
Elastic Routing Table with Provable
Performance for Congestion Control

in DHT Networks
Haiying Shen, Member, IEEE, and Cheng-Zhong Xu, Senior Member, IEEE

Abstract—Consistent hashing-based DHT networks have an inherent load balancing problem. The problem becomes more severe in

heterogeneous networks with nonuniform and time-varying popular files. Existing DHT load balancing algorithms are mainly focused

on the issues caused by node heterogeneity. To deal with skewed lookups, this paper presents an elastic routing table (ERT)

mechanism for query load balancing, based on the observation that high-degree nodes tend to receive more traffic load. The

mechanism allows each node to have a routing table of variable size corresponding to node capacities. The indegree and outdegree of

the routing table can also be adjusted dynamically in response to the change of file popularity and network churn. Theoretical analysis

proves that the routing table degree is bounded. The ERT mechanism facilitates locality-aware randomized query forwarding to further

improve lookup efficiency. By relating query forwarding to a supermarket customer service model, we prove that a two-way

randomized query forwarding policy should lead to an exponential improvement in query processing time over random walking.

Simulation results demonstrate the effectiveness of the ERT mechanism and its related query forwarding policy for congestion and

query load balancing. In comparison with existing “virtual-server”-based load balancing algorithms and other routing table control

approaches, the ERT-based congestion control protocol yields significant improvement in query lookup efficiency.

Index Terms—Distributed hash table, peer-to-peer, load balancing, congestion control.

Ç

1 INTRODUCTION

IN structured P2P overlay networks, each node and file key
is assigned a unique ID, based on a consistent hashing

function. The file keys are mapped on to nodes according to
their IDs and a distributed hash table (DHT) definition. The
DHT maintains topological relationships between the nodes
and supports a routing protocol to locate a node responsible
for a required key. Because of their lookup efficiency,
robustness, scalability, and deterministic data location,
DHT networks have received much attention in recent
years. Representatives of the systems include CAN [26],
Chord [33], Tapestry [34], Pastry [27], and Cycloid [32].

DHT networks have an inherent load balancing problem.
It is because consistent hashing produces a bound of O(log n)
imbalance degree of keys between the network nodes. The
problem becomes even more severe as the nodal hetero-
geneity increases. What is more, files stored in the system
often have different popularities and the access patterns to the
same file may vary with time. It is a challenge to design a DHT
protocol with the capability of congestion control.

The primary objective of congestion control is to avoid
bottleneck in any node (i.e., the query load exceeds its
capacity). Bottleneck may occur with query overflow in

which too many queries received by the node at a time, or
with data overflow in which a too high volume of data needed
to be downloaded and forwarded by the node. DHT routing
algorithms may lead to the convergence of query load
targeted for an object on a small number of nodes around
the destination, leading to bottlenecks. In addition, although
files are often transmitted via a direct connection between
source and destination, data forwarding through intermedi-
ary nodes in the query routing path is often used for the
provisioning of anonymity of file sharing, as in Freenet [10],
Mantis [5], Mutis [1], and Hordes [16]. Recent studies of P2P
file sharing systems [13], [28] demonstrate that node capacity
and node query pattern are heavily skewed in the systems.
Nodes are easily become bottlenecks in such an environment.

In the past, many load balancing strategies have been
proposed to deal with the network heterogeneity; see [33],
[12], [4] for examples. It is known that a long key ID space
interval has a high probability of being contacted than a short
interval. Most of the existing approaches share a common
idea of “virtual server,” in which a physical node simulates a
number of virtual overlay servers so that each node is
assigned ID space interval of a different length according to
its capacity. The simplicity of the approaches comes at a high
cost to maintain the relationship between a node’s respon-
sible interval and its capacity. Moreover, because the
approaches are based merely on key ID assignment, they
do not provide any control over congestions caused by the
factors of nonuniform and time-varying file popularity.

There are other approaches, based on “item-movement,”
which take into account the effect of file popularity on query
load [3], [31], [30]. In these approaches, heavily loaded
nodes probe light ones and reassign excess load between the
peers by changing the IDs of related files or nodes. Albeit

242 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2010

. H. Shen is with the Department of Electrical and Computer Engineering,
Clemson University, 313-B Riggs Hall, Clemson, SC 29634.
E-mail: shenh@clemson.edu.

. C.-Z. Xu is with the Department of Electrical and Computer Engineering,
Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202.
E-mail: czxu@ece.eng.wayne.edu.

Manuscript received 3 May 2008; revised 25 Jan. 2009; accepted 9 Mar. 2009;
published online 17 Mar. 2009.
Recommended for acceptance by K. Hwang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2008-05-0166.
Digital Object Identifier no. 10.1109/TPDS.2009.51.

1045-9219/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:39 from IEEE Xplore. Restrictions apply.

flexible, the load reassignment process incurs high overhead
for changing IDs, especially in networks under churn.

Notice that the existing load balancing approaches
assume that each node (or virtual node) has the same and
constant DHT degree. That is, each node maintains the
same number of neighboring relationships, irrespective of
its capacity. The principle of power-law networks tells that
the higher degree nodes tend to experience more query
loads [2]. In light of this, in this paper, we present an elastic
routing table (ERT) mechanism to cope with node hetero-
geneity, skewed queries, and churn in DHT networks.
Unlike current structured P2P routing tables with a fixed
number of outlinks, each ERT has a different number of
inlinks/outlinks, and the indegree/outdegree of each node
can be adjusted dynamically according to its experienced
traffic so as to direct query flow to light nodes.

Recently, Castro et al. [7] exploited heterogeneity in
congestion control by static mapping between node inde-
gree and capacity and biasing high-capacity nodes for
overlay neighbors. Static mapping cannot deal with nonuni-
form and time-varying file popularity and churn. Simple
capacity bias may also make high-capacity nodes become
bottlenecks. The ERT-based congestion control protocol
goes beyond the construction of capacity-aware DHTs. It
deals with congestion due to time-varying file popularity by
adjusting the indegrees and outdegrees of the routing tables
and capacity-aware query forwarding. We summarize the
contributions of this paper as follows:

. An initial indegree assignment for the construction
of capacity-aware DHTs. The indegrees are provably
bounded.

. A policy for periodic indegree adaptation to deal
with the nonuniform and time-varying file popular-
ity. It is proved that the indegree bounds remain
bounded.

. A topology-aware randomized query forwarding
policy on the elastic DHTs. It is proved that the ERT-
enabled query forwarding leads to an exponential
improvement in query processing time over random
walking.

. Comprehensive simulations demonstrate the super-
iority of the ERT protocol, in comparison with the
“virtual-server”-based load balancing policy and
other routing table control approaches.

The rest of this paper is structured as follows: Section 2
presents a concise review of representative congestion control
approaches for unstructured and structured P2P systems.
Section 3 shows the ERT-based protocol, focusing on initial
indegree assignment and periodic adjustment. Section 4.1
gives the details of topology-aware randomized query
forwarding policy. Section 5 shows the performance of the
protocol with comparison of a variety of metrics. Section 6
concludes this paper with remarks on possible future work.

2 RELATED WORK

There have been many load balancing algorithms to deal
with node heterogeneity and network churn [33], [12], [4].
“Virtual server” [33] is a popular approach, in which each
real node runs OðlognÞ virtual servers and the keys are

mapped onto virtual servers so that each real node is
responsible for the key ID space of different length propor-
tional to its capacity. It is simple in concept, but the virtual
server abstraction incurs large maintenance overhead and
compromises lookup efficiency. Godfrey and Stoica [12]
addressed the problem by arranging a real server for virtual
ID space of consecutive virtual IDs. When a node selects its
virtual servers, it first picks a random starting point and then
selects one random ID within each of �ðlognÞ consecutive
intervals of size �ð1=nÞ. In [4], Bienkowski et al. proposed a
distributed randomized scheme to let a linear number of
nodes with short ID space interval to divide the existing long
ID space interval, resulting in an optimal balance with high
probability. To achieve load balance, Byers et al. [6]
suggested the direct application of the “power of two
choices” paradigm, whereby an item is stored at the less
loaded of two (or more) random alternatives.

Since a node with a longer interval has a higher
probability of being contacted, the load balancing algorithms
based on ID space interval assignment control traffic
congestion due to the node heterogeneity in capacity. Initial
key ID space partitioning is insufficient to guarantee load
balance, especially in churn. It is often complemented by
dynamic load reassignment. Godfrey and Rao et al. proposed
schemes to rearrange load between heavy nodes and light
ones according to their capacities so as to avoid bottleneck
[11], [25]. They assumed that query load is uniformly
distributed in the ID space.

Bharambe et al. [3] proposed a load balancing algorithm
to deal with the congestion caused by biased lookups. They
defined a node’s load as the number of messages routed or
matched per unit time. The algorithm proceeds in a way
that heavily loaded nodes probe a number of sample nodes
and requests lightly loaded nodes to leave from their
current locations and rejoin at the location of the heavily
loaded nodes. To get the load distribution information, each
node periodically samples nodes within a certain distance
and maintains approximate histograms. This requires much
communication and maintenance cost, especially in churn.
In addition, node ID changes due to the node leave/rejoin
incurs high overhead.

The idea of using irregular routing tables with respect to
the node capacity has been recently pursued by Hu et al.
[14] and Li et al. [17]. Their foci were on a trade-off between
maintenance overhead and lookup efficiency. Hu et al.
proposed to deploy large routing tables in high-capacity
nodes to exploit node heterogeneity and improve lookup
efficiency. Li et al. designed an Accordian mechanism on
Chord to vary the table size in different network scales and
churn rates without compromising lookup efficiency. Chun
et al. [9] evaluated the impact of neighbor selection on
performance and resilience of structured P2Ps. The neigh-
bor selection takes into consideration different types of
heterogeneity, such as node capacity and network proxi-
mity. With node capacity consideration, a node chooses its
neighbors which have the smallest processing delay.
However, this method likely makes high-capacity neigh-
bors become bottlenecks. In fact, always biasing the query
routing toward high-capacity nodes exacerbate the problem
if these nodes do not have enough capacity to handle a
sudden query flow caused by churn. The query load should

SHEN AND XU: ELASTIC ROUTING TABLE WITH PROVABLE PERFORMANCE FOR CONGESTION CONTROL IN DHT NETWORKS 243

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:39 from IEEE Xplore. Restrictions apply.

be assigned to high-capacity nodes as well as low-capacity
nodes proportional to their capacities.

Castro et al. [7] proposed a neighbor selection algorithm
to construct routing tables based on the node’s different
capacities. Its basic idea of using node indegrees to exploit
node heterogeneity is similar to our initial indegree assign-
ment algorithm. Their algorithm directs most traffic to high-
capacity nodes because it does not choose low-capacity
nodes as neighbors unless the indegree bounds of high-
capacity nodes are reached. In contrast, ERT mechanism
would distribute the traffic between the neighbors propor-
tional to their capacities so as to make full utilization of both
high and low-capacity nodes. Moreover, ERT mechanism
handles more than node heterogeneity. It handles biased
lookups and churn by adjusting table indegree and out-
degree dynamically and query forwarding.

Finally, we note that the problem of congestion control is
not unique in structured P2P networks. It has been a crucial
performance issue in unstructured P2P networks, as well.
Many studies have been devoted to flow control in unstruc-
tured networks; see [24], [18], [2], [19], [8] for recent examples.
Like congestion control in DHT networks, their solutions are
based on the principle of power-law networks that high-
degree nodes play an important role in communication.

Osokine [24] proposed a reactive flow control mechanism,
in which receivers drop packets when becoming overloaded
and senders infer the likelihood that a neighbor will drop
packets based on the responses that they receive from the
neighbor. This mechanism is acceptable when queries are
flooded across the network, because even if a node drops a
query, other copies of the query will propagate through the
network. However, it is not suitable for random walks search
[18]. Lv et al. [18] revealed that in power-law networks, such
as Gnutella, the high-degree nodes often experience high
query load. They suggested that P2P systems should adopt
graph building algorithms that reduce the likelihood of very-
high-degree nodes. On the contrary, Adamic et al. [2] took
advantage of the feature of power-law networks that high-
degree nodes play an important role in communication. They
proposed a message-passing algorithm, which forwards
queries to high-degree nodes so as to speed up the process of
finding targeted files. It is noticed that high-degree nodes are
not necessarily high-capacity nodes and that they are prone
to bottleneck if they carry an extremely large share of query
traffic. To overcome this disadvantage and to consider node
heterogeneity, Lv et al. [19] proposed query flow control and
topology adaptation algorithms to let higher capacity nodes
have a higher degree, and forward queries to these nodes.
The algorithms gradually change the overlay topology, based
on the status of each neighbor link, so that queries flow
toward the nodes that have sufficient capacity to handle
them. However, the bias to high-capacity nodes may also
make them to become hot spots. Chawathe et al. [8] proposed
an active flow control scheme, which acknowledges the
existence of heterogeneity and adapts to it by assigning flow-
control tokens to nodes base on available capacity. In the
scheme, a node distributes k flow-control tokens means that
the node is willing to accept kqueries, and a sender is allowed
to direct a query to a neighbor only if it has a flow-control
token of the neighbor.

Because of DHTs’ strictly controlled topology and pre-
cisely defined routing algorithm, their routing table neigh-
bors are restricted and query routing path is fixed. Since, the

flow control algorithms were designed for flooding or
random walk query routing networks, the flow control
algorithms on unstructured P2P networks cannot be applied
for load balancing and congestion control in DHT networks.

3 ELASTIC DHT

ERT is designed based on the power-law principle of
networks that a higher degree node tends to receive more
query load. The ERT-based protocol constructs routing
tables with different number of outlinks for different nodes
so as to distribute query load among the nodes in
proportion to their capacities. To deal with skewed queries,
each node dynamically adjusts its indegree according to its
actual query load experienced.

3.1 Definitions

We assume an DHT network with n physical nodes, labeled
as an integer from 1 to n. Node i; 1 � i � n, has a capacity
that the node is willing to devote or able to process queries.
We assume that node i’s capacity ci is a quantity that
represents the number of queries that node i can handle in a
given time interval T. In practice, the capacity should be
determined as a function of a node’s access bandwidth,
processing power, disk speed, etc. We define the load of
node i; li, as the number of queries it receives and transmits
to its neighbors over time T . We refer to node with traffic
load li � ci as a light node, otherwise a heavy or overloaded
node. In order to facilitate the description, we define
notions used in this paper in Table 1.

The purpose of a congestion control protocol is to avoid
heavy nodes in query routings and distribute query load
among nodes corresponding to their capacities. From the
view point of an entire system, in fair load distribution,
each node’s load share is proportional to its “fair load
share,” as defined by

si ¼
li=
P

i li
ci=
P

i ci
:

Ideally, the fair share si should be kept close to 1. In this
case, a node’s capacity is fully utilized and it is also not
overloaded. One way to achieve this is to measure the traffic
load li of every node periodically and forward queries
according to collected global traffic load information.

244 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2010

TABLE 1
Notations

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:39 from IEEE Xplore. Restrictions apply.

Obviously, this method is too costly to be used in any
scalable overlay network. In [19], Lv et al. showed that a
high-degree node in Gnutella network would most likely
experience high query load. We apply the principle to the
design of congestion control in DHT networks. We define
indegree, denoted by di; 1 � i � n, as the number of inlinks
of node i. Under the assumption that nodes and file queries
are uniformly distributed in an DHT network without
churn, li is directly related to di. New policies will be
proposed to deal with the nonuniformly distributed nodes,
file queries, and churn in Sections 3.3 and 4.1.

It is known that the indegree of a node is determined by
the number of outlinks of other nodes. In order to have a
node’s indegree to be proportional to its capacity, we
reverse the relationship to determine node’s outdegree by
setting an appropriate value of indegree. To the end, we
need to address two technical questions:

1. How to determine a node’s indegree in order to
make full use of its capacity and keep it light loaded
at the same time?

2. How to construct ERTs with different indegrees of
nodes, and meanwhile retaining the original DHT
routing table function for lookup routing?

We normalize node capacity c so that the average of c is
1; that is,

P
i ci ¼ n. Recall that in a uniform system without

churn, li is related to di directly. It follows that

si �
di=
P

i di
ci=
P

i ci
and di � ci

P
i di
n

when si ¼ 1 ideally. Taking

P
i
di

n as a constant �, we define �
as indegree per unit capacity. It is a system parameter and is
determined as a function of different metrics in system
experience such as inlink query forwarding rate and query
initiation rate in a nonuniform system with churn. High-load
system should have small alpha while low-load system
could have large alpha. Considering that the maximum
number of queries a node can process at a time depends on its
capacity, we define node i’s maximum indegree d1i as b0:5þ
�cic since � is indegree per unit capacity. In order to keep the
decimal fraction, 0.5 is used. The initial indegree of node i is
�d1i , where � is a predefined percentage for reservation
purpose. It is determined according to system actual query
load. If nodes are easily overloaded due to the query load, �
should be a small value. Otherwise, it could be set to a large
value. There is a trade-off in�determination: if� is too small,
high-capacity nodes cannot be fully utilized because of low
indegree, while a large � makes it very possible that low-
capacity nodes, even high-capacity nodes, become heavy
nodes. Moreover, large � leads to extra maintenance cost for
overlay connections. Therefore, it is important to determine a
suitable �. In the following, we present an initial indegree
assignment algorithm for the construction of ERT.

3.2 Initial Indegree Assignment

Like bidirectional links in Gnutella, we assume that each DHT
node imaintains a backward outlink (backward finger) for each
of its inlink, in order to know the nodes which forward
queries to it. Consequently, a double link is maintained for
each routing table neighbor. Once node i joins the system, it
needs to build its routing table based on DHT protocols. In

order to control each di below d1i , we set a restriction that only
nodes with available capacity d1i � di � 1 can be the joining
node’s neighbors. Each neighbor in node i’s routing table
creates a backward finger to node i. After building a basic
routing table, node i then probes other nodes which can take it
as their neighbor to achieve its initial indegree �d1i . As a
result, high-capacity nodes produce high indegrees while
low-capacity nodes lead to low indegrees.

To probe nodes for indegree expansion, the IDs of those
nodes should be first decided. The ID set can be determined
in the opposite way of the original DHT neighbor selection
algorithm. We will explain it later in DHT examples. After
the determination of the ID set, node i sends requests
targeting to some of the nodes in the set that are not in the
list of its backward fingers. On receiving such a request, the
node which is responsible for the ID checks if it can take
node i as its routing table neighbor. If can, it adds node i into
its corresponding entry in its routing table and sends back a
positive reply. Once node i receives positive reply from a
node, say node j, it builds a backward finger to node j. In
the following, we take Chord, Cycloid, Pastry, and Tapestry
as DHT examples to explain indegree expansion algorithm.
The algorithm can be applied to other structured overlays
that have little flexibility in the selection of neighbors by
relaxing their routing table neighbor constraints.

In Chord, a node has OðlognÞ fingers in its routing table.
We represent ID of node i as i. Then, the ðmþ 1Þth finger of
node i is the successor of ðiþ 2mÞð0 � m � d� 1Þ. Fig. 1a
shows the routing table of the node with ID (10100000).
Actually, Chord’s routing table neighbor constraint can be
loosed. That is, the ðmþ 1Þth finger is a set of successors
succeeding the successor of ðiþ 2mÞð0 � m � d� 1Þ. Fig. 1b
illustrates the resultant routing table of node (10100000).
Such that node i can ask nodes with a set of predecessor IDs
of ði� 2mÞð0 � m � d� 1Þ to point to it. For example,
assume node i’s ID is (1010-1-011) and it can send requests
targeting to ID 2 ½1010� 0� 000; 1010� 0� 011� to take it
as their 4th routing table finger. If the ID of node j which
receives the request is 2 ½1010� 0� 000; 1010� 0� 011�,
node j takes i as its 4th routing table finger. Otherwise,
node j cannot take i as its 4th routing table finger.

Cycloid is a constant-degree DHT where each node has
seven outdegree. We keep the Cycloid topology but remove
the restriction of the constant degree. That is, a node’s
outdegree can be any value. In Cycloid with dimension d, a
node ðk; ad�1ad�2 . . . ak . . . a0Þðk 6¼ 0Þhas one cubical neighbor
ðk� 1; ad�1ad�2 . . . akxx . . .xÞ and two cyclic neighbors ðk�
1; bd�1bd�2 . . . b0Þ and ðk� 1; cd�1cd�2 . . . c0Þ in its routing table.
Fig. 2 shows an example of routing table of Cycloid node with

SHEN AND XU: ELASTIC ROUTING TABLE WITH PROVABLE PERFORMANCE FOR CONGESTION CONTROL IN DHT NETWORKS 245

Fig. 1. Examples of Chord routing table without and with loose

restriction.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:39 from IEEE Xplore. Restrictions apply.

ID (4,101-1-1010). By the opposite way of neighbor selection, a
node ðk� 1; ad�1ad�2 . . . ak . . . a0Þ can send requests targeting
to ðkþ 1; ad�1ad�2 . . . akxx . . .xÞ to ask nodes to take it as their
cubical neighbors, and also it can send requests targeting ðkþ
1; ad�1ad�2 . . . akxx:::xÞ to ask nodes to take it as their cyclic
neighbors. For instance, node i (3,101-0-0000) can probe
ð4; 101� 1� xxxxÞ to increase its indegree. Let’s say, node i
first sends a request targeting (4,101-1-0000). Assuming node
j receives the request, if j 2 ð4; 101� 1� xxxxÞ; j adds i as its
cubical neighbor and node i builds a backward finger to j. If
node i needs to increase its indegree to 10, but it is only 6 after
cubical backward finger probing, node i probes cyclic
backward finger for the rest 4 indegree. Algorithm 1 shows
the pseudocode of indegree expansion algorithm in Cycloid.
In the pseudocode, we represent the cubical ID ad�1ad�2

. . . ak . . . a0 in node ID ðk; ad�1ad�2 . . . ak . . . a0Þ as aid.

Algorithm 1. Pseudo-code for indegree expansion

algorithm of Cycloid node i ðk; ad�1ad�2 . . . ak . . . a0Þ

1: //probe backward fingers of cubical neighbor

2: figure out a set of cubical neighbor inlinks

ID ¼ ðkþ 1; ad�1ad�2 . . . akxx . . .xÞ
3: id ¼ ðkþ 1; ad�1ad�2 . . . ak00 . . . 0Þ
4: while not finish probing all IDs in ID ^ððd1i � diÞ � �d1i Þ

do

5: while id is in backward fingers do

6: id ¼ ðkþ 1; aid þþÞ 2 ID
7: end while

8: probe ID for cubical neighbor inlink

9: id ¼ ðkþ 1; aid þþÞ 2 ID
10: end while

11: //probe backward fingers of cyclic neighbor

12: figure out ID of cyclic neighbor inlinks

ID ¼ ðkþ 1; ad�1ad�2 . . . akxx . . .xÞ
13: id ¼ ðkþ 1; ad�1ad�2 . . . ak00 . . . 0Þ
14: while not finish probing all IDs in ID
^ððd1i � diÞ � �d1i Þ do

15: while id is in backward fingers do

16: id ¼ ðkþ 1; aid þþÞ 2 ID
17: end while

18: probe ID for cyclic neighbor inlink

19: id ¼ ðkþ 1; aid þþÞ 2 ID
20: end while

Pastry’s routing table is organized into dlogcb ne (b is a
configuration parameter) rows with 2b � 1 entries each. An
entry at row m of node i’s routing table refers to a node
whose ID shares the node i’s ID in the first m digits, but
whose ðmþ 1Þth digit is not the ðmþ 1Þth digit in node i’s

ID. For example, node ð10233102Þ can have nodes with ID
ð10xxxxxxÞ at its row 2, as shown in Fig. 3. Tapestry’s
routing table neighbor selection algorithm is similar to
Pastry’s. Since each entry has multiple choices, node
iðad�1ad�2 . . . ak�1ak . . . a0Þ can send request targeting to
ðad�1ad�2 . . . ak�1akx . . .xÞ to ask nodes to take it as their
kth row entry. Algorithm 2 shows the pseudocode of
indegree assignment algorithm.

Algorithm 2. Pseudo-code for indegree assignment

algorithm of node i join

1: while (node i’s routing table has not created) do

2: probe another node for routing table neighbors

3: if (receive j’s posiRpy) then

4: set j as routing table neighbor, i.e., create a outlink to j

5: end if

6: end while

7: while ðd1i � di � �d1i Þ do

8: execute indegree expansion algorithm

9: if receive k’s posiRpy then

10: creates backward finger to k

11: di þþ
12: end if

13: end while

fnode j execution:g
14: if (receive node i’s neighbor probing) then

15: if ðd1j � dj � 1Þ then

16: send posiRpy to i
17: build a backward finger to i

18: dj þþ
19: else

20: send negRpy to i

21: end if

22: end if

fnode k execution:g
23: if (receives node i’s backward finger probing) then

24: if (i can be k’s routing table neighbor) then

25: create outlink to i

26: send posiRpy to i

27: end if

28: end if

The initial indegree assignment algorithm proceeds
repeatedly. We prove that the ERT indegree resulted from
the algorithm is bounded. We assume an DHT that manages

246 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2010

Fig. 2. An example of Cycloid routing table.

Fig. 3. An example of Pastry routing table.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:39 from IEEE Xplore. Restrictions apply.

a unit-size ID space, i.e., ½0; 1Þ � IR employing arithmetic
modulo 1, and the DHT uses consisting hash [15] to
partition the ID space among the nodes. Thus, the
responsible ID space imbalance is logn. We assume that
each node i can estimate its capacity ci and the network scale
nwithin a factor of �c and �n, respectively, of the true values,
with high probability1; readers are referred to [20], [23] for
details of such an estimation process. We denote ~n as
estimated n and ~c as estimated c.

Theorem 3.1. The initial indegree assigned to a node i is between
�ci=�c �Oð1Þ and �ci�c þOð1Þ w.h.p.

Proof. With �c and �n as the maximum error factor of a node’s
estimated capacity and n; ~ci is within the factor �c of ci and
~n is within �n of nw.h.p. Thus, the indegree first assigned
to node i is at most b0:5þ ~ci�ð~nÞc � ~ci�ð~nÞ þOð1Þ �
�cci�ð�nnÞ þOð1Þ � �cci�ðnÞ þOð1Þ. The indegree first
assigned to node i is at least b~ci�ð~nÞ � 0:5c � ~ci�ð~nÞ �
Oð1Þ � ci=�c�ðn=�nÞ �Oð1Þ � ci=�c�ðnÞ �Oð1Þ. tu

Algorithm 3. Pseudo-code for periodic indegree adaptation

algorithm of node i

1: if ðgi > �lÞ //node i overloaded? then

2: ask 1
2 ðli � ciÞ� nodes pointed by backward fingers to

delete i form their routing tables

3: if (receive k’s posiRpy) then

4: delete backward finger to k

5: di ��
6: d1i þþ
7: end if

8: else

9: if ðgi < 1=�lÞ then

10: probe 1
2 ðci � liÞ� nodes for backward finger

11: if (receive k’s posiRpy) then

12: create backward finger to k

13: di þþ
14: d1i ��
15: end if

16: end if

17: end if

3.3 Periodic Indegree Adaptation

In practice, nodes join and leave DHT overlays continu-
ously and the files in the system may have nonuniform and
time-varying popularity. Considering the fact that query
load often varies with time, the initial indegree assignment
is not robust enough to limit a node’s query load under its
capacity. To ensure that queries flow toward nodes with
sufficient capacity, the congestion control protocol should
adapt to the change of query rate and lookup skewness
caused by nonuniform and time-varying file popularity, as
well as network churn.

We design a periodic indegree adaptation algorithm to
help each node adjust its indegree periodically according to

the maximum load it experienced. Specifically, every node i
records its query load li over T periodically and checks
whether it is overloaded or lightly loaded by a factor of �l;
i.e., whether gi ¼ li=ci > �l or < 1=�l. In the former case, it
decreases �ðli � ciÞ indegree by asking some of its backward
fingers to delete it from their routing tables, then deletes
corresponding backward fingers, and decreases its max-
imum indegree d1i correspondingly. � is a predefined
percentage. To choose a backward finger to remove, it
chooses the one with the longest logical distance. In the case
with the same logical distances, it chooses the one with the
longest physical distance. In the latter case, it increases
�ðci � liÞ indegree by probing other nodes to take it as their
neighbors using the inlink expansion algorithm discussed
in Section 3.2 and increases its d1i correspondingly.
Algorithm 3 shows the pseudocode of periodic indegree
adaptation algorithm.

The following theorem shows that the ERT indegree in
the process of adaptation remains bounded.

Theorem 3.2. With indegree assignment and periodic adaptation
algorithm, a node i has an indegree between ci

�c�l�max
and ci�c�l

�min
,

where �max and �min represent the maximum and minimum
incoming query rate per inlink in the system, respectively. And
its indegree change is bounded in each adaptation.

Proof. Node i does not need to update its indegree when
~ci�l � li � ~ci=�l, where ci

�c
� ~ci � �cci. Assume that during

a certain time period T, the average incoming query rate
per inlink of node i is �i; that is, on average, there are �i
queries coming from each inlink during time T. Assume
that node i has degree di at a certain time point during T
such that li ¼ �idi.

When li > ~ci�l, node i updates its indegree to

di � �ðli � ~ciÞ. Since li > ~ci�l; �idi > ~ci�l, the indegree is at

most di � �~cið�l � 1Þ; di � � ci
�c
ð�l � 1Þ. It is di � �ð�idi �

~ciÞ � ð1� �Þ�idi þ �ci
�c

. Consequently, the indegree is de-

creased to between ð1� �Þ�idi þ �ci
�c

and di � � ci
�c
ð�l � 1Þ.

On the other hand, when li <
ci
�l

, node iupdates its indegree

to di þ �ð~ci � liÞ. Since li <
~ci
�l
; �idi <

~ci
�l

, the indegree is at

least di þ �~cið1� 1
�l
Þ; di þ � ci

�c
ð1� 1

�l
Þ. It is di þ �ð~ci �

�idiÞ � ð1� ��iÞdi þ �ci�c. Therefore, the indegree is in-

creased to between di þ � ci
�c
ð1� 1

�l
Þ and ð1� ��iÞdi þ �ci�c.

The indegree is changed until it reaches a status that ~ci�l �
�idi � ~ci=�l;

ci�c�l
�min
� di � ci

�c�l�max
. tu

For example, in a network of size 2,048, if a node’s capacity
is 50 and its average incoming query rate is 0.5, its indegree
is bounded by 100 in the case �l ¼ 1. The following theorem
shows that the outdegree of an ERT is bounded as well. We
leave its proof to the Appendix.

Theorem 3.3. A Cycloid node has an outdegree of at most
2�c�lcmax
�min

�Oð2dd Þ þOð1Þ w.h.p., where d is the DHT dimension.

4 DYNAMIC RANDOMIZED QUERY FORWARDING

Periodic indegree adaptation may not be sufficient to deal
with query load imbalance. In this section, we present a
complementary randomized query forwarding algorithms
to help forward queries toward light nodes so as to further
reduce lookup latency.

SHEN AND XU: ELASTIC ROUTING TABLE WITH PROVABLE PERFORMANCE FOR CONGESTION CONTROL IN DHT NETWORKS 247

1. An event happens with high probability (w.h.p.) when it occurs with
probability 1�Oðn�1Þ.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:39 from IEEE Xplore. Restrictions apply.

4.1 Query Forwarding Policies

With the initial indegree assignment and periodic adapta-
tion algorithms, each node’s routing table has a variable
size. With a high probability, each ERT has a set of outlinks
in each of its routing table entries. For example, a Cycloid
node i ¼ ð4;101-1-1010Þ has cubical outlinks pointing to
nodes (3,1010-0000), (3,1010-0001), and (3,1010-0010). For an
incoming query destined for its cubical neighbors based on
the original routing algorithm, there would be three
candidates to take the query.

A simple forwarding policy is random walk, in which one
of the outlinks is selected randomly. Another one is gradient-
based walk that forwards a query to the “best” candidate in
terms of their workload. Instead of probing all of the
neighbors to find out the best candidate, we restrict the
search space to a small set of size b. That is, once receiving a
query, node i first randomly selects b neighbors (outlinks)
and then probes the nodes in the set sequentially, until a light
node is found. In the case that all candidates are overloaded,
the query is forwarded to the least heavily loaded one. For
example, node i receives a query with key (2,1010-0011) and
the query should be forwarded to a cubical neighbor
according to Cycloid routing algorithm. It first randomly
chooses two options (3,1010-0010) and (3,1010-0001) among
the three cubical neighbors if b ¼ 2. If most of a node’s
neighbors are heavily loaded, the forwarding policy cannot
improve the performance too much. Although such situation
may not occur frequently, in this case, the node will generate
more neighbors to handle this problem based on the periodic
indegree adaption algorithm.

The b-way randomized query forwarding is further
enhanced by taking into account the underlying topology
information in the candidate selection. In the topology-
aware forwarding policy, a node selects the best candidate
among b neighbors by two extra criteria: close to the target
ID by the logical distance (hops) in the DHT network and
close to the node by the physical distance on the Internet;
readers are referred to [31], [30] for a landmarking method
to measuring physical distance between two nodes on DHT
networks. In the case that the two candidates are both lightly
loaded, the closer node in logical distance is selected. Their
physical distance is used to break the tie of logical distance.

Probing b neighbors is a costly process. How to find a
good candidate from b neighbors at a relatively low cost?
Query forwarding in this context can be regarded as a
supermarket customer service model (see Section 4.2 for
justification). The supermarket model is to allocate each
incoming task (a customer) to a lightly loaded server with
the objective of minimizing the time each customer spends
in the system. Mitzenmacher [21] proved that granting a
task with two server choices and dispatching it to one of the
servers with less workload leads to an exponential im-
provement over the single choice in the expected execution
time of each task. But a poll size larger than two gains much
less substantial extra improvement. Furthermore, Mitzen-
macher et al. [22] improved the performance of two-choice
method by the use of memory. In this method, each time a
task is allocated, the least loaded of that task’s choices after
allocation is remembered and used as one of the possible
choices for the next task.

We adapt this memory-based randomized task dispatch-
ing method with modifications to topology-aware rando-
mized query forwarding. We set b ¼ 2. A node first
randomly selects two options, say nodes i and j. It then
selects the better one, say node i, and remember the least
loaded node between i and j after node i increases by one
load unit. We assume that the node is still i, which is used
for the next query forwarding. Later, when the node needs
to forward a query to the same routing table entry, it only
needs to randomly choose one neighbor, instead of two.
With the remembered node i, it repeats the process again.

To further reduce the heavy nodes in query routings, a
query flows by the use of the information of overloaded
nodes encountered before, to avoid overloaded node in the
succeeding routings. For example, a lookup node has three
options for forwarding a query: i1; i2, and i3. Using the
above method, it forwards the query to i2 with information
of overloaded node i1. In the second step, node i2 has three
options: i1; j1, and j2. Because it knows that i1 is overloaded,
it will not select i1 as a option for query forwarding.
Algorithm 4 shows the pseudocode of the topology-aware
randomized query forwarding algorithm.

Algorithm 4. Pseudo-code for topology-aware randomized

query forwarding algorithm executed by node i

1: receive query Q with overloaded node information A

2: determine the set of outlinks for the query forwarding

based on DHT routing algorithm.

3: choose options J ¼ fj1; j2 . . .g from the outlink set

excluding overloaded node in A
4: if memory has a node ja then

5: randomly choose a node jb from J

6: else

7: randomly choose two nodes ja and jb from J

8: end if

9: //choose the better node from ja and jb
10: probe node ja and jb for load status

11: if ja and jb are heavy then

12: add ja and jb to A

13: forward Q and A to the least heavily loaded node

14: else

15: if one node is light and one node is heavy in ja and jb
then

16: add the heavy node to A

17: forward Q and A to the light node

18: end if

19: else

20: choose nodes Jlog logically nearest to target ID from

ja and jb
21: choose nodes Jphy physically nearest to node i from

Jlog
22: forward Q and A to a node in Jphy
23: end if

4.2 Analysis of Query Forwarding Policies

The simple query forwarding model (QFM) can be
rephrased as the following: After a node receives a query,

248 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2010

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:39 from IEEE Xplore. Restrictions apply.

it forwards the query to one of its neighbors. If the chosen
neighbor is heavily loaded by a factor �l, another specific
neighbor is turned to. This process is repeated until the
node finds a light neighbor. In the case that all neighbor
options are heavy, the query is forwarded to the least
heavily loaded option. We assume that the query forward-
ing time for a query is constant and incoming query is
Poisson distributed [33].

The forwarding model can be regarded as a variation of
strong threshold supermarket model (STSM) proposed in [21] if
we take �l as the threshold in the latter. In the STSM,
customers arrive at a Poisson stream of rate �n (� < 1) at
n FIFO servers. Each customer chooses a server indepen-
dently and uniformly at random and only makes additional
choices if the previous choice is beyond a predetermined
threshold. If both choices are over the threshold, the
customer queues at the shorter of its two choices. The
service time for a customer is exponentially distributed with
mean 1. A key difference between the QFM and the STSM is
that the servers are homogeneous in the STSM but
heterogeneous in the QFM.

Along the line of analytical approach in [21], we analyze
the performance of the randomized query forwarding
algorithms. The following theorem shows that the two-
way randomized query forwarding policies improve look-
up efficiency exponentially over random walking. Readers
are referred to the Appendix for the proof.

Theorem 4.1. For any fixed time spot T , the time a query
waits before being forwarded during the time interval ½0; T �
is bounded and b-way ðb � 2Þ forwarding yields an
exponential improvement in the expected time for a query
queuing in a server.

5 PERFORMANCE EVALUATION

This section demonstrates the distinguished properties of
the ERT-based congestion control protocol through simula-
tion built on an Oð1Þ-degree Cycloid network. ERT can also
be applied to other DHT networks. Simulations on other
OðlognÞ-degree networks are expected to produce better
results. We assumed a bounded Pareto distribution for the
capacity of nodes [11]. This distribution reflects real-world
situations where machines’ capacities vary by different
orders of magnitude. Recall that the maximum indegree of
a node, say node i, is defined in Section 3.2 as b0:5þ �cic,
where ci ¼ nci=

P
i ci is the normalized capacity of the

node. That is, the node can handle this amount of queries at
one time. We define node i’s load as the number of queries
in its query processing queue. If node i has more than
b0:5þ �cic queries in its queue, it is overloaded. We further
assumed that the queries be generated according to a
Poisson process at a rate of one per second [33], with a
random source node and a random target key, unless
otherwise noted. Table 2 lists the parameters of the
simulation and their default values.

We evaluate the effectiveness of the congestion control
protocol in the following metrics:

. Congestion rate of a node i, as defined by gi ¼ li=ci.
Ideally, the rate should be kept around 1, implying
the node is neither overloaded nor under utilized,

and its capacity is fully utilized. We use the metric of
the 99th percentile maximum congestion to measure the
network congestion, and use the metric of the 99th
percentile congestion of minimum capacity node to
reflect the node utilization.

. Query distribution share si. Recall that share

si ¼
li=
P
li

ci=
P
ci
:

It represents the performance of fair load distribution,
i.e., the total system load is distributed among nodes
based on their capacity. The objective of fair sharing is
hard to achieve in DHT networks because of a number
of reasons. First, it is hard to collect the load and
capacity of other nodes. Second, DHT is a dynamic
system with continuous node joins and departures, as
well as continuous query initialization. It is hard to
control instant share of each node in such a dynamic
situation. Third, since query load is not uniformly
distributed among the nodes, it changes with file
popularity and churn. Although fair sharing is not the
objective of congestion control, we use the metric of
the 99th percentile share to show how it can be
approximated by the control of indegrees.

. Query processing time. It is determined by two
factors: lookup path length and the number of heavy
nodes encountered in each path. The metric of path
length reflects the performance of the query for-
warding algorithm, and the metric of number of
heavy nodes shows how the congestion control
protocol avoids heavy nodes in direct traffic flow
in order to reduce lookup latency.

We conducted experiments on Cycloid networks without
congest control (Base) and with ERT-based congestion
control (ERT). For comparison, we also include the results
due to a “virtual server” load balancing method [12] (VS)
and a neighbor selection algorithm for indegree control
(NS) [7]. The NS algorithm bears resemblance to the ERT
initial indegree assignment as to select neighbor based on
node indegree bound. However, NS always selects high-
capacity nodes as neighbors. It may overcompromise the
needs of low-capacity nodes. ERT makes full use of node
capacity by letting nodes reach their indegree bounds.
Moreover, ERT allows dynamic indegree adaptation (A)
and facilitates query forwarding (F) to deal with network

SHEN AND XU: ELASTIC ROUTING TABLE WITH PROVABLE PERFORMANCE FOR CONGESTION CONTROL IN DHT NETWORKS 249

TABLE 2
Simulated Environment and Algorithm Parameters

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:39 from IEEE Xplore. Restrictions apply.

churn and skewed lookups. We represent the congestion
control in different combinations by ERT/A, ERT/F, and
ERT/AF, respectively.

We measured their performance as functions of total
lookup number and query processing speed at each node.
We varied lookup number from 1,000 to 5,000, with 1,000
increase in each step. We also varied the processing time of
a query in a light node from 0.1 to 2.1 second and five times
of that in a heavy node. The total query load increases in
both cases and we observed similar results in simulation.

5.1 Congestion Control Efficiency

We measured each node’s maximum congestion during all
test cases and calculated the 99th percentile maximum node
congestion. Fig. 4a shows the congestion rate due to each
method increases as more lookup queries arrive. The NS
protocol produces a higher 99th percentile maximum
congestion rate than Base. It implies that a heavy node in
NS has much more load corresponding to its capacity than a
heavy node in Base. This is expected because NS strongly
biases high-capacity nodes as routing table neighbors. The
high-capacity nodes may turn out to be overloaded.

In contrast, VS and ERT/AF lead to much lower
congestion rates. That is, they are more effective in
controlling the load of each node based on its capacity.
Also, ERT/AF outperforms VS, especially when the system
is highly loaded. The relative performance between NS,
VS, and ERT/AF, as shown in Fig. 4a, can be verified by
the 99th percentile congestion rate of minimum capacity
node in Fig. 4b. It is expected to see that the low-capacity
node becomes congested as the query load increases.
Without congestion control (Base), the congestion rate
increases sharply. The congestion control protocols delay
the occurrence of congestion. In particular, the NS protocol
overprotected low-capacity nodes due to its high-capacity-
biased neighbor selection policy. In comparison, ERT/AF
keeps low-capacity nodes fully utilized, without driving
them into overloaded states.

To further evaluate the impact of individual factors of
adaptation and forwarding, we include the results due to
ERT/A and ERT/F in Fig. 4a. The figure shows that
indegree adaptation (ERT/A) reduces the congestion rate
of Base significantly in various load conditions and per-
forms consistently better than VS. Forwarding (ERT/F)
alone may not work as well as VS in reducing the congestion
rate. In ERT/F, the congestion rate would grow rapidly as
the lookup number increases. It implies that forwarding is

effective in controlling node congestion when query load is
light, but becomes less effective as the system load increases.

Fig. 4c shows the 99th percentile node share. We can see
that NS generates a much higher share rate, in comparison
with the other protocols for the same reason of the
observations in Figs. 4a and 4b. That is, NS heavily relies on
high-capacity nodes for query routing. Excluding low-
capacity nodes in neighbor selection may lead to a waste of
system resources because their capacities can be used to ease
the burden of high-capacity nodes in certain situations. In
contrast, VS and ERT/AF do not have this preference in
neighbor selection, and they achieve good query load sharing
between heterogeneous nodes. The small gain of VS is due to
its fine grained ID space partition between virtual servers. An
ideal share in DHT is difficult to achieve because of the DHT
strict controlled topology, routing algorithm, nonuniform
and variable file popularity, and churn. VS approximates fair
sharing by static ID space assignment. However, it is at the
cost of more maintenance overhead and lookup cost. It
cannot handle skewed lookups either.

From Fig. 4c, we can also see that forwarding (ERT/F)
alone leads to a lower share rate than ERT/AF. It is
expected because query forwarding that forwards queries
only to nodes with sufficient capacity could reach a
balanced load distribution in concept. In the next section,
we will see it is at the cost of lookup efficiency.

5.2 Lookup Efficiency

Lookup latency is determined by two factors: lookup path
length and query processing time in each node along the
path. Fig. 5a shows the total number of overloaded nodes
encountered in query routings grows with the query load. It
also shows that ERT/AF leads to much high lookup
efficiency in comparison with the others. Although NS
and VS improve over Base to a certain extent, there remain a
large percentage of congested nodes in the systems in
comparison with ERT/AF. NS biases high-capacity nodes
for query load, which may make them more likely over-
loaded as the system query load increases. Due to DHT’s
strictly controlled topology and precise lookup algorithm,
the assumption of uniformly distributed load of VS does not
hold. The fixed outdegree of nodes in NS and VS prevents
each node from adapting traffic load on nodes elastically. In
contrast, ERT/AF enables each node to match its indegree to
its capacity and adapt its indegree in response to the change
of its experienced query load. Furthermore, the query
forwarding operation helps avoid overloaded nodes during

250 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2010

Fig. 4. Effectiveness of congestion controls. (a) Maximum congestion, (b) congestion of minimum capacity node, and (c) share.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:39 from IEEE Xplore. Restrictions apply.

query routing, leading to higher lookup efficiency. From the
figure, we can also observe that both adaptation (ERT/A)
and forwarding (ERT/F) lead to a significant reduction of
overloaded nodes in comparison with Base, NS, and VS. In
another word, the effectiveness of ERT/AF in avoiding
overloaded nodes in routings is attributed to combined
effects of adaptation and forwarding algorithms.

Fig. 5b shows the path lengths due to different congestion
protocols as the network size increases. It is expected that
VS leads to a much longer query path length than Base
because of the additional virtual server layer in routing. This
is consistent with the observation in [12] that VS achieves
the objective of load balancing at the cost of lookup
efficiency, and the path length increases by at most an
additive constant. In contrast, ERT/A and ERT/F reduce the
path lengths of Base. It implies that both indegree adapta-
tion and forwarding contribute to the effectiveness of ERT/
AF in lookup path length reduction. Adaptation offers each
node more neighbor candidates to forward a query. The
locality-aware forwarding algorithm takes both logical and
physical distance into account in decision making. It always
chooses the neighbors that are logically closest to the
destination and then physically closest to the destination.
Thus, the forwarding algorithm greatly reduces the lookup
path length. Both indegree adaptation and forwarding
algorithms reduce the lookup path length, leading to much
shorter lookup path length of ERT/AF. Likewise, NS
considers node distance in neighbor selection and reduces
the lookup path length of Base significantly.

Fig. 5c shows the average, 1st, and 99th percentiles of
processing time per query as combined effects of reduced
congested nodes and lookup path length on the overall
query processing time. Although VS reduces the number of
congested nodes of Base, its benefits may be outweighed by
its extended path length. Without dynamic congestion
control, Base and NS may forward queries to congested
nodes. Static indegree assignment by NS only results in
marginal processing time reduction. On the contrary, ERT/
AF dramatically reduces the processing time per query of
VS and Base. In ERT/AF, periodic indegree adaptation
tunes each node degree to its load adaptively, and the
forwarding operation tends to direct queries to light nodes
that have sufficient capacity to handle them promptly. Both
of the adaptation (ERT/A) and forwarding (ERT/F) factors
help improve query processing efficiency in ERT/AF by
reducing congested nodes and lookup path length. The
efficiency seems attributed more to the forwarding factor.

5.3 Indegree of Nodes and Maintenance Cost

A node with a higher indegree would most likely experience
higher query load and vice versa. In order to illustrate the
query load imbalance due to indegree variance, we measured
the number of nodes with different indegrees in Cycloid DHT
with different dimensions. In a Cycloid DHT, the nodes can
be divided to two groups: low-indegree nodes and high-
indegree nodes. The low-indegree nodes have indegree
equals to 5, and the high-indegree nodes have indegree
equals to 14, 16, 18, 20, and 22 when the dimension equals to 6,
7, 8, 9, and 10, respectively. Fig. 6 illustrates the results. We
can observe that there always have a number of high-
indegree nodes. These nodes constitute 10-15 percent of the
total nodes. This means that these nodes will receive more
queries and, hence, experience higher query load than low-
indegree nodes. The experiment results confirm the existence
of query load imbalance.

Recall that ERT-based congestion control protocol
achieves its goal using elastic routing tables to adapt each
node indegree to its load. In addition to maintain the tables,
each node needs to maintain a list of backward fingers (the
same number of its indegree). We measured the maximum
indegree and outdegree of each node and calculated the
average, 1st, and 99th percentiles of these values in each
method. As we mentioned that the node degree is fixed in NS
and VS, but is variable in ERT. We use maximum indegree
and outdegree instead of average for the evaluation of the
management overhead of ERT in the worse case. Figs. 7a and
7b plot the results. Although inlinks in Base and VS don’t
need to be maintained, we include their degrees for
comparison. As expected, the figures show that the degree
rates of Base, NS, and VS do not change, while the rates of
ERT/AF change as total query load changes. Because ERT
tunes node indegrees to adapt to different query load
accordingly, some lightly loaded node indegrees reach a
high value to request more load. Indegree change leads to

SHEN AND XU: ELASTIC ROUTING TABLE WITH PROVABLE PERFORMANCE FOR CONGESTION CONTROL IN DHT NETWORKS 251

Fig. 5. Effectiveness of congestion control protocols on lookup efficiency. (a) Heavy nodes in routings, (b) lookup path length, and (c) lookup time.

Fig. 6. Indegrees of nodes.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:39 from IEEE Xplore. Restrictions apply.

outdegree change. The indegree and outdegree of VS are
much higher than others because that virtual node usage
leads to larger overlay size. Our results turn out that the
combination of the average, 1st, and 99th percentiles of
indegree and outdegree of ERT in the worse case is much less
than the outdegree rates of VS, respectively. Thus, to achieve
congestion control, VS needs much higher cost for main-
tenance, while ERT only needs a little extra maintenance cost.

5.4 Effect of Skewed Lookup

Besides node heterogeneity in capacity, query load imbal-
ance occurs with nonuniform and time-varying file popu-
larity and peer interest variation. In this section, we
consider the effect of skewed lookups.

We consider an “impulse” of 100 nodes whose IDs are
distributed over a contiguous interval of the ID space, and
whose interests are in the same 50 keys randomly chosen
from the ID space. We varied the query process rate from 0.1
to 2.2 second per query on a light node, with 0.5 second
increase in each step. Figs. 8a and 8b plot the number of
overloaded nodes in routings and the query processing time
of each method, respectively. It is surprising to see that these
result values of VS are much more than Base. As claimed by
the authors in [12] that a good balance of VS is guaranteed
only under the uniform load assumption; this explains why
VS has poor performance in skewed lookups. In VS, a real
node selects IDs of its virtual nodes randomly within
consecutive intervals. When query load concentrates on a
certain ID space interval, the load is allocated to consecutive
virtual servers. Since most of the virtual servers may reside
on the same real node, the node more likely becomes
overloaded. In contrast, by assigning and adjusting node
indegree based on load dynamically, combined with
topology-aware randomized forwarding algorithm, ERT/
AF can handle skewed lookups caused by the change of file

popularity and node interests. NS yields a similar lookup
latency to Base on average, but exhibits a large variance.

Fig. 8c plots the 99th share of each method. By
comparing it with Fig. 4c, we can observe that the share
rate of each method is higher in skewed lookups. It is
expected because the query load concentrates on certain ID
space part, then certain nodes. The share rate of NS is still
much higher than others in skewed lookups because of its
strong bias toward high-capacity nodes in neighbor selec-
tion. It is a resource waste to let low-capacity nodes idle.

5.5 Effect of Churn

In DHT networks with churn, a great number of nodes join,
leave, and fail continually and rapidly, leading to contin-
uous change of overlay topology. This gives another
challenge to congestion control. This section evaluates
ERT/AF’s adaptability to different levels of churn. In this
experiment, the lookup rate was modeled by a Poisson
process with a rate of 1; that is, there was a lookup every
1 second. The node join/departure rate was also modeled
by a Poisson process. We ranged node interarrival/
interdeparture time from 0.1 to 0.9 seconds, with 0.1 second
increment in each step. Lower time corresponds to higher
churn. Our results are collected from all node including the
current nodes in the system when all lookups complete and
the nodes departed.

Fig. 9a shows the 99th percentile maximum congestion of
each method. Comparing it with Fig. 4a, we find that the
rate of each method in churn is lower than without churn at
the point of 3,000 lookups. It is because with continuous
nodes join, the same query load is distributed among more
nodes than in static DHT. The rates of NS and Base grow
inversely proportional to node interarrival time, and the
rates of VS and ERT/AF maintain constant. When node
interarrival/interdeparture time is 0.1 second, the rate of

252 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2010

Fig. 7. Degrees of routing tables in different congestion control protocols. (a) Indegree and (b) outdegree.

Fig. 8. Effectiveness of congestion control protocols in skewed lookups. (a) Heavy nodes in routings, (b) lookup time, and (c) share.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:39 from IEEE Xplore. Restrictions apply.

NS is higher than Base’s, and it decreases slightly below the
Base’s when node interarrival time is 0.3-0.5 seconds. This
implies that NS has difficulty to cope with high churn.
Recall that in NS, high-capacity nodes have denser inlinks.
In high churn, some high-capacity nodes may don’t have
enough capacity for a sudden query flow, which originally
should be responsible by nodes departed. In a modest
churn, the flow is not so intense for nodes to handle. In high
churn, VS has marginally less rate than Base, which implies
that VS can deal with churn to a certain extend. We can also
see that ERT/AF keeps the rate close to 1 in different levels
of churn, in controlling node congestion in churn.

Fig. 9b shows the 99th percentile share of each method. It
demonstrates that like in static DHT, NS performs not so well
as others in fair load balance in churn. The 99th percentile
share of ERT/AF in churn is higher than that without churn. It
is because continuous node joins and departures induce more
load on some nodes relative to their capacity. On the other
hand, because of churn, NS’s 99th percentile share is higher
than Base, and VS has more balanced query load distribution
than others.

Fig. 10a shows the number of heavy nodes in routings of
each method in churn. We can see that the number of NS is
much higher than Base in high churn, and the number
decreases as the node interarrival time increases; both of
them are larger than the result of ERT/AF. This observation
is consistent to the findings in Fig. 9a. It confirms that ERT/
AF performs the best in reducing heavy nodes processing
query. Fig. 10b shows the lookup path length of each
method. Comparing it with Fig. 5b, we can detect that
there’s no big difference, except that ERT/AF has less path
length in churn. We also recorded average timeout for each
method. A time-out occurs when a node tries to contact a
departed node. The average time-out of ERT/AF is 0 and is

less than 0.06 in other approaches. The reason for shorter

path lengths and less time-outs of ERT/AF is that its ERT

avoids time-outs by letting each node have multiple

neighbors in each table entry. Consequently, when a entry

neighbor left, others can be used as a substitute instead of

making a detour routing. Fig. 10c shows the average, 1st,

and 99th percentiles of query processing time per node of

each method. They are consistent to those without churn in

Fig. 5c, except that NS yields higher latency than Base in

high churn. It validates the conclusion that NS is not

efficient in coping with churn.

5.6 Effect of Adaptation and Query Forwarding

To evaluate the quality of the indegree adaptation and

topology-aware randomized query forwarding, we compare

ERT/AF with algorithms without indegree adaptation

(ERT/F) or without query forwarding algorithm (ERT/A).

Fig. 4a plots the 99th percentile maximum congestion rates of

different versions. From the figure, we can observe that the

topology-aware two-way randomized forwarding algorithm

is effective in reducing the congestion rate of Base when

query load is not high, but becomes not so effective when the

system is highly loaded. For this reason, it is imperative to

have a complementary method to guarantee low node

congestion. The figure shows that the indegree adaptation

algorithm reduces the congestion rate significantly in various

load conditions, which implies the dramatic contribution of

ERT/A in controlling node congestion. The 99th percentile

shares in Fig. 4c confirm the superior performance of

forwarding. The query forwarding algorithm controls query

flow to light nodes, ensuring that queries are forwarded only

to nodes with sufficient capacity to handle them. By adjusting

node indegree adaptively, indegree adaptation algorithm

SHEN AND XU: ELASTIC ROUTING TABLE WITH PROVABLE PERFORMANCE FOR CONGESTION CONTROL IN DHT NETWORKS 253

Fig. 9. Effectiveness of congestion control protocols in networks with churn. (a) Maximum congestion and (b) share.

Fig. 10. Effectiveness of congestion control protocols on lookup efficiency in churn. (a) Heavy nodes in routings, (b) lookup path length, and

(c) lookup time.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:39 from IEEE Xplore. Restrictions apply.

also helps for fair load balancing, though the improvement is
not so much as forwarding.

Fig. 5a shows the heavy node number encountered in
each lookup path. From the figure, we can observe that both
forwarding and indegree adaptation greatly help eliminate
heavy nodes. Their combination demonstrates an accumu-
lated effect. Fig. 5b plots the path length of each version.
Recall that topology-aware randomized query forwarding
algorithm takes node logical distance and physical distance
into account in routing. It is expected that forwarding leads
to a short lookup path. By providing multiple neighbor
candidates in each step for query routing, indegree
adaptation is also effective in reducing path length in most
cases. Overall, the combined effect on overloaded nodes
reduction and lookup path length shortening results in a
great saving of lookup latency, as shown in Fig. 5c. The
figure shows that both of ERT/A and ERT/F reduce
processing time per query of Base, and their effectiveness
are aggregated together, leading to much higher query
processing efficiency of ERT/AF. From the observations, we
can conclude that both of ERT/A and ERT/F play an
important role in ERT/AF in congestion control and lookup
latency reduction. Lack of either one will degrade the final
effectiveness of ERT/AF.

6 CONCLUSIONS

DHT networks have an inherent congestion problem caused
by query load due to the nature of heterogeneity and
dynamism of nodes. Nonuniform and time-varying file
popularity makes the problem more severe. This paper
presents a ERT-based congestion control protocol for DHT
networks, which consists of three components: indegree
assignment, periodic indegree adaptation, and topology-
aware query forwarding. Theoretical analysis establishes
the bounds of the indegree and outdegree, and proves the
performance of the protocol in general in terms of both
query load balance factor and query processing time.

Simulation results show the superiority of the congestion
control protocol compared with other methods in static
network, skewed lookups, and in churn, and show the
effectiveness of each algorithm in the protocol. It makes full
use of each node’s capacity while control each node’s load
below its capacity. It improves the lookup efficiency in DHT
network by reducing lookup latency.

APPENDIX

Proof of Theorem 3.3. A node i with cyclic index ki can
have at most 2ki IDs for routing table entry selection. We
use Oi to represent a set of these IDs, and it can have at
most 2ki IDs for routing table entry backward finger
selection. We use I i to represent a set of these IDs.
Because there are totally d0 � 2d0 IDs and n nodes in a
Cycloid system with dimension d0, the probability of
node number for an ID is n

d02d0
, denoted by �. Conse-

quently, the number of nodes in 2ki IDs is proximately
�2ki , denoted by Ji. We define average ID space
responsible by a node as I, and use Ii to represent the I
of node i.

Let Xi be the indicator variable for the event that
node i probes node j for indegree expansion. If j is
chosen by i, then i has a backward finger to node j,
which increments j’s outdegree with a outlink to i. Our
purpose is to find out the upper bound of

P
i X

represented by X. We assume that Cycloid nodes also
probe their successors and predecessors for indegree
expansion. The probability that node j is chosen to have
an outlink pointing to i is 1

Ji
. The probability that node j

is within a=2 number of i’s successors or predecessors is
aI þ 2Ij. Let’s assume that node i probes mi IDs. Then,
the probability is expressed as P ðjIDj � IDij �
maxf0;mi � JigIÞ ¼ maxf0;mi � JigI þ 2Ij � P ðmi > JiÞ.

In the case that i 2 Oj, when Ji � mi;E½Xi� ¼ mi
1
Ji

;

when Ji < mi; E½Xi� ¼ Ji 1
Ji
þ ðmi � JiÞI þ 2Ij. In the case

t h a t i 62 Oj, w h e n Ji � mi;E½Xi� ¼ 0 a nd w h e n

Ji < mi; E½Xi� ¼ ðmi � JiÞI þ 2Ij. Therefore,

E½Xi� ¼
minfJi;mig

1

Ji
þmaxf0;mi � JigI

þ 2IjP ðmi > JiÞ; i 2 Oj;
maxf0;mi � JigI þ 2IjP ðmi>JiÞ; i 62 Oj ^ i 6¼ j:

8><
>:

E½X� ¼
X
i2R

E½Xi�

¼
X
i2Oj

�
minfJi;mig

1

Ji
þmaxf0;mi � JigI

þ 2IjP ðmi > JiÞ
�
þ

X
i62Oj^i6¼j

ðmaxf0;mi � JigI

þ 2IjP ðmi > JiÞÞ ¼
X
i2Oj

�
minfJi;mig

1

Ji

�

þ
X

i2R^i6¼j
ðmaxf0;mi � JigI þ 2Ij � P ðmi > JiÞÞ

¼ 1

�2kj�1

X
i2Oj

minfJi;mig þ
X

i2R^i6¼j
ðmaxf0;mi � �2kigI

þ 2Ij � P ðmi > JiÞÞ

� 1

�2kj�1
�2kj maxi2OjI i þ Imax

X
i2R^i6¼j

�
mi � �2Ki þ 2

�

� 2�c�lcmax
�min

þ �n
�
Oð1Þ �O

�
2d
0

d0

��

� 2�c�lcmax
�min

�O
�

2d
0

d0

�
þOð1Þ:

ut

We define biðtÞ as the number of servers with i spare

capacities at time t; miðtÞ as the number of servers with at

most i spare capacities at time t; piðtÞ ¼ diðtÞ=d as the

fraction of servers of i spare capacity; and siðtÞ ¼ miðtÞ=d as

the fraction of servers with at most i spare capacities. Such

that pi ¼ si � si�1. In an empty system, which corresponds to

one with no customers, sc ¼ 1, and si ¼ 0 for i < c. A fixed

point 	 is a point p in which dsi
dt ¼ 0.

The rate of spare capacity changing in a node depends on

whether it has more or fewer than threshold, T , spare

254 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2010

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:39 from IEEE Xplore. Restrictions apply.

capacities. In the following, we calculate dsi
dt in the case i �

T � 1 and i < T � 1, respectively. An arriving query occupies
the ith capacity of a server if one of b events happen: first, its
first choice has iþ 1 spare capacities; second, its first choice
has � T � 1 spare capacities and its second choice has iþ 1
spare capacities; . . . , its first b-1 choices have � T � 1 spare
capacities and its bth choice has iþ 1 spare capacities. So that,
there are �nðpiþ1 þ sT�1piþ1 þ s2

T�1piþ1 þ � � � þ sb�1
T�1piþ1Þ ser-

vers whose spare capacities change from iþ 1 to i during dt.
Meanwhile, dpi servers change their spare capacities from i to
iþ 1. As a result, we get

dsi
dt
¼ �

�
piþ1 þ sT�1piþ1 þ s2

T�1piþ1 þ � � � þ sb�1
T�1piþ1

�
� pi;

i � T � 1;
dsi
dt
¼ �ðsiþ1 � siÞ

sbT�1 � 1

sT�1 � 1
� ðsi � si�1Þ;

i � T � 1

When i < T � 1, the number of queries arriving over dt is
�bdt, and that for an query being forwarded to a server with
iþ 1 spare capacity is bidt ¼ dðsi � si�1Þdt. Consequently,
dsi
dt ¼ 1

b � � �
dmi

dt ¼ �ðsbiþ1 � sbiÞ � ðsi � si�1Þ. The differential
equations for the query forwarding model (QFM) when i <
T ¼ 1 considering a node with b specific neighbors is
dsi
dt ¼ �ðsbiþ1 � sbiÞ � ðsi � si�1Þ; i < T � 1.

We get the differential equations for QFM:

dsi
dt
¼

�ðsiþ1 � siÞ
sbT�1 � 1

sT�1 � 1
� ðsi � si�1Þ; c � i � T � 1; ð3Þ

�
�
sbiþ1 � sbi

�
� ðsi � si�1Þ; i < T � 1: ð4Þ

8><
>:

Lemma A.1. The QFM with d � 2 has a unique fixed point withP�1
i¼c�1 si <1 given by

si ¼ ð��AÞ
Ac�i � 1

A� 1
þAc�i;

A ¼ � s
b
T�1 � 1

sT�1 � 1
; T � 1 � i � c;

si ¼ �
bT�i�1 � 1

b� 1
� sbT�i�1�1

T�1 ; i < T � 1:

8>>>>>><
>>>>>>:

Proof. With the condition dsi
dt ¼ 0 for all i, we derive the

value of si including sT�1 when c � i � T � 1 with

sc ¼ 1. We summer the (3) over all if c � i � T � 1, and

get sc�1 ¼ ��AþAsc, assuming A ¼ � sbT�1�1

sT�1�1 . By induc-

tion: sc�2 ¼ ð��AÞð1þAÞ þA2 � � � , we get

si ¼ ð��AÞ
Ac�i � 1

A� 1
þAc�i; A ¼ � s

b
T�1 � 1

sT�1 � 1
;

c � i � T � 1:

By summing the (4) over all i � T � 1 with s�1 ¼ 0, we
derive that sT�2 ¼ �sbT�1. By induction:

sT�3 ¼ �sbT�2 ¼ �
�
�sbT�1

�b ¼ �b2�1
b�1 sb

2

T�1 . . . ;

w e g e t si ¼ �
bT�i�1�1

b�1 � sbT�i�1�1
T�1 ði < T � 1Þ. W e u s eP�1

i¼c�1 si <1 to ensure that the sum converges
absolutely. tu

Proof of Theorem 4.1. By (4), we can get that in the case

when i < T � 1, an incoming query arriving on a node at

time t lets the node has i spare capacity with probability

siþ1ðtÞb � siðtÞb, and this query becomes the ðc� iÞth
query in the process waiting queue of the server.

Therefore, the expected waiting time of the query is:

X�1
i¼T�2

ðc� iÞ
�
siþ1ðtÞb � siðtÞb

�
¼ ðc� T þ 2ÞsbT�1

þ
X�1
i¼T�2

�
sbiðtÞ

�
By (3), we can get that in the case when i � T � 1, the

expected waiting time of a query is

XT�1

c�1

ðc� iÞðA=�Þðsiþ1ðtÞ � siðtÞÞ

¼ ðA=�Þ
XT
i¼c

si � ðc� T þ 1ÞsT�1

 !
; A ¼ � s

b
T�1 � 1

sT�1 � 1
:

By Lemma A.1, at t!1, the QFM converges to the fixed
point. So that the expected waiting time for a query in a
server can be made:

ðA=�Þ
�XT

i¼c

�
ð��AÞA

c�i � 1

A� 1
þAc�i

�
� ðc� T þ 1ÞsT�1

�

þ ðc� T þ 2ÞsbT�1 þ
X�1
i¼T�2

�
�
bT�i�b
b�1 sb

T�i�b
T�1

	
þ oð1Þ:

In QFM, the time a query waits on a node when i �
T � 1 is less than the time when i < T � 1 because in the

former case the query is processed by a light node. The

above bound can be enlarged to
P�1

i¼c s
b
i ¼

P�1
i¼c�1 �

bc�i�b
b�1 .

Then we can apply the proved result of exponential time

improvement in [21] to QFM. tu

ACKNOWLEDGMENTS

This research was supported in part by US National Science
Foundation grants CNS-0834592, CNS-0832109, CCF-
0611750, MCS-0624849, CNS-0702488, CNS-0834592, and
CNS-0832109. An early version of this work [29] was
presented in the Proceedings of ICDCS ’06.

REFERENCES

[1] Mute, http://mute-net.sourceforge.net/, 2009.
[2] L.A. Adamic, B.A. Huberman, R.M. Lukose, and A.R. Puniyani,

“Search in Power Law Networks,” Physical Rev. E, vol. 64,
pp. 46135-46143, 2001.

[3] A.R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: Supporting
Scalable Multi-Attribute Range Queries,” Proc. ACM SIGCOMM,
2004.

[4] M. Bienkowski, M. Korzeniowski, and F.M. auf der Heide,
“Dynamic Load Balancing in Distributed Hash Tables,” Proc. Int’l
Workshop Peer-to-Peer Systems (IPTPS), 2005.

[5] S. Bono et al., “Mantis: A Lightweight, Server-Anonymity
Preserving, Searchable P2P Network,” technical report, Johns
Hopkins Univ., 2004.

[6] J. Byers, J. Considine, and M. Mitzenmacher, “Simple Load
Balancing for Distributed Hash Tables,” Proc. Second Int’l Workshop
Peer-to-Peer Systems (IPTPS), 2003.

SHEN AND XU: ELASTIC ROUTING TABLE WITH PROVABLE PERFORMANCE FOR CONGESTION CONTROL IN DHT NETWORKS 255

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:39 from IEEE Xplore. Restrictions apply.

[7] M. Castro, M. Costa, and A. Rowstron, “Debunking Some Myths
About Structured and Unstructured Overlays,” Proc. Second Conf.
Symp. Networked Systems Design & Implementation (NSDI), 2005.

[8] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S.
Shenker, “Making Gnutella Like P2P Systems Scalable,” Proc.
ACM SIGCOMM, 2003.

[9] B.G. Chun, B.Y. Zhao, and J.D. Kubiatowicz, “Impact of Neighbor
Selection on Performance and Resilience of Structured P2P
Networks,” Proc. Fourth Int’l Workshop Peer-To-Peer Systems
(IPTPS), 2005.

[10] I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet: A
Distributed Anonymous Information Storage and Retrieval
System,” Lecture Notes in Computer Science, vol. 2009, pp. 46-66,
Springer, 2001.

[11] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I.
Stoica, “Load Balancing in Dynamic Structured P2P Systems,”
Performance Evaluation, vol. 63, no. 3, pp. 217-240, 2006.

[12] B. Godfrey and I. Stoica, “Heterogeneity and Load Balance in
Distributed Hash Tables,” Proc. IEEE INFOCOM, 2005.

[13] P. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and J.
Zahorjan, “Measurement, Modeling, and Analysis of a Peer-to-
Peer File-Sharing Workload,” Proc. 19th ACM Symp. Operating
Systems Principles (SOSP), 2003.

[14] J. Hu, M. Li, W. Zheng, D. Wang, N. Ning, and H. Dong,
“SmartBoa: Constructing P2P Overlay Network in the Hetero-
geneous Internet Using Irregular Routing Tables,” Proc. Third Int’l
Workshop Peer-to-Peer Systems (IPTPS), 2004.

[15] D. Karger et al., “Consistent Hashing and Random Trees:
Distributed Caching Protocols for Relieving Hot Spots on the
World Wide Web,” Proc. 29th Ann. ACM Symp. Theory of
Computing (STOC), 1997.

[16] B. Levine and C. Shields, “Hordes: A Multicast-Based Protocol for
Anonymity,” J. Computer Security, vol. 10, no. 3, pp. 213-240, 2002.

[17] J. Li et al., “Bandwidth Efficient Management of DHT Routing
Tables,” Proc. Second Symp. Networked System Design and Imple-
mentation (NSDI ’05), 2005.

[18] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and
Replication in Unstructured Peer-to-Peer Networks,” Proc. Ann.
ACM Int’l Conf. Supercomputing (ICS), 2001.

[19] Q. Lv et al., “Can Heterogeneity Make Gnutella Scalable?” Proc.
Int’l Workshop Peer-to-Peer Systems (IPTPS), 2002.

[20] G. Manku, “Balanced Binary Trees for ID Management and Load
Balance in Distributed Hash Tables,” Proc. 23rd Ann. ACM Symp.
Principles of Distributed Computing (PODC), 2004.

[21] M. Mitzenmacher, “On the Analysis of Randomized Load
Balancing Schemes,” Proc. Ann. ACM Symp. Parallel Algorithms
and Architectures (SPAA), 1997.

[22] M. Mitzenmacher et al., “Load Balancing with Memory,” Proc.
43rd IEEE Symp. Foundations of Computer Science (FOCS), 2002.

[23] S. Nath, P.B. Gibbons, S. Seshan, and Z.R. Anderson, “Synopsis
Diffusion for Robust Aggregation in Sensor Networks,” Proc.
Second ACM Conf. Embedded Networked Sensor Systems (SenSys),
2004.

[24] S. Osokine, “The Flow Control Algorithm for the Distributed
‘Broadcast-Route’ Networks with Reliable Transport Links,”
technical report, 2001.

[25] A. Rao et al., “Load Balancing in Structured P2P Systems,” Proc.
Int’l Workshop Peer-to-Peer Systems (IPTPS), 2003.

[26] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
Scalable Content-Addressable Network,” Proc. ACM SIGCOMM,
pp. 329-350, 2001.

[27] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized
Object Location and Routing for Large-Scale Peer-to-Peer Sys-
tems,” Proc. Middleware Conf., 2001.

[28] S. Saroiu, P. Gummadi, and S. Gribble, “A Measurement Study of
Peer-to-Peer File Sharing Systems,” Proc. Multimedia Computing
and Networking (MMCN), 2002.

[29] H. Shen and C. Xu, “Elastic Routing Table with Provable
Performance for Congestion Control in DHT Networks,” Proc.
IEEE Int’l Conf. Distributed Computing Systems (ICDCS), 2006.

[30] H. Shen and C. Xu, “Hash-Based Proximity Clustering for Load
Balancing in Heterogeneous DHT Networks,” Proc. 20th Int’l
Parallel and Distributed Processing Symp. (IPDPS ’06), 2006.

[31] H. Shen and C. Xu, “Locality-Aware and Churn-Resilient Load
Balancing Algorithms in Structured Peer-to-Peer Networks,” IEEE
Trans. Parallel and Distributed Systems, vol. 18, no. 6, pp. 849-862,
June 2007.

[32] H. Shen, C. Xu, and G. Chen, “Cycloid: A Scalable Constant-
Degree P2P Overlay Network,” Performance Evaluation, vol. 63,
no. 3, pp. 195-216, 2006.

[33] I. Stoica et al., “Chord: A Scalable Peer-to-Peer Lookup Protocol
for Internet Applications,” IEEE/ACM Trans. on Networking,
vol. 11, no. 1, pp. 17-32, Feb. 2003.

[34] B.Y. Zhao et al., “Tapestry: An Infrastructure for Fault-Tolerant
Wide Area Location and Routing,” Technical Report No. UCB/
CSD-01-1141, 2001.

Haiying Shen received the BS degree in
computer science and engineering from Tongji
University, China, in 2000, and the MS and PhD
degrees in computer engineering from Wayne
State University in 2004 and 2006, respectively.
She is currently an assistant professor in the
Department of Electrical and Computer Engi-
neering, and the director of the Pervasive
Communications Laboratory of Clemson Uni-
versity. Her research interests include distribu-

ted and parallel computer systems and computer networks, with an
emphasis on peer-to-peer and content delivery networks, wireless
networks, resource management in cluster and grid computing, and data
mining. Her research work has been published in top journals and
conferences in these areas. She was the program cochair for a number
of international conferences and member of the Program Committees of
many leading conferences. She is a member of the IEEE, the IEEE
Computer Society, and the ACM.

Cheng-Zhong Xu received the BS and MS
degrees from Nanjing University in 1986 and
1989, respectively, and the PhD degree from the
University of Hong Kong in 1993. He is a
professor in the Department of Electrical and
Computer Engineering of Wayne State Univer-
sity (WSU) and the director of the Center for
Networked Computing Systems. His research
interest includes networked computing systems
and applications, in particular scalable and

secure Internet services and architecture, scheduling and resource
management in distributed, parallel, and embedded systems, and
autonomic systems management for highly reliable computing. He has
published more than 140 peer-reviewed scientific papers in archival
journals and conferences in these areas. He is the author of “Scalable
and Secure Internet Services and Architecture” (Chapman & Hall/CRC
Press, 2005) and the leading coauthor of “Load Balancing in Parallel
Computers: Theory and Practice” (Kluwer Academic, 1996). He serves
on the editorial boards of IEEE Transactions on Parallel and Distributed
Systems, Journal of Parallel and Distributed Computing, Journal of
Parallel, Emergent, and Distributed Systems, Journal of Computers and
Applications, and Journal of High Performance Computing and Network-
ing. He has also guest edited special issues for several other journals on
network services and security in distributed systems. He has served a
number of international conferences and workshops in various capacities
as program chair, general chair, and plenary speaker. He was a recipient
of “President’s Award for Excellence in Teaching” of WSU in 2002 and
“Career Development Chair Award” in 2003. He is a senior member of the
IEEE and the IEEE Computer Society, and a member of the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

256 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2010

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on January 6, 2010 at 10:39 from IEEE Xplore. Restrictions apply.

