. In Hierarchical,
supernodes constitute a d-nary tree. Whenever a node updates its
file, it notifies its supernode (client-server step). The supernodes
propagate the update messages based on the d-nary tree. After a
supernode receives the update message, it broadcasts the message
to all of its children (tree propagation step). We evaluate the
performance of Tree in comparison with Hierarchical.
We assume that every node in the system has a replica of the

updated file. Fig. 9(a) depicts the number of messages generated
in the process of consistency maintenance in ‘‘ts5k-large’’. The
number of messages is decomposed into that in the ‘‘client-sever’’
step in the upper level and in the ‘‘tree propagation’’ step in the
lower level in the hierarchical structure. The figure shows that
Hierarchical and Tree generate the same number of messages in
each step. This is because in these two methods, the numbers of
nodes in the upper level are the same and the numbers of nodes in
the lower level are also the same. Therefore, they need the same
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(a) The number of messages. (b) CDF of message distribution.

(c) Physical bandwidth.

Fig. 10. Performance of file consistency maintenance in ‘‘ts5k-small’’.
number of messages for the message propagation in the upper-
level tree and lower-level tree.
Fig. 9(b) plots the CDF of the distribution of update messages

in ‘‘ts5k-large’’. We can see that Tree and Hierarchical limit the
physical distance that a message travels within 20 hops. Tree
enables 51% messages to travel within 8 hops, while Hierarchical
only allows 5.1messages to travel within 8 hops. All messages
travel within 12 hops in Tree, while only 30% messages travel
within 12 hops in Hierarchical. Recall Plover replicates a file in
nodes physically close to the file owner. Tree builds physically close
replica nodes into a tree for update propagation. Therefore, update
messages are propagated among physically close nodes in Tree.
The supernodes are not necessarily physically close nodes, and a
supernode also is not necessarily a physically close node to its
clients. Hence, messages do not travel between physically close
nodes inHierarchical, leading to long physical distances ofmessage
traveling.
Fig. 9(c) shows the communication cost of all updates in ‘‘ts5k-

large’’. Tree leads to a much lower communication cost than
Hierarchical. Though the numbers of messages are the same in
two algorithms, messages in Tree travel shorter distances than
in Hierarchical. Therefore, the sum of the product of the size of
a message and its traveled distance in Tree is less than that in
Hierarchical.
Fig. 10(a) depicts the number of messages generated in the

process of consistency maintenance in ‘‘ts5k-small’’. For the same
reasons observed in Fig. 9(a), Tree leads to the same number
of messages as Hierarchical. We can also find that Hierarchical
produces much more messages in the ‘‘tree propagation’’ step in
‘‘ts5k-small’’ than in ‘‘ts5k-large’’. Because nodes are scattered in
the entire Internet in ‘‘ts5k-small’’, while nodes are from several
big stub domains in ‘‘ts5k-large’’, the information of hot files and
available capacity is collected in more supernodes in ‘‘ts5k-small’’
than in ‘‘ts5k-large’’, resulting in more propagation messages
between supernodes. Since every node should receive the update
message once, the total numbers of messages in ‘‘ts5k-large’’ and
‘‘ts5k-small’’ are the same. Therefore, the number of messages
in the ‘‘client-server’’ step in both Hierarchical and Tree in ‘‘ts5k-
small’’ is less than that in ‘‘ts5k-large’’.
Fig. 10(b) plots the CDF of the distribution of update messages

in ‘‘ts5k-small’’. We can have the same observations as in Fig. 9(b),
although theperformancedifference between Tree andHierarchical
is not so significate due to different topologies. In ‘‘ts5k-small’’,
the maximum physical distance of both Tree and Hierarchical is
20. Tree enables 27% messages to travel within 8 hops, while
Hierarchical only allows 3%messages to travelwithin 8 hops. 65% of
allmessages travelwithin 12hops in Tree, while only 47%messages
travel within 12 hops in Hierarchical. These results confirm that
Tree enables update messages to travel between physically close
nodes, saving communication cost in consistency maintenance.
Fig. 10(c) shows the communication cost of all updates in ‘‘ts5k-
small’’. Tree leads to a much lower communication cost than
Hierarchical. This is due to the same reason observed in Fig. 9(c).

5. Effectiveness of query redirection for load balance

This experiment tests the effectiveness of the query redirection
algorithm based on lottery scheduling for load balance. We did an
experiment on a file with 5 replica nodes. We tested the Percent
of queries received/Percent of responsible visit rate (percent rate in
short). The percent of responsible visit rate is the ratio between
a replica node’s responsible visit rate and the sum of visit rates
of all replica nodes. The percent of queries received is the ratio
between the number of queries received by a replica node and the
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Fig. 11. Effectiveness of query redirection for load balance.

total number of queries. If the metric is close to 1, it means the
query redirection algorithm can distribute file queries according to
node responsible visit rates, achieving load balance. We tested the
metric of the lottery scheduling based query redirection algorithm,
denoted by Lottery. We also tested the metric ofMax, Random and
Round-robin. In Max, a file owner always forwards file queries to
the replica node with the highest responsible visit rate. In Random,
a file owner randomly chooses a replica node among all replica
nodes to redirect a file query. In Round-robin, a file owner redirects
file queries in a round-robin manner.
Fig. 11 demonstrates the percent rates of each replica node in all

consistency maintenance algorithms. We can observe that inMax,
one node receives all file queries and all other replica nodes do not
receive any queries. This node is the replica node with the highest
responsible visit rate. Obviously, Max is not able to achieve load
balance since other replica nodes do not receive queries, while the
node with the highest responsible visit rate may be overloaded.
The figure shows that Random generates a percent rate within
[0.4, 3.4]. It means that some nodes receive much more queries
than they are responsible for, while some other nodes receive less
queries than what they are responsible for. Random also cannot
achieve a very good load balance. In Round-robin, one node has
about a 2.4 percent rate, all other nodes’ percent rates are round 1.
Round-robin leads to a better load balance than Max and Random.
In Lottery, except one node which has a 1.5 percent rate, all other
nodes’ percent rates are around1. The results imply that Lottery can
achieve a better load balance than other algorithms. Thus, Lottery
outperforms other algorithms in distributing file queries among
replica nodes in balance.

6. Conclusions

File replication and file consistencymaintenance are indispens-
able parts for high performance in structured P2P file systems. Cur-
rently, these two issues are typically addressed separately, despite
significant interdependency of file consistencymaintenance on file
replication. A growing need persists with regards to integrating
file replication and consistency maintenance techniques for high
performance. This paper presents a proactive low-overhead file
replication scheme called Plover for structured P2P file sharing sys-
tems. Unlike existing file replication methods, by taking into ac-
count nodes’ available capacity and physical locality, Plover not
only achieves highly efficient file replication, but also proactively
facilitates efficient file consistencymaintenance. Itmakes file repli-
cation among physically close nodes based on nodes’ available ca-
pacity. Thus, it reduces file consistencymaintenance overhead due
to short communication distances and fewer file replicas. It also
includes an efficient file query redirection algorithm for load bal-
ance in replica nodes. Theoretical analysis and simulation results
demonstrate the effectiveness of Plover in comparison with other
file replication schemes.
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