
An Efficient and Adaptive Decentralized File
Replication Algorithm in P2P File Sharing

Systems
Haiying Shen

Department of Electrical and Computer Engineering
Clemson University, Clemson SC 29634

shenh@clemson.edu

�

Abstract—In peer-to-peer file sharing systems, file replication technol-
ogy is widely used to reduce hot spots and improve file query efficiency.
Most current file replication methods replicate files in all nodes or
two endpoints on a client-server query path. However, these methods
either have low effectiveness or come at a cost of high overhead.
File replication in server side enhances replica hit rate hence lookup
efficiency but produces overloaded nodes and cannot significantly re-
duce query path length. File replication in client side could greatly
reduce query path length, but cannot guarantee high replica hit rate
to fully utilize replicas. Though replication along query path solves
these problems, it comes at a high cost of overhead due to more
replicas and produces under-utilized replicas. This paper presents an
Efficient and Adaptive Decentralized file replication algorithm (EAD)
that achieves high query efficiency and high replica utilization at a
significantly low cost. EAD enhances the utilization of file replicas by
selecting query traffic hubs and frequent requesters as replica nodes,
and dynamically adapting to non-uniform and time-varying file popularity
and node interest. Unlike current methods, EAD creates and deletes
replicas in a decentralized self-adaptive manner while guarantees high
replica utilization. Theoretical analysis shows the high performance of
EAD. Simulation results demonstrate the efficiency and effectiveness of
EAD in comparison with other approaches in both static and dynamic
environments. It dramatically reduces the overhead of file replication,
and yields significant improvements on the efficiency and effectiveness
of file replication in terms of query efficiency, replica hit rate and
overloaded nodes reduction.

Keywords: Peer-to-peer system, Distributed hash table, File
sharing system, File replication.

1 INTRODUCTION

The immense popularity of Internet and P2P networks has

produced a significant stimulus to P2P file sharing systems,

where a file requester’s query is forwarded to a file provider

in a distributed manner. The systems can be used in video-on-

demand service and shared digital library applications where

individuals dedicate files which are available to others. A

recent large scale characterization of HTTP traffic [1] has

shown that more than 75% of Internet traffic is generated by

P2P file sharing applications. The median file size of these

P2P systems is 4MB which represents a thousand-fold increase

over the 4KB median size of typical web objects. The study

also shows that the access to these files is highly repetitive and

skewed towards the most popular ones. In such circumstances,

if a server receives many requests at a time, it could become

overloaded and consequently cannot respond to the requests

quickly. Therefore, highly-popular files (i.e., hot files) could

exhaust the bandwidth capacity of the servers, leading to low

efficiency in file sharing.

File replication is an effective method to deal with the prob-

lem of server overload by distributing load over replica nodes.

It helps to achieve high query efficiency by reducing server

response latency and lookup path length (i.e., the number of

hops in a lookup path). A higher effective file replication

method produces higher replica hit rate. A replica hit occurs

when a file request is resolved by a replica node rather than

the file owner. Replica hit rate denotes the percentage of

the number of file queries that are resolved by replica nodes

among total queries.

Recently, numerous file replication methods have been pro-

posed. The methods can be generally classified into three cate-

gories denoted by ServerSide, ClientSide and Path. ServerSide
replicates a file close to the file owner [2, 3, 4, 5], ClientSide
replicates a file close to or at a file requester [6, 7], and Path
replicates on the nodes along the query path from a requester

to a file owner [8, 9, 10]. However, most of these methods

either have low effectiveness on improving query efficiency

or come at a cost of high overhead.

By replicating files on the nodes near the file owners,

ServerSide enhances replica hit rate and query efficiency.

However, it cannot significantly reduce path length because

replicas are close to the file owners. It may overload the replica

nodes since a node has limited number of neighbors. On

the other hand, ClientSide could dramatically improve query

efficiency when a replica node queries for its replica files, but

such case is not guaranteed to occur as node interest varies

over time. Moreover, these replicas have low chance to serve

other requesters. Thus, ClientSide cannot ensure high hit rate

and replica utilization. Path avoids the problems of ServerSide
and ClientSide. It provides high hit rate and greatly reduces

lookup path length. However, its effectiveness is outweighed

Digital Object Indentifier 10.1109/TPDS.2009.127 1045-9219/09/$26.00 © 2009 IEEE

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 11:22 from IEEE Xplore. Restrictions apply.

2

by its high cost of overhead for replicating and maintaining

much more replicas. Furthermore, it may produce under-

utilized replicas.

Since more replicas lead to higher query efficiency but more

maintenance overhead, a challenge for a replication algorithm

is how to minimize replicas while still achieving high query

efficiency. To deal with this challenge, this paper presents an

Efficient and Adaptive Decentralized file replication algorithm

(EAD). One novel feature of EAD is that it achieves high

query efficiency and high replica utilization at a significantly

low cost. Instead of creating replicas on all nodes or two ends

on a client-server path, EAD chooses query traffic hubs (i.e.,

query traffic conjunction nodes) as replica nodes to ensure high

replica hit rate. It achieves comparable query efficiency to Path
but creates much less replicas. It also produces higher hit rate

than ClientSide, and dramatically reduces lookup path length

and avoids overloading replica nodes in ServerSide. Moreover,

EAD takes full advantage of file replicas by dynamically

choosing replica nodes based on file query rate.

Another novel feature of EAD is that it adaptively adjusts

the file replicas to non-uniform and time-varying file pop-

ularity and node interest in a decentralized manner. Unlike

other algorithms in which a file owner determines where to

create or delete replicas in a centralized fashion, EAD enables

nodes themselves to decide whether to store or delete replicas

based on their actual query traffic. This self-adaptive manner

enhances EAD’s scalability and meanwhile guarantees high

utilization of replicas. It also facilitates EAD to deal with

churn. In addition, EAD is highly capable of tackling skewed

lookups. Furthermore, EAD employs an exponential moving

average technique to reasonably measure file query traffic. The

contribution of this paper also includes theoretical analysis and

comprehensive simulations for the performance of EAD.

The rest of this paper is structured as follows. Section 2

presents the EAD file replication algorithm with theoretical

analysis. Section 3 shows the performance of EAD in com-

parison with other approaches with a variety of metrics, and

analyzes the factors effecting file replication performance.

Section 4 presents a concise review of representative file

replication approaches for P2P systems. Section 5 concludes

this paper with remarks on our future work.

2 EAD FILE REPLICATION ALGORITHM

In this section, we describe the EAD algorithm. We start off by

describing the goals of EAD and the strategies to achieve the

goals. Then, we discuss the various aspects of the algorithm

in a detail.

2.1 Goals and Strategies
In a P2P file sharing system, overloaded conditions are com-

mon during flash crowds or when a server hosts a hot file. For

example, in Figure 1, if many nodes query for a hot file in

node G at a time, G will be overloaded, leading to delayed file

query response. File replication is an effective method to deal

with the problem of overload condition. By replicating a hot

file to a number of other nodes, the file owner distributes load

over replica nodes, leading to quick file response. Moreover, a

N
E

HC

F

B

J K

A

D

H

I

P

M

L

O

G

client

server

Fig. 1. File querying in a file sharing system.

file query may encounter replica nodes before it arrives at the

file owner, reducing lookup path length. Thus, file replication

helps achieve high file query efficiency due to lookup path

length reduction and quick query response.

In ServerSide, node G will choose its neighbors K, F , N ,

O and L as options for replica nodes. Though it has high hit

rate, it cannot significantly reduce the lookup path length and

may overload the neighbors. On the other hand, ClientSide
replicates a file to requesters A, B and C. It brings benefits

when the requester or its nearby nodes always query for the

file. However, considering non-uniform and time-varying file

popularity and node interest, the replicas may not be fully

utilized. Path replicates the file in all path nodes D, E and

F . It has high hit rate and significantly reduces lookup path

length, but comes at high cost of much more replicas.

The ultimate objective of EAD is to achieve high query

efficiency and low file replication overhead. Specifically, EAD

aims to overcome the drawback of the previous methods with

two goals. Firstly, it aims to minimize replicas and achieve

high file query efficiency. More replicas lead to higher query

efficiency and vice versa. How can a replication algorithm re-

duce replicas without compromising query efficiency? Rather

than statically replicating a file along a query path, EAD

replicates a file in nodes with high query traffic of the file, thus

reducing replicas while ensuring high hit rate and comparable

query efficiency.

Secondly, rather than depending on a file owner to determine

replica creation and deletion in a centralized manner, EAD

aims to conduct the operations in a decentralized manner

without compromising replica utilization. Since P2P systems

can be very large, decentralized replication decision making

is key to scaling the system. For example, the popular KaZaA

file-sharing application routinely supports on the order of

two million simultaneous users, exporting more than 300

million files. To achieve this objective, EAD uses self-adaptive

method in which nodes themselves decide replica creation and

deletion.

Splitting a large file into small pieces can increase the

service capacity of a large file rapidly. Replicating file location

hint along a query path can also improve file query efficiency.

EAD can employ the techniques to further improve its perfor-

mance. These techniques are orthogonal to our study in this

paper.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 11:22 from IEEE Xplore. Restrictions apply.

3

2.2 Algorithm Description

The basic idea of EAD is replicating a file in nodes with high

query traffic of the file, so that more queries will encounter

the replica nodes, leading to high hit rate. To deal with time-

varying file popularity and node interest, EAD adaptively

adjusts the file replica nodes based on recent query traffic in

a decentralized manner. We present EAD from the following

aspects of file replication:

(1) where to replicate files so that the file query can be

significantly expedited and meanwhile the file replicas

can be taken full advantage of? (Section 2.2.1)

(2) how to conduct the replication of hot files and the deletion

of under-utilized replicas in a decentralized manner for

high replica utilization? (Section 2.2.2)

(3) how to reasonably measure file query traffic for replica

adjustment? (Section 2.2.3)

(4) how is the performance of EAD from the perspective of

theoretical analysis? (Section 2.2.4)

(5) how to deal with P2P churn for highly efficient and

effective file replication? (Section 2.2.5)

(6) how is the performance of EAD in handling skewed file

lookups? (Section 2.2.6)

2.2.1 Efficient File Replication
In a structured P2P system, the query load is distributed in

an imbalanced manner. The existence of query imbalance is

confirmed by recent studies of P2P file sharing systems [11, 1],

which demonstrate that node query patterns are heavily skewed

in the systems. The query load imbalance in a structured P2P

system is mainly caused by three reasons. First, file requests

are routed according to a strictly defined routing algorithm,

and nodes are located in different places and have different

number of neighbors in a P2P overlay network. Second, node

interests are different and time-varying. There will be more

query traffic along the query paths from the frequent file

requesters and the file owner. Third, file popularity is non-

uniform and time-varying. Nodes receiving and forwarding

hot file queries experience more query traffic load. Nodes in

some overlay areas with hot files or with more neighbors will

experience more query traffic. It is easy to understand the last

two reasons for query imbalance. The explanation for the first

reason is presented below.

Most of the structured P2P systems such as Chord, Tapestry

and Pastry use a variant of the routing algorithm developed by

Plaxton et al. [12]. The routing algorithm works by correcting

a single digit at a time in the left-to-right order. If a node

with nodeID 12345 receives a lookup query with key 12456,

which matches the first two digits, then the routing algorithm

forwards the query to a node which matches the first three

digits (e.g., node 12467). Therefore, each routing step reduces

the query’s distance to the destination. To facilitate the routing,

the neighbors in a node’s routing table are the nodes that match

each prefix of its own identifier.

To handle P2P churn where nodes join and leave the

system continuously and rapidly and meanwhile improve the

efficiency of routing, a node with nodeID x maintains another

neighbor list of nodes whose nodeIDs succeed x. Facilitated

12345 13345 13545 13575 13577 13579

Routing table Neighbor list

Fig. 2. An example of a query routing in structured P2P
system.

by a neighbor list, in a routing, the file query for a key is

forwarded to a node whose nodeID shares a prefix with the

key as long as the current node, but is numerically closer to the

key than the present node’s nodeID. Assume the source node

ID is 12345 and the destination’s nodeID is 13579, Figure 2

shows a routing path from the source node to the destination

node. In the first three steps of the routing, each node forwards

the query to one of its neighbors in its routing table. In the

last two steps when the query is close to the destination, the

routing node forwards the query to a node in its neighbor list.

We can see that the routing algorithm is characterized by

convergence, in which a query travels towards its destination.

Thus, queries for the same file from different directions con-

verge when they are approaching their destination. The traffic

hubs have more query load than other nodes. A node which

is a neighbor of many nodes carries much more query load

than others, since the nodes forward the query to the neighbor.

Therefore, in structured P2P file sharing systems, some nodes

carry more query traffic load than others [13, 14, 15]. The

degree of node A is the number of nodes that take node A
as their neighbor. Since a node owning larger nodeID space

has higher probability to be other nodes’ neighbor and has

higher degree, the node will also carry more query load. This

is confirmed by Godfrey and Stoica [13].

For example, in Figure 1, because nodes A, B and C are

very interested in a hot file in node G, all the queries need to

pass through nodes E and F before they arrive at file server G.

Thus, nodes E and F forward much more queries for the file

than others. Based on this observation, we can choose query

traffic hubs E and F as replica nodes, so that the queries from

different direction can encounter the replica nodes, increasing

the replica hit rate. The efficiency of this strategy is determined

by whether the replica nodes always serve as query traffic

hubs. The answer for this question is given by a study which

shows that the access to P2P files is highly repetitive and

skewed towards the most popular ones [1].

Therefore, EAD replicates a file in nodes that have been

carrying more query traffic of the file or nodes that query

the file frequently. The former increases the probability that

queries from different directions encounter the replica nodes,

and the latter provides files to the frequent file requesters

without query routing, thus increasing replica hit rate. In

addition, replicating a file in the middle of a query path rather

than near its server as in ServerSide speeds up file querying.

We define query rate of a file f , denoted by qf , as the

number of queries initiated by a requester or forwarded by a

node during a unit time period T , say one second. qf should

be indexed by different files such as qf1 and qf2 , but we

omit the indices here for brevity. A technique for reasonably

determining qf will be introduced in Section 2.2.3. EAD sets

a threshold for query rate denoted by Tq; Tq = αq̄, where

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 11:22 from IEEE Xplore. Restrictions apply.

4

c

l/c> l

l/c<1/ l

Make replication to release extra load

Make replication only when its benefit > cost

l

Fig. 3. File replication decision by a file server.

α(α ≥ 2) is a constant parameter, and q̄ is the average query

rate in the system.

q̄ =
ḿ∑

j=1

qfj
/ḿ (1),

where ḿ is the number of files in the system. If a node’s

qf > Tq, it is regarded as a frequent requester or traffic hub

for file f . A node periodically calculates its qf . If qf > Tq and

it has enough capacity such as storage space and bandwidth

for a file replica, it piggybacks a file replication request and

its qf into a file query when initiating or forwarding a file

request for this file. A traffic hub also needs to incorporate

its IP address and nodeID into the file query. Piggybacking

replication requests in file queries avoids additional overhead

of the file replication algorithm.

In addition to the original owner of a file, a replica node can

also replicate the file to other nodes. We use server to denote

both the original file owner and replica nodes. We define visit
rate of a node as the number of queries the node receives

during T . We use a server’s visit rate of all its files to represent

its query load denoted by l. We use c to denote a node’s

capacity represented by the number of queries it can respond

during T . We use node utilization to denote the fraction of

a node capacity that is used, represented by l/c. Each server

i periodically measures its query load li over T , and checks

whether it is overloaded or lightly loaded by a factor of γl;

i.e. whether

li/ci > γl or < 1/γl (2),

as shown in Figure 3. In the former case, it releases (li−γlci)
query load units by replicating files. In the latter case, though

it is not overloaded, replication may enhance query efficiency.

Therefore, the server makes decision of file replication based

on the benefits and cost brought about by the file replication.

When overloaded, a file’s server releases its load by select-

ing the nodes with high query rates to be the replica nodes.

Specifically, if the server receives queries with replication

requests, it firstly orders the replication requesters based on

their qf in a descending order. Then, it retrieves replication

requesters in the list one at a time, and replicates f at the

requester until ∑
qf ≥ (li − γlci),

which makes the server lightly loaded. This scheme guarantees

that nodes with higher query rates have higher priorities to be

replica nodes, leading to higher replica hit rate. In the case that

there is no file replication request, then a server replicates file f
to its neighbors that forward the queries of f most frequently.

If the file server is not overloaded, it makes file replication

only when the benefits brought about by the replication is

greater than its cost. In practice, a node has various capacities

in terms of bandwidth, memory storage, processing speed, and

etc. We assume that different capacities can be represented by

one metric [13]. If a file is replicated in a requester with qf and

d hop distance to the file server, it saves the query forwarding

resource of qf × d× l̄q, where l̄q is the resource consumption

for forwarding one query in one step. On the other hand, it

costs extra storage resource b for a replica. If the benefit of

the file replication is greater than its cost; that is,

qf × d× lq > b, (3)

then the file server makes a replication in the requester.

We assume homogeneous benefits for each replica of a file.

If a replica is visited during T , the system earns a benefit. An

unvisited replica generates system cost b. When a file server

receives R requests, how many replicas it should create in

order to earn the maximum average benefit during T ? We use

x to denote the number of created replicas that leads to the

maximum average benefit. x is a value ∈ [1, R]. We use Y to

denote the benefit earned by the system during T due to the

file replication. Y is a function of V , which is the server visit

rate of the file during T .

Y = f(V) =
{

ax when V ≥ x,
aV − b(x− V) when V < x.

(4)

Hence, the average benefit is:

E(Y) = E[f(V)] =
R∑

k=1

f(k) · 1
R

=
1
R
{

x−1∑
k=1

[ak − b(x− k)] +
R∑

k=x

ax}

=
1
R

[
∫ x−1

1

ak − b(x− k) +
∫ R

x

ax]

=
1
R

(−a + b

2
)x2 + [(R− 1)a + b]x.

Thus,
d(E(Y))

d(x)
= (−a + b

2
)x + [(R− 1)a + b].

Because d2(E(Y))
d(x)

= (−a + b

2
) < 0,

E(Y) achieves the maximum value. Therefore, when

x =
2[(R− 1)a + b]

a + b
, (5)

E(Y) achieves the maximum value. In other words, when the

file server creates
2[(R−1)a+b]

a+b number of replicas, the system

earns the maximum benefits with high replica utilization.

2.2.2 Decentralized File Replica Adaptation

Considering that file popularity is non-uniform and time-

varying and node interest varies over time, some file replicas

become unnecessary when there are few queries for these

files. To deal with this situation, EAD adaptively removes and

creates file replicas.

In previous methods, a file server maintains information

of its replica nodes to manage the replicas and disseminates

information about new replica sets. Rather than depending on

such a centralized method, EAD makes replica adjustment

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 11:22 from IEEE Xplore. Restrictions apply.

5

in a decentralized manner. EAD enables nodes themselves

to determine whether they should create replicas or delete

replicas based on their actual experienced query traffic. If a

node has too high query traffic of a file, it requests to be a

replica node of the file. On the other hand, if a replica node

receives too few queries of a replica, it removes the replica.

Such decentralized adaptation helps to guarantee high hit rate

and replica utilization. In addition, it reduces the extra load

for replica information maintenance in file servers, making

the replication algorithm more scalable.

Specifically, EAD arranges each node to periodically update

its query rate of each file. If a node’s qf > Tq, it requests to

have a replica as introduced in the previous section. If a replica

node’s qf < δTq (δ < 1), where δ is a under-loaded factor,

it marks the replica as infrequently-used replica. When the

qf < δTq condition continually occurs for a specified number

of time periods, or when the node needs more space for other

replicas, the node removes the replica. If this condition does

not happen for the specified number of time periods which

means the replica is still useful, then the replica node removes

the mark. Therefore, the determination of keeping file replicas

is based on recently experienced query traffic due to file

popularity and node interest. When a file is no longer requested

frequently, there will be less file replicas for it. The adaptation

to query rate ensures that all file replicas are worthwhile

and there is no waste of overhead for the maintenance of

unnecessary replicas, thus ensuring high replica utilization.

We use NQ to denote the number of generated queries of a

certain file during T , and use q̂i to denote the probability that

a query of the file passes node i during T . The probability

that node i creates a new replica of the file is:

Pcreation =
NQ∑

k=Tq

(
NQ

k

)
q̂k
i (1− q̂i)NQ−k. (6)

The probability that node i deletes a replica is:

Pdelection = 1−
NQ∑

k=δTq

(
NQ

k

)
q̂k
i (1− q̂i)NQ−k. (7)

Formula (6) and Formula (7) show that Pcreation increases and

Pdelection decreases as NQ increases, and Pcreation decreases

and Pdelection increases as NQ decreases. It means that when a

file is becoming more and more popular, the replicas of the file

will spread wider and wider to the traffic hubs and requesters

in the system, and the query load of the file is distributed

among the replica nodes. From the perspective of the entire

system, file query can be resolved more efficiently at relatively

lower cost of storing replicas. When a file is becoming less and

less popular, its replicas will be removed from the system until

a balanced condition is reached, where no node is overloaded

by the file’s queries and the all replicas are fully utilized.

EAD arranges each node to keep track of its query rate

of a file for both replica creation and deletion. In ClientSide
and ServerSide, each file owner keeps track of every node’s

query rate for replica creation. In addition, each replica node

also needs to keep track of its query rate of a file for replica

deletion. Therefore, EAD produces less cost than ClientSide
and ServerSide for replica creation and deletion.

2.2.3 Query Rate Determination
File popularity and node interest vary over time. For example,

a file may suddenly become hot for a very short period of

time and then changes back to be cold. In this case, based on

the file replication algorithm introduced earlier, a number of

nodes replicate the file when they observe high qf of the file,

and then remove the replicas when qf is low after the next

periodical measurement, leading to replica fluctuation and a

waste of replication overhead. To deal with this problem, rather

than directly using the periodically measured results, EAD

employs exponential moving average technique (EMA) [16]

to reasonably determine file query rate over time period T .

————————————————————————————
Algorithm 1: Pseudo-code for EAD file replication algorithm.
————————————————————————————
//Executed by a file requester
Periodically calculate qf t by qf t = βqf t−1 + (1− β)qf t

if qf t > αTq then
if query for file f then

Include replication request into the query

//Executed by a query forwarding node
Periodically calculate qf t by qf t = βqf t−1 + (1− β)qf t

if qf t > Tq then
if receive a query for file f to forward then

Include replication request into the query

//Executed by a file server i
Periodically calculate li
if it is overloaded by a factor of γl {

if there are file replication requests during T{
Order replication requesters based on their qf

in a descending order
while

∑
qf t < (li − γlci) do{

Replicate file to replication requester on the top of the list
Remove the replication requester from the top of the list}}

else
Replicate file to the neighbor nodes that most
frequently forward queries for file f}

else
for each requested file replication by a node with qf t

if qf t × d× lq > r
Make a replication to the replication requester

//Executed by a replica node
for each replica of file f do {

Periodically calculate qf t = βqf t−1 + (1− β)qf t

if qf t ≤ δTq do
Remove the file replica}

————————————————————————————

EMA assigns more weight to recent observations without

discarding older observations entirely. It applies weighting

factors to older observed qf , so that the weight for each

older qf decreases exponentially. The degree of decrease is

expressed as a constant smoothing factor β ∈ [0, 1], which

serves as the fading mechanism.

The value of qf at time period t − 1 is designated by

qf t−1, and the value of the query rate at any time period T
is designated by qf t. The formula for calculating qf t at time

periods T ≥ 2 is

qf t = βqf t−1 + (1− β)qf t (8).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 11:22 from IEEE Xplore. Restrictions apply.

6

Smaller β makes the new observations relatively more impor-

tant than larger β, since a higher β discounts older obser-

vations faster. An appropriate value of β can be determined

according to the actual situation of a file sharing system. If

the query rate fluctuates greatly, it is better to use a large β.

Otherwise, small β can be used. Based on the query rate deter-

mination algorithm, node i observes the number of queries for

file f periodically, and computes qf using the EMA Formula

(8). EMA-base query rate calculation helps to reasonably

measure query traffic, which is critical to EAD’s effectiveness.

Algorithm 1 shows the pseudocode of EAD file replication

algorithm integrating its different strategy components.

2.2.4 Performance Analysis

We first analyze the effect of EAD by replicating files in traffic

hubs, which sheds additional insight into the performance of

EAD. Let pj denote the request probability of the jth request

for file f from a random requester, and J =
∑

qfj denote the

number of all requests for file f in the system in time period

T . We use Phit to denote the hit probability, ui to denote the

probability that routing node i has a replica, and oi to denote

the probability that node i is online. We use xi to indicate

whether node i contains a replica of file f . If yes, xi = 1;

otherwise xi = 0. We use dj to denote the path length of

request j.

The hit probability of the J requests is:

Phit = 1−
J∑

j=1

pj

dj∏
i=1

[(1− oi)(1− ui)]xi (10).

We consider a special case of the hit probability of one

request. In this case, each node is online with the same prob-

ability, each node in the lookup path has the same probability

of having a replica, and each request has a lookup path length

with the same length. That is, oi = o, ui = u and dj = d.

We use φj to represent a group of routing nodes for the jth

request. We use L{(φj ∩ (φ1, φj−1, φj+1 . . . φJ)) ≥ Tq} to

denote the number of routing nodes in group j that appear

in the rest J − 1 groups for at least Tq − 1 times. Recall

that when a node’s query rate exceeds query rate threshold,

i.e., qf > Tq, the node requests to become a replica node.

Therefore, L{(φj ∩ (φ1, φj−1, φj+1 . . . φJ)) ≥ Tq} means the

number of replica nodes in the lookup path of the jth request

if all requests are approved.

In the case of homogeneous node online probabilities and

routing node having replica probabilities, and the same lookup

path length, the problem of how files should be optimally

replicated is to choose Tq such that the following Phit is

maximized.

Phit = 1−[(1−o)(1−u)]d ⇒ 1−Phit = [(1−o)(1−u)]d (11).

subject to

L{(φj ∩ (φ1, φj−1, φj+1 . . . φJ)) ≥ Tq} = ud (12).

For instance, assume o = 90%, d = 10. In order to achieve

Phit = 90%, based on (11), we get:

0.1 = [0.1 + (1− u)]10 ⇒ u = 20%.

It means 20% nodes in a routing path should be replica nodes.

Therefore, based on (12), Tq should set to a value that makes

L{(φj ∩ (φ1, φj−1, φj+1 . . . φJ)) ≥ Tq} = 2.

We assume that the number of generated queries NQ of a

file follows Poisson distribution [17]; NQ � P(np), where p
is probability that a node generates a query for the file. We

assume that a replica node only responds to one request. The

problem of guaranteeing the probability of C that each query

generated can be resolved by a replica node is to calculate x
in the following inequation.{

P (NQ ≤ x) ≥ C
P (NQ ≤ x− 1) < C

Suppose that n = 10000, p = 0.0004 and C = 99%, thus

NQ � P(4). Replacing C in the inequation with 0.99, we

derive x = 9. This means that 9 replicas are needed to

ensure that a request is resolved by a replica node with 99%

probability.

We now analyze the performance of EAD compared to

ServerSide and ClientSide. We assume all replication methods

have m(m < n) replicas for a specific file f . The hit

probability for the J requests in ClientSide is:

Phit =
J∑

j=1

pj × m

n
(13).

Without the loss of generality, we assume m replicas cover all

the neighbors of the owner of file f . Thus, each request can

encounter one of m replicas. Therefore, Phit in ServerSide is:

Phit =
J∑

j=1

pj × 1 =
J∑

j=1

pj (14).

In EAD, a replica is created when qf > αq̄. It means that

on average, α requests can encounter the replica during T .

Hence, Phit in EAD is:

Phit =
J∑

j=1

pj × m

n/α
=

J∑
j=1

pj × αm

n
(15).

The results show that when α = n
m , EAD achieves the same

hit rate as ServerSide. Since the results of (14) and (15) are

higher than the result of (13) respectively, we can arrive at

Proposition 2.1.

Proposition 2.1: Given the same number of replicas for a

file, EAD and ServerSide lead to higher hit rate for the file

than ClientSide.

In ClientSide, when a request hits a replica, the path length

of the request is 0 because the replica is in the requester.

Otherwise, the path length of the request is log n on the

average case. Therefore, the total path lengths for J requests,

denoted by LJ , is:

LJ =
J∑

j=1

pj(1− m

n
)× log n (16).

Since replica nodes are the neighbors of file owner in Server-
Side, the path length of a lookup is approximately log n. Then,

LJ =
J∑

j=1

pj × log n (17).

In EAD, query traffic hubs are in the middle of a lookup

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 11:22 from IEEE Xplore. Restrictions apply.

7

N
E

HC

F

B

J K

A

D

H

I

P

M

L

O

G

client

server

Q

Fig. 4. Node join in a file sharing system.

path. Suppose replica nodes are located log n
ω hops from the

requesters on the average case. Therefore,

LJ =
J∑

j=1

pj × (1− αm

n
)× log n +

J∑
j=1

pj × αm

n
× log n

ω

=
J∑

j=1

pj(1− αm

ωn
log n) (18).

We can find that the result of (17) is larger than (16) and

(18). Comparing results (16) and (18), we observe that when

α > ω, EAD produces shorter LJ than ClientSide. Based on

the structured P2P routing algorithm, the query flows usually

converge in the second half of a path. This implies that ω < 2.

Since α ≥ 2 and α > ω in most cases, (18)<(16). Thus, we

can get the following Proposition:

Proposition 2.2: On the average case, EAD leads to shorter

path length than ClientSide, and ClientSide produces shorter

path length than ServerSide.

2.2.5 Discussion of EAD in Churn

P2P systems are characterized by churn in which participating

nodes continuously join and leave the network or even fail

unexpectedly. EAD should be able to efficiently handle node

joins, departures and failures.

Node joins. A node’s successor is the node with the smallest

nodeID among the nodes whose nodeIDs are larger than the

node’s ID. A node’s predecessor is the node with the largest

nodeID among the nodes whose nodeIDs are less than the

node’s nodeID. As shown in Figure 4, when a new node Q
joins a structured P2P system shown in Figure 1, it becomes

responsible for a portion of P2P global ID space based on

its nodeID. The original node responsible for the files in this

ID space portion, say node E, moves the files to node Q. In

addition, the routing tables of nodes that take Q as a neighbor

should be updated. There are mainly two policies for updating

the routing tables of affected nodes. Systems like Pastry and

Tapestry update affected routing tables once a new node joins

in. Rather than using instant updating, systems like Chord

rely on stabilization, in which each node updates its neighbors

periodically. This is a basic component of P2P maintenance

to guarantee the connectivity of nodes for successful routings

in churn.

For EAD, the issue at hand is deciding what to do with file

replicas. As indicated in Section 2.2.1, node degree influences

query imbalance. The newly-joined node Q may affect the

degree and hence the query load of node E. Some nodes that

take node E as a neighbor and frequently forward E the query

of a replica may replace node E with Q in their routing tables.

Thus, if node Q takes over most of the query load of a replica

from node E, node E should transfer the replica to node Q.

Therefore, to determine whether to move a replica depends on

how many nodes will replace node E with Q in their routing

tables. For example, in Figure 4, when node Q joins in the

system, nodes B, C and D replace their previous neighbor

E with Q. As a result, queries for a replica from nodes B,

C and D will flow to node Q. In this case, node E should

transfer the replica to node Q. Thus, each node such as node

E keeps track of the traffic flow coming from each of its

neighbors. When a node, say node C, replaces E with Q in

its routing table, it notifies node E. When node E finds that

most of its neighbors that frequently forward the query for its

replica replace itself with Q, it transfers the replica to node

Q. However, this method has a number of drawbacks. First,

keeping the record for traffic flow from each backward link is

resource consuming. Second, it is difficult to decide how much

of a replica’s traffic is moved from node E to node Q before

the replica transfer is triggered. Third, in P2P systems such as

Chord in which the routing tables are not updated soon after

a node join operation, E won’t transfer its replica to node Q
even if Q becomes a traffic hub soon after joining.
————————————————————————————
Algorithm 2: Pseudo-code for a node join in EAD algorithm.
————————————————————————————
//Executed by a joining node
Get its nodeID
Build its routing table and neighbor list
Notify its predecessor and successor
Receive the files in nodeID space [pre.ID, ID] and [ID, suc.ID]
Receive the indices of replicas in its predecessor and successor
Periodically compute the query rate of each of the replicas of f
if qf > Tq then

Request a replica from the owner of the replica

//Executed by a joining node’s predecessor and successor
Get the notification from the newly-joined node
Update its predecessor or successor
if it is the predecessor then

Transfer the files in nodeID [pre.ID, ID] to the newly-joined node
else

Transfer the files in nodeID [ID, suc.ID] to the newly-joined node
Transfer the indices of its replicas to the newly-joined node
Periodically calculate qf of each of its replica of f
if qf < δTq then

if the newly-joined node has the replica then
Remove the replica

else
Transfer the replica to the newly-joined node

————————————————————————————

To avoid these drawbacks, EAD depends on a less complex

and light-weight method. When node E transfers its files to

node Q, it also stores the indices of its replicas to node Q
indicating their location. If node Q receives a query for the file

of the replica, it directly forwards the query to node E based

on the indices. Later on, when node Q’s qf > Tq, it requests

to have a replica from node E. Since node Q and node E are

neighbors, the communication cost generated between them is

less than the cost of requesting a replica from the file owner.

When the qf < δTq condition continually occurs in node E
for a specified number of time periods, node E deletes the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 11:22 from IEEE Xplore. Restrictions apply.

8

replica if node Q already has the replica. Otherwise, it moves

the replica to node Q in case Q needs the replica. If the replica

is under-utilized in node Q, Q will remove the replica. This

strategy ensures that there is no unnecessary replica transfer

in a node join and meanwhile the replica is fully utilized.

Algorithm 2 shows the pseudo-code for a node join in the EAD

file replication algorithm in a system where a file is stored in

a node whose nodeID is the closest to the file’s fileID and

stabilization is used for updating routing tables.

————————————————————————————
Algorithm 3: Pseudo-code for node departure in EAD.
————————————————————————————
//Executed by a leaving node
Notify its predecessor and successor
Transfer files in [pre.ID,ID] to its predecessor
Transfer files in [ID,suc.ID] to its successor
if |suc.ID − ID| < |ID − pre.ID| then

N=successor
else

N=predecessor
Transfer all its replicas to N
Transfer the indices of its replicas to the other neighbor

//Executed by a leaving node’s predecessor and successor
Get the leaving notification
Update its predecessor or successor
Receive the files from the leaving node
if receive the replicas then

Periodically calculate qf of each of its replica of f
if qf < δTq then

if its predecessor or successor has the replica then
Remove the replica

else
Transfer the replica to its successor or predecessor

else
Periodically calculate qf of each file whose index is stored in itself
if qf > Tq then

Request a replica from the indexed replica node
————————————————————————————

Node departures. Before a node leaves the system, it

transfers its files to its successor and predecessor based on

the structured P2P system’s file allocation algorithm. Like

the node join operation, there are two policies for routing

table update for node departure. Systems like Chord depend

on stabilization. In others systems, the leaving node notifies

affected nodes that need to update their routing tables. Most

structured systems resort to stabilization to deal with node

departures without warning and node failures.

The problem that EAD needs to resolve is that the leaving

node should transfer its replicas to its successor or predecessor.

If there are more affected nodes originally forwarding the file

query take the successor as the replacement for the leaving

node, the file’s replica should be transferred to the successor.

Otherwise, the replica should be transferred to the predecessor.

According to the P2P neighbor selection policy, among

the successor and predecessor, the one closer to the leaving

node has higher probability to replace the leaving node in

affected nodes’ routing tables. For example, leaving node

12345’s successor is 12349 and its predecessor is 12339, then

its successor has higher probability to be its replacement in

affected nodes’ routing table. Based on this, EAD arranges

the leaving node to move its replica to its successor or its

predecessor that is closer to itself, and store the indices of the

replicas in the other node.

Suppose leaving node Q transfers its replicas to its successor

E and stores the indices of the replicas in its predecessor C.

Later on, when node C receives a query for the file of one

of the replicas, it directly forwards the query to its successor

node E. Node C keeps track of the query rate of the replicas

whose indices are stored in node C. When a file’s qf > Tq,

node C requests a replica from node E. Since node E and

node C are neighbors, the communication between these two

nodes will not generate much overhead. At the same time,

node E periodically checks qf of its replicas. When qf < δTq

condition continually occurs for a specified number of time

periods, it deletes the replica if node C already has the replica.

Otherwise, it moves the replica to node C in case C needs it

later. If the replica is under-utilized in node C, C removes the

replica.

Node departures without warning and node failures lead

to replica loss. EAD’s decentralized file replica adaption

algorithm helps to cope with the negative results due to replica

loss. In this case, the failed node’s otherwise carrying traffic

are moved to some other nodes. When these nodes observe

the high traffic volume of a file, they will create replicas.

This algorithm plays an important role in dealing with churn.

It ensures that traffic hubs have replicas for high utilization

of replicas, and there is few under-utilized replicas in churn.

Algorithm 3 demonstrates the pseudo-code for node departure

in the EAD file replication algorithm.

2.2.6 Discussion of EAD in Skewed Lookups
In skewed lookups, many nodes visit a file repeatedly and

continuously. For example, during the period of Olympic

games, Olympic news becomes very popular. Queries flowing

from all over the world to one file owner of Olympic news

will overload the owner, leading to high query latency. In this

case, much more replicas than usual are needed to release the

load of the owner, generating very high overhead. ServerSide
replicates the file at the neighbors near the owner. Thus,

queries still need to travel long way before encountering a

replica node. In addition, these replica nodes around the file

owner can easily be overloaded under the tremendous volume

of query flow. In ClientSide, much more replicas will be

stored in many widely distributed clients all over the world.

However, the replicas may not be shared by other requesters,

resulting in low replica utilization and very high overhead

for the maintenance of widely scattered replicas. In contrast,

skewed lookup is an asset in EAD, which enables EAD to

exploit its fullest capacity.

In skewed lookups, a significant amount of queries flow

towards the same destination. Thus, much more queries will

meet with each other than the regular lookups, generating

many traffic hubs. EAD replicates the file in traffic hubs.

Therefore, a high volume of query flow is resolved in the mid-

dle of routes, reducing the query latency and meanwhile en-

hancing the utilization of replicas. Therefore, skewed lookups

increase the number of traffic hubs, facilitating EAD to find

the traffic hubs for replications. In addition, it increases the

probability that a file query is resolved by a traffic hub, raising

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 11:22 from IEEE Xplore. Restrictions apply.

9

TABLE 1
Simulated environment and parameters.

Parameter Default value
File distributon Uniform over nodeID space

Number of nodes 4096

Node capacity c Bounded Pareto: shape 2
lower bound: 500
upper bound: 50000

Number of queried files 50

Number of queries per file 1000

Number of replication operations 5-25

Tq 5

γl 1

β, δ 0.5

T 1 second

the replica utilization. Unlike ServerSide and ClientSide that

cannot handle skewed lookups effectively and efficiently, EAD

exhibits its fullest advantages in skewed lookups.

To make ServerSide, ClientSide and EAD comparable, we

suppose ServerSide replicates a file in the file’s neighbor, and

ClientSide replicates a file in a requester if the requester’s

qf ≥ αq̄. We assume in skewed lookups, J(J →∞) requests

for a file are generated by random nodes in time period T .

We now analyze the probability that random node i becomes

a replica node in the skewed lookups.

Recall that q̂i denotes the probability that a request passes

the random node i. Thus, the probability that k requests pass

node i is:

P (X = k) = lim
J→∞

(
J

k

)
q̂k
i (1− q̂i)J−k = e−λ · λk

k!
,

where λ = Jq̂i. That is, X ∼ P(λ). Hence,

E(X) = λ = Jq̂i (19).

Thus, the probability that a random node becomes a replica

node is:

Pr = 1− P (X ≤ Tq) = 1−
α∑

k=1

e−λ · λk

k!
(20).

We use C , S and E to represent ClientSide, ServerSide and

EAD respectively. Considering the locations of replica nodes

in three methods, we get q̂C
i < q̂E

i < q̂S
i . Based on Equation

(19), we can get E(X)C < E(X)E < E(X)S . Therefore, we

can arrive at the following proposition.

Proposition 2.3: In skewed lookups, on the average case,

file owner neighbors in ServerSide have higher probability

to become replica nodes than the routing nodes in EAD,

which have higher probability to become replica nodes than

requesters in ClientSide.

We use Nhit to denote the number of replica hits for another

group J requests for the file in skewed lookups. Then, Nhit =
JPr. On the average case, NC

hit < NE
hit < NS

hit. Hence, we

can get the following proposition:

Proposition 2.4: In skewed lookups, the utilization of repli-

cas in ClientSide is not as high as in EAD, and that in EAD

is not as high as in ServerSide.

3 PERFORMANCE EVALUATION

We designed and implemented a simulator for evaluating the

EAD algorithm based on Chord P2P system [17]. We use

The 1st, ave. and 99th

-2

8

18

28

38

48

58

68

78

88

1 2 3 4 5
Test

Th
e

nu
m

be
r o

f q
ue

rie
s

Fig. 5. Query load imbalance.

system utilization to represent the fraction of the system’s

total capacity that is used, which equals to
∑n

i=1 li/
∑n

i=1 ci.

We compared the performance of EAD with ServerSide,

ClientSide and Path in both static and dynamic environments.

Experiment results show that EAD achieves high file query

efficiency, high hit rate, and balanced load distribution with

less file replicas. Moreover, EAD is resilient to P2P churn and

skewed lookups. In addition, EAD’s decentralized adaptation

strategy is effective in guaranteeing high replica utilization.

To be comparable, we used the same number of replication

operations when a server is overloaded in all replication algo-

rithms. In a replication operation, the server randomly chooses

one of its neighbors in ServerSide, a frequent requester in

ClientSide, and all nodes in a lookup path in Path to replicate

a file. Therefore, EAD, ServerSide and ClientSide replicate a

file to a single node while Path replicates to a number of nodes

in one replication operation.

We assumed bounded Pareto distribution for node capaci-

ties. This distribution reflects the real world where there are

machines with capacities that vary by different orders of mag-

nitude. The file requesters and requested files in the experiment

were randomly chosen. File lookups were generated according

to a Poisson process at a rate of one per second as in [17].

Table 1 lists the parameters of the simulation and their default

values.

3.1 Query Load Imbalance
This experiment is conducted in order to verify the funda-

mental basis that there exists traffic hubs based on which

EAD is developed. In the experiment, 5000 randomly selected

nodes query for the same file that is randomly chosen. We

conducted five tests, and recorded the average, the 1st and 99th

percentiles of the number of requests a node received. Figure 5

plots the results of the five tests. The figure shows that the 99th

percentile keeps around 80, the 1st percentile keeps at 0, and

the average is around 7. The results imply that the query load

varies among nodes, and some nodes have much heavier query

load than others. These highly-loaded nodes are traffic hubs,

where requests for a file meet together. The experiment results

confirm the existence of traffic hubs, which is the cornerstone

of the EAD algorithm. EAD takes advantage of these traffic

hubs to achieve efficient and effective file replication with low

overhead.

3.2 Effectiveness of Replication Algorithms
Figure 6(a) demonstrates the replica hit rate of different

algorithms versus the number of replication operations when a

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 11:22 from IEEE Xplore. Restrictions apply.

10

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25
Number of replication operations

Re
pl

ica
 h

it
ra

te

EAD
ServerSide
ClientSide
Path

0

500

1000

1500

2000

2500

3000

3500

4000

Nu
m

be
r o

f f
ile

 re
pl

ica
s

1 2 3 4 5
Number of replication operations

EAD
ServerSide
ClientSide
Path

(a) Replica hit rate (b) Number of replicas

Fig. 6. Effectiveness and overhead of file replication algorithms.

server is overloaded. We can observe that ClientSide generates

the least hit rate, EAD has higher hit rate than ServerSide, and

Path leads to higher hit rate than EAD. ClientSide replicates

a file in the file requesters, which may not request the same

file later. Also, other file requests have very low possibility of

passing through these replica nodes. Consequently, ClientSide
has very low replica hit rate. ServerSide replicates a file near

its owner, such that a query for the file has high probability

to encounter a replica node before it arrives at the file owner.

The result that EAD leads to higher hit rate than ServerSide is

particularly intriguing given that they have the same number of

replicas. Though ServerSide has high possibility for a query to

meet a replica node near the file server, it is not guaranteed.

EAD replicates a file at frequent requesters or traffic hubs,

ensuring high hit rate. This implies the effectiveness of EAD

to replicate files in nodes with high query rate, which enhances

the utilization of replicas and hence reduces the lookup path

length. Path replicates files at nodes along a routing path. More

replica nodes render higher possibility for a file request to

meet a replica node. Therefore, Path increases replica hit rate

and produces shorter path length. However, its efficiency is

outweighed by its prohibitive cost of overhead for keeping

track of query paths and maintaining much more file replicas.

3.3 Overhead of Replication Algorithms

Figure 6(b) illustrates the total number of replicas in different

algorithms. It shows that the number of replicas increases as

the number of replication operations increases. The number

of replicas of Path is excessively higher than others, and that

of others keep almost the same. It is because in each file

replication operation, a file is replicated in a single node in

ServerSide, ClientSide and EAD, but in multiple nodes along

a routing path in Path. Therefore, Path needs much higher

overhead for file replication and replica maintenance.

In conclusion, Path has high hit rate and short lookup path

length, but this benefit comes at the cost of prohibitively higher

overhead. ServerSide and ClientSide incur less overhead for

file replicas, but are relatively less efficient in lookups. EAD

can achieve approximately the same lookup efficiency at a

significantly lower cost.

3.4 Load Balance of Replication Algorithms

This experiment demonstrates the load balance among replica

nodes in each replication method. Recall that ClientSide and

ServerSide don’t take into account node available capacity,

while EAD proactively takes into account node available

capacity during file replication. It avoids exacerbating over-

loaded node problem by choosing nodes with enough available

capacity as replica nodes. Thus, it outperforms ClientSide and

ServerSide by controlling the overloaded nodes and hence

extra overhead for load balancing or further file replication.

We measured the maximum node utilizations of all nodes and

took the 1st, 99th percentiles and median of those results as

experiment results. Figure 7 plots the median, 1st and 99th

percentiles of node utilizations versus system utilization. Path
distributes load among much more replica nodes, so its load

balance result is not comparable to others. Therefore, we

did’t include the results of Path into the figure. The figure

demonstrates that the 99th percentile of node utilization of

ServerSide is much higher than others. It is because ServerSide
relies on a small set of nodes within a small range around

the overloaded file owner, which makes these replica nodes

overloaded. In contrast, ClientSide and EAD replicate files in

widely distributed nodes. The figure also shows that the 99th

percentile of node utilization of EAD is constrained within

1, while those of ClientSide and ServerSide are higher than

1 and increase with system utilization. The results imply that

ClientSide and ServerSide incur much more overloaded nodes

due to the neglect of node available capacity. In EAD, a node

sends a replication request only when it has sufficient available

capacity for a replica. Thus, EAD can keep all nodes lightly

loaded with the consideration of node available capacity.

3.5 Effectiveness of Decentralized Adaptation

Figure 8 shows the effectiveness of decentralized replica

adaptation strategy in EAD. We use EADw/A and EADw/oA
to denote EAD with and without this strategy respectively. In

this experiment, the number of hot files is ranged from 50 to

10 with 10 decrease in each step. Figure 8 (a) illustrates that

EADw/A and EADw/oA can achieve almost the same average

path length and replica hit rate. Figure 8 (b) shows that the

number of replicas of EADw/A decreases as the number of

hot files decreases, while that of EADw/oA keeps constant.

EADw/A adjusts the number of file replicas adaptively based

on the file query rate, such that less popular or requested files

have less file replicas and vice versa. The results imply that

EADw/A performs as well as EADw/oA with regards to lookup

efficiency and replica hit rate, but it reduces unnecessary

replicas and creates replicas for hot files corresponding to

query rate in order to keep replicas worthwhile. Thus, EADw/A

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 11:22 from IEEE Xplore. Restrictions apply.

11

0

0.5

1

1.5

2

2.5

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
System utilization

No
de

 u
til

iza
tio

n
EAD
ServerSide
ClientSide

Fig. 7. Node utilization.

0

1

2

3

4

5

10 20 30 40 50
Number of hot files

Ave. path length
EAD w/o A
EAD w/ A
Replica hit rate
EAD w/o A
EAD w/ A

(a) Ave. path length & replica hit rate

0

50

100

150

200

250

10 20 30 40 50
Number of hot files

Nu
m

be
r o

f f
ile

 re
pl

ica
s

EAD w/o A
EAD w/ A

(b) Number of replicas

Fig. 8. Effectiveness of adaptiveness in EAD file replication algorithm.

guarantees high replica utilization while saves overhead for

maintaining replicas of cold files.

3.6 Performance in Skewed Lookups

We tested the file replication algorithms in skewed lookups. In

the experiment, only the files whose fileID is between [0,99]

are queried. The fileIDs of the queried files are randomly gen-

erated. Figure 9 shows the performance of different replication

methods in skewed lookups. Figure 9(a) plots the average

path length of different algorithms. It demonstrates that Path
generates the shortest lookup path length, and EAD leads to

marginally longer lookup path length than Path. ServerSide’s

path length is longer than EAD, and ClientSide’s path length is

longer than ServerSide. Since the file destinations are gathered

together in a small nodeID space interval, the file requests from

different directions are very likely to take similar routes and

the probability that two requests meet together is very high.

Therefore, by replicating a file in the nodes along the route,

Path significantly reduces the path length. EAD replicates a file

in nodes with high query load. It also reduces path length since

a request meets the replica node with very high probability in

skewed lookups. Because it has less replicas than Path, its path

length is slightly longer than Path. ServerSide replicates a file

around its server. Thus, a file request still needs to travel until

it is close to the server before it encounters a replica node,

which results in longer path length. Replicating a file in a

client doesn’t enable other requesters to share the replica. The

requests from other requesters still need to be forwarded hop

by hop to the file server, leading to longer path length.

Figure 9(b) shows the replica hit rate of each replication

algorithm. Path generates the highest hit rate followed by

EAD. ServerSide produces lower hit rate than EAD followed

by ClientSide. The results are consistent with the lookup path

results in Figure 9(a). Higher rate leads to shorter lookup

path length and vice versa. The reasons for the results are

due to the same reasons observed in Figure 9(a). Figure 9(c)

demonstrates the number of file replicas in each replication

algorithm. We can observe that Path produces much more

replicas than others. It is because Path replicates a file in

all node in a route and the EAD, ServerSide and ClientSide
algorithms only replicate a file in one node. The results imply

that Path achieves shorter path length and high hit rate at

the cost of dramatically more replicas. EAD’s path length is

slightly longer than Path and much shorter than ServerSide
and ClientSide, but its cost is almost the same as them.

3.7 Performance in Churn

We evaluated the efficiency of the file replication algorithms

in Chord P2P system with churn. We run each trial of the

simulation for 20T̄ simulated seconds, where T̄ is a parame-

terized time period, which was set to 60 seconds. Node joins

and voluntary departures are modelled by a Poisson process

as in [17] with a mean rate, which ranges from 0.05 to 0.40.

A rate of 0.05 corresponds to one node joining and leaving

every 20 seconds on average. In Chord, each node invokes

the stabilization protocol once every 30 seconds and each

node’s stabilization routine is at intervals that are uniformly

distributed in the 30 second interval. The number of replication

operations when a server is overloaded was set to 15. We

specify that before a node leaves, it also transfers its replicas

to its neighbors along with its files.

Figure 10(a) plots the average lookup path length versus

node join/leave rate. We can see that the results are consistent

with those in Figure 6 without churn due to the same reasons.

We can also observe that the lookup path length increases

slightly with the node join/leave rate. Before a node leaves,

it transfers its replicas to its neighbors. A query for the file

may pass through the neighboring replicas or other replica

nodes. Otherwise, the query needs to travel to the file owner.

In addition, churn may lead to detour routing with more

node hops along the routing path. Therefore, the path length

increases marginally with the node join/leave rate. Since Path
has much more replicas, a query has higher probability of

meeting a replica node. Hence, its path length does not

increase as fast as others. In summary, churn does not have

significant adverse impact to the file replication algorithms due

to the P2P self-organization mechanisms.

The next experiment is to test the lookup latency of each

replication algorithm. We assume that the request forwarding

latency is 0.2 second in a lightly loaded node, and 1 second in a

heavily loaded node. Figure 10(b) displays the average lookup

latency versus the node join/leave rate. It can be observed

that the latency increases as node join/leave rate grows due to

the same reasons observed in Figure 10(a). It is intriguing to

see that the latency of Path is longer than EAD, and that of

ServerSide is longer than ClientSide since the path length of

the algorithms are in the opposite case. In addition to the path

length, node utilization is also an important factor affecting

the lookup latency. A heavily loaded node needs more time

to process and forward a request than a lightly loaded node.

EAD avoids overloading nodes by replicating a file to nodes

with sufficient capacity. However, Path just replicates a file in

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 11:22 from IEEE Xplore. Restrictions apply.

12

4.5

4.6

4.7

4.8

4.9

5

5 10 15 20 25
Number of replicating operations per file

Av
e.

 p
at

h
le

ng
th

EAD
ServerSide
ClientSide
Path

0

0.05

0.1

0.15

0.2

5 10 15 20 25
Number of replicating operations per file

Re
pl

ica
 h

it
ra

te

EAD
ServerSide
ClientSide
Path

0

500

1000

1500

2000

2500

3000

3500

4000

5 10 15 20 25
Number of replicating operations per file

Nu
m

be
r o

f f
ile

 re
pl

ica
s

EAD
ServerSide
ClientSide
Path

(a) Ave. path length (b) Replica hit rate (c) Number of replicas

Fig. 9. Performance of file replication algorithms in skewed lookups.

the nodes along a lookup path without considering the node

capacity and load status, which tend to generate heavily loaded

nodes. Thus, although Path has average less hops in a lookup,

it leads to longer lookup latency due to its neglect of node load

status. ServerSide replicates a file around a server, overloading

the nodes close to the server. In contrast, ClientSide distributes

replicas among requesters in the entire system, making it

less possible to generate heavily loaded nodes. Consequently,

although ServerSide has shorter path length than ClientSide, its

average lookup latency is longer than ClientSide. The results

demonstrate that an effective file replication algorithm should

reduce lookup path length and meanwhile avoid generating

heavily loaded nodes.

4 RELATED WORK

Numerous methods have been proposed for file replication

in P2P systems. As mentioned, most current file replication

methods generally can be classified into three categories:

ServerSide, ClientSide and Path. Some proposed approaches

use a combination of the methods.

ServerSide category includes PAST [2], CFS [3], Back-

slash [4] and Overlook [5]. PAST is an Internet based global

P2P storage utility with a storage management and caching

system. It replicates each file on a set number of nodes whose

nodeIDs match most closely to the file owner’s nodeID. The

number of replicas is chosen to meet the availability needs of

a file, relative to the expected failure rates of individual nodes.

The work also proposed file diversion method in which a file is

diverted to a different part of ID space by choosing a different

fileID when a file insert operation fails. PAST uses file caching

along the lookup path to minimize query latency and balance

query load. Cooperative File System (CFS) [3] is a P2P read-

only storage system for file storage and retrieval. CFS is

built on Chord [17] and replicates blocks of a file on nodes

immediately after the block’s owner on the Chord ring. CFS

also caches a file location hint along a path to improve query

efficiency and avoid overloading servers that hold popular

data. Stading et al. [4] proposed Backslash, which is built on

a structured P2P overlay and caches aggressively a file that

experiences a high request load. Each Backslash node has

available storage splitting into two categories: replica space

and temporary cache space. Replicas are placed in the overlay

by insertion operations of the distributed hash table (DHT).

A temporary cache is a cached copy of a document that is

placed opportunistically at a node. Overlook [5] is built on

Pastry [18]. It places a replica of a file on a node with most

incoming lookup requests for fast replica location. Overlook

does this by selecting the incoming forwarding node with the

highest recorded request rate and sending that node a create-

replica request message.

In the ClientSide category, Gnutella [7] replicates files in

overloaded nodes at the file requesters. Nodes store and serve

only what they requested, and a replica can be found only

by probing a node with a replica. FarSite [19, 20, 21] is a

traditional file system with high reliability and availability.

It replicates the same number (e.g., 3 or 4) of a file on

the client side to enhance file availability. LAR [6] is a

lightweight, adaptive and system-neutral replication protocol.

It specifies the overloaded degree of a server that a file should

be replicated, and replicates a file to a client. In addition to

replicating a file at the requester, LAR also replicates file

location hints along the lookup path. Once a replica is created,

LAR installs cache state on the path from the new replica to

the node that created the replica.

In the Path category, Freenet [22] replicates files on the path

from the requester to the target. Freenet’s request mechanism

will cause popular data to be transparently replicated by

the system and mirrored closer to requestors. In addition

to PAST [2], CFS [3] and LAR [6], CUP [8], DUP [9]

and the work in [10] also perform caching along the query

path. CUP [8] is a protocol for performing Controlled Update

Propagation to maintain caches of metadata in P2P networks.

The propagation is conducted by building a CUP tree similar to

an application-level multicast tree. A node proactively receives

updates for metadata items from a neighbor only if the node

has registered interest with the neighbor. However, interme-

diate nodes along the path receive the updated index even if

they do not need it. Dynamic-tree based Update Propagation

(DUP) scheme [9] is proposed to improve CUP. DUP builds

a dynamic update propagation tree on top of the existing

index searching structure. Because the update propagation tree

only involves nodes that are essential for update propagation,

the overhead of DUP is very small and the query latency is

significantly reduced. Cox et al. [10] studied providing DNS

service over a P2P network. In order to increase the robustness

as servers come and go, a Chord-based distributed hash table

automatically moves data so that it is always stored on a fixed

number of replicas (typically six). Specifically, the method

caches index entries, which are DNS mappings, along query

paths.

Ghodsi et al. [23] proposed a symmetric replication scheme

in which a number of fileIDs are associated with each other,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 11:22 from IEEE Xplore. Restrictions apply.

13

3

3.5

4

4.5

5

5.5

0 0.1 0.2 0.3 0.4 0.5
Node join/leave rate

Av
e.

 p
at

h
le

ng
th

EAD
ServerSide
ClientSide
Path

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5
Node join/leve rate

La
te

nc
y

(s
ec

on
d)

EAD
ServerSide
ClientSide
Path

(a) Ave. path length (b) Lookup latency

Fig. 10. Performance of file replication algorithms in churn.

and any file with a fileID can be replicated in nodes responsible

for the fileIDs in this group. HotRoD [24] is a structured

P2P based architecture with a replication scheme. An arc of

peers (i.e. successive peers on the ring) is “hot” when at

least one of these peers is hot. In the scheme, “hot” arcs

of peers are replicated and rotated over the identifier space.

LessLog [25] determines the replicated nodes by constructing

a lookup tree based on nodeIDs to determine the location of

the replicated node. Ni et al. [26] introduced expected costs

computed from user request rates, file storage/transfer/miss

costs, and node up/down statistics. The authors then proposed

file replication schemes that determine the sets of nodes to

store replicas in order to minimize the expected costs. DHT-

based self-adapting replication protocol [27] determines the

locations of replicas by the DHT data allocation algorithm.

It enables a newly-joined peer first to assume an initial value

for the number of replicas, and then adjusts autonomously the

number of replicas to deliver a configured data availability

guarantee. The works in [28, 29, 30, 31, 32, 33] employed

erasure coding technique for file replication. The technique

allows nodes to generate encoded blocks of information for

replication, which could enhance availability and reliability in

storage and communication systems.

There are other studies for file replication in unstructured

P2P systems [34, 35, 36, 37, 38, 34, 39, 40]. Since unstructured

P2P systems use flooding or random probing based methods

for file location, the number of replicas directly affects the

efficiency of file query. These works study the system perfor-

mance such as successful queries and bandwidth consumption

when the number of replicas of a file is proportional, uniform

and square-root proportional to the query rate. The works

focused on the relationship between the number of replicas,

file search time and load balance, but did not investigate the

impact of replica location on file query efficiency.

5 CONCLUSIONS

Traditional file replication methods for P2P file sharing sys-

tems replicate files close to file owners, file requesters or query

path to release the owners’ load and meanwhile improve the

file query efficiency. However, replicating files close to the file

owner may overload the nodes in the close proximity of the

owner, and cannot significantly improve query efficiency since

replica nodes are close to the owners. Replicating files close to

or in the file requesters only brings benefits when the requester

or its nearby nodes always query for the file. In addition, due to

non-uniform and time-varying file popularity and node interest

variation, the replicas cannot be fully utilized and the query

efficiency cannot be improved significantly. Replicating files

along the query path improves the efficiency of file query, but

it incurs significant overhead.

This paper proposes an Efficient and Adaptive Decentralized

file replication algorithm (EAD) that chooses query traffic

hubs and frequent requesters as replica nodes to guarantee

high utilization of replicas and high query efficiency. Unlike

current methods in which file servers keep track of replicas,

EAD creates and deletes file replicas by dynamically adapting

to non-uniform and time-varying file popularity and node

interest in a decentralized manner based on experienced query

traffic. It leads to higher scalability and ensures high replica

utilization. Furthermore, EAD relies on exponential moving

average technique to reasonably measure file query rate for

replica management.

Theoretical study sheds insight into the efficiency and

effectiveness of EAD. Simulation results demonstrate the

superiority of EAD in comparison with other file replica-

tion algorithms. It dramatically reduces the overhead of file

replication and produces significant improvements in lookup

efficiency. In addition, it is resilient to P2P churn and skewed

lookups.

In the future work, we will further study the effect of

churn on the efficiency and effectiveness of EAD. In a public

P2P system, a node may not be willing to have replicas for

others. We will study the effect of real system constraints and

access right constraints for replications. We also plan to further

explore adaptive methods to fully exploit file popularity and

update rate for efficient replica consistency maintenance.

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers for

their valuable comments and suggestions. This research was

supported in part by U.S. NSF grants CNS-0834592, CNS-

0832109 and CNS 0917056. An early version of this work [41]

was presented in the Proceedings of P2P08.

REFERENCES

[1] S. Saroiu, P. Gummadi, and S. Gribble. A measurement

study of peer-to-peer file sharing systems. In Proc. of
MMCN, 2002.

[2] A. Rowstron and P. Druschel. Storage Management and

Caching in PAST, a Large-scale, Persistent Peer-to-Peer

Storage Utility. In Proc. of SOSP, 2001.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 11:22 from IEEE Xplore. Restrictions apply.

14

[3] F. Dabek, M. F. Kaashoek, D. Karger, and et al. Wide-

area cooperative storage with CFS. In Proc. of SOSP,

2001.

[4] T. Stading and et al. Peer-to-peer Caching Schemes to

Address Flash Crowds. In Proc. of IPTPS, 2002.

[5] M. Theimer and M. Jones. Overlook: Scalable Name

Service on an Overlay Network. In Proc. of ICDCS,

2002.

[6] V. Gopalakrishnan, B. Silaghi, and et al. Adaptive

Replication in Peer-to-Peer Systems. In Proc. of ICDCS,

2004.

[7] Gnutella home page. http://www.gnutella.com.

[8] M. Roussopoulos and M. Baker. CUP: Controlled Update

Propagation in Peer to Peer Networks. In Proc. of
USENIX, 2003.

[9] L. Yin and G. Cao. DUP: Dynamic-tree Based Update

Propagation in Peer-to-Peer Networks. In Proc. of ICDE,

2005.

[10] R. Cox, A. Muthitacharoen, and R. T. Morris. Serving

DNS using a Peer-to-Peer Lookup Service. In Proc. of
IPTPS, 2002.

[11] P. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy,

and J. Zahorjan. Measurement, Modeling, and Analysis

of a Peer-to-Peer File-Sharing Workload. In Proc. of
SOSP, 2003.

[12] C. Plaxton, R. Rajaraman, and A. Richa. Accessing

nearby copies of replicated objects in a distributed envi-

ronment. In ACM SPAA, 1997.

[13] P. Godfrey and I. Stoica. Heterogeneity and Load Bal-

ance in Distributed Hash Tables. In Proc. of INFOCOM,

2005.

[14] H. Shen and C. Xu. Elastic Routing Table With Provable

Performance for Congestion Control in DHT Networks.

In Proc. of ICDCS, 2006.

[15] Q. Lv, S. Ratnasamy, and S. Shenker. Can Heterogeneity

Make Gnutella Scalable? In Proc. of IPTPS, 2002.

[16] Y.-L. Chou. Statistical Analysis. Holt International, 1975.

ISBN 0030894220.

[17] I. Stoica, R. Morris, D. Liben-Nowell, and et al. Chord:

A Scalable Peer-to-Peer Lookup Protocol for Internet

Applications. TON, 1(1):17–32, 2003.

[18] A. Rowstron and P. Druschel. Pastry: Scalable, decen-

tralized object location and routing for large-scale peer-

to-peer systems. In Proc. of Middleware, 2001.

[19] A. Adya et al. Farsite: Federated, available, and reliable

storage for an incompletely trusted environment. In Proc.
of OSDI, 2002.

[20] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and

M. Theimer. Reclaiming space from duplicate files in

a serverless distributed file system. In Proc. of Inter-
national Conference on Distributed Computing Systems,

2002.

[21] J. R. Douceur and R. P. Wattenhofer. Optimizing file

availability in a secure serverless distributed file system.

In Proc. of SRDS, pages 4–13, 2001.

[22] I. Clarke, O. Sandberg, and et al. Freenet: A Distributed

Anonymous Information Storage and Retrieval System.

In Proc. of the International Workshop on Design Issues

in Anonymity and Unobservability, pages 46–66, 2001.

[23] A. Ghodsi, L. Alima, and S. Haridi. Symmetric Repli-

cation for Structured Peer-to-Peer Systems. In Proc.
of International Workshop on Databases, Information
Systems and Peer-to-Peer Computing, page 12, 2005.

[24] T. Pitoura, N. Ntarmos, and P. Triantafillou. Replication,

Load Balancing and Efficient Range Query Processing

in DHTs. In Proc. of EDBT, 2006.

[25] K. Huang and et al. LessLog: A Logless File Replication

Algorithm for Peer-to-Peer Distributed Systems. In Proc.
of IPDPS, 2004.

[26] J. Ni, J. Lin, S. J. Harrington, and N. Sharma. Designing

File Replication Schemes for Peer-to-Peer File Sharing

Systems. In Proc. of IEEE ICC, page 5609.

[27] P. Knezevic̀, A. Wombacher, and T. Risse. DHT-based

self-adapting replication protocol for achieving high data

availability. In Proc. of SITIS, 2008.

[28] W. K. Lin, D. M. Chiu, and Y. B. Lee. Erasure code

replication revisited. In Proc. of International Conference
on Peer-to-Peer Computing, 2004.

[29] R. Rodrigues and B. Liskov. High availability in DHTs:

Erasure coding vs. replication. In Proc. of International
Workshop on Peer-to-Peer Systems, 2005.

[30] C. Gkantsidis and P. Rodriguez. Network coding for large

scale content distribution. In Proc. of INFOCOM, 2005.

[31] A. Haeberlen, A. Mislove, and P. Druschel. Glacier:

Highly durable, decentralized storage despite massive

correlated failures. In Proc. of Symposium on Networked
Systems Design and Implementation, 2005.

[32] J. Kangasharju, K. W. Ross, and D. A. Turner. Optimiz-

ing File Availability in Peer-to-Peer Content Distribution.

In Proc. IEEE INFOCOM, 2007.

[33] J. Kangasharju, K. W. Ross, and D. A. Turner. Adaptive

content management in structured P2P communities. In

Proc. of Infoscale, 2006.

[34] S. Tewari and L. Kleinrock. Proportional Replication in

Peer-to-Peer Networks. In Proc. of IEEE INFOCOM,

2006.

[35] L. Massoulie and M. Vojnovic. Coupon Replication

Systems. In Proc. of ACM SIGMETRICS, 2005.

[36] S. Tewari and L. Kleinrock. On Fairness, Optimal

Download Performance and Proportional Replication in

Peer-to-Peer Networks. In Proc. of IFIP Networking,

2005.

[37] E. Cohen and S. Shenker. Replication strategies in

unstructured peer-to-peer networks. In Proc. of ACM
SIGCOMM, 2002.

[38] S. Tewari and L. Kleinrock. Analysis of Search and

Replication in Unstructured Peer-to-Peer Networks. In

Proc. of ACM SIGMETRICS, 2005.

[39] D. Rubenstein and S. Sahu. Can Unstructured P2P

Protocols Survive Flash Crowds? IEEE/ACM Trans. on
Networking, (3), 2005.

[40] Q. Lv and K. Li. Search and Replication in Unstructured

Peer-to-Peer Networks. In Proc. of ICS, 2002.

[41] H. Shen. EAD: An Efficient and Adaptive Decentralized

File Replication Algorithm in P2P File Sharing Systems.

In Proc. of P2P, 2008.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 11:22 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

