
1

A Distributed Spatial-Temporal Similarity Data
Storage Scheme in Wireless Sensor Networks

Haiying Shen, Lianyu Zhao and Ze Li
Department of Electrical and Computer Engineering

Clemson University, Clemson, SC 29634
Email: {shenh, lianyuz, zel}@clemson.edu

Abstract—Since centralized data storage and search schemes often lead to high overhead and latency, distributed data centric storage
becomes a preferable approach in large-scale wireless sensor networks (WSNs). However, most of existing distributed methods
lack optimization for spatial-temporal search to query events occurred in a certain geographical area and a certain time period.
Furthermore, for data search routing, most methods rely on locating systems (e.g., GPS), which consume high energy. This paper
proposes a distributed spatial-temporal Similarity Data Storage scheme (SDS). SDS provides efficient spatial-temporal and similarity
data searching service, and is applicable for both static and dynamic WSNs. It disseminates event data in such a way that the distance
between WSN neighborhoods represents the similarity of data stored in them. In addition, SDS carpooling routing algorithm efficiently
routes messages without the aid of GPS. Theoretical and experimental results show that SDS yields significant improvements on the
efficiency of data querying compared with existing approaches, and obtains stable performance in dynamic environments.

Index Terms—Wireless sensor networks, Data centric storage, Similarity search.

F

1 INTRODUCTION

A wireless sensor network (WSN) is a wireless net-
work consisting of a large number of distributed

low-power and inexpensive sensor devices. WSNs can
be used for monitoring the environment and observing
certain phenomena. Particularly, WSNs have been used
in many military and civilian application areas such
as military target tracking, habitat monitoring, health
monitoring and industrial process control [1].

A data storage scheme in a WSN offers data storage
and search services for sensed events. One challenge
faced by data storage schemes is to efficiently aggregate
and query data in the network. Sensor nodes are battery
operated. Thus, energy is one of the major constraints
in accessing the data captured by the WSN nodes. Also,
fast data searching is another requisite for a data storage
scheme, especially in time-critical applications.

The second challenge is similarity search for multi-
attribute data. Similarity search enables users to search
data within a specified similarity range to a query
in addition to the exact matched data. For example,
5085|F − 16|AirForce|Division2|US may also be inter-
esting data for a requester with the query 4957|F −
16|AirForce|Division1|US. Similarity search is also
needed in many applications such as finding similar flow
patterns in ocean concurrent monitoring and wildlife
activity patterns in habitat monitoring. Also, it is often
more appropriate for a user to formulate search requests
in less precise terms, rather than defining a sharp limit.

The third challenge is spatial-temporal search, which
contributes to real-time data retrieval. Spatial-temporal

search allows users to query the data of events that
occurred at a specified physical location within a certain
time period. For example, for the query “how many
pedestrians are there in the geographical region X during
7:00pm-8:00pm, January 4, 2010?” or “tell me in which
direction the vehicle in region Y is moving?”, if a user
receives data for the entire area covered by a large-
scale WSN during all the time, the latency to process
the received data may lead to disastrous delay in time-
critical military operations.

Previous data retrieval solutions in WSNs can be
classified into three approaches [2], [3]: external storage,
local storage and data-centric storage. In external storage [4],
[5], [6], [7], [8], data is sent to the base station without
waiting for a user to send a query and nodes send
queries to the base station for data searching. This may
waste energy when data that is of no use by users is
sent to the base station, thus resulting in unnecessary
communication costs and bottlenecks. Also, since the
base station is solely responsible for data storage and re-
sponding, it easily becomes a bottleneck, which may re-
sult in delayed service. External storage approaches may
also lead to unbalanced energy consumption because of
different distances between nodes and base stations. In
local storage [9], [10], [11], [12], [13], each node keeps the
data it senses locally and uses flooding for data retrieval,
which consumes a significant amount resources. Data-
centric storage [14], [15], [16], [17], [18] schemes hash
event data to locations according to data names. All data
with the same general name (e.g., moving vehicle) will
be stored at the node closest to the geographical location.
Data queries with a particular name can then be sent

2

directly to the node storing that named data, thereby
avoiding flooding. This approach has been shown to
be an energy-efficient data dissemination method for
WSNs [9]. However, the queries for the data are directly
forwarded to the locations by geographical routing [14],
[16], [19]. Most geographical routing methods rely on
locating systems [15] (e.g., GPS), which consumes high
energy.

In spite of the efforts to develop data storage sys-
tems in WSNs, there has been very little research de-
voted to tackling both similarity and spatial-temporal
searches. In addition, existing data storage systems are
not sufficiently energy-efficient nor adequately fast. Effi-
ciently achieving the functionalities of spatial-temporal
and similarity search with low energy consumption
still remains a crucial problem in WSNs. This paper
proposes a distributed spatial-temporal similarity data
storage scheme (SDS). In addition to offering the spatial-
temporal and similarity search functionalities, SDS ac-
celerates querying speed and reduces communication
energy consumption and overhead. In SDS, nodes in
a WSN are partitioned to a number of neighborhoods.
Similar data is stored in one neighborhood or nearby
neighborhoods. SDS preserves the similarity between
data, i.e., the physical distances between neighborhoods
represent the similarity between data stored in the
neighborhoods. Within a neighborhood, data is further
classified based on time and location. Compared to other
distributed data storage schemes, SDS is advanced in
that it optimizes data querying based on not only data
name but also data similarity. Also, it offers spatial-
temporal data searching. In addition, SDS does not need
GPS to locate the positions of nodes for routing. It uses
limited geographical information to achieve comparable
efficiency to GPS-based geographical routing. SDS also
incorporates a carpooling routing algorithm that com-
bines the messages targeting the same destination in
routing in order to improve routing efficiency.

2 RELATED WORK

Data storage approaches in WSNs can be classified into
three categories [2], [3]: external storage, local storage
and data-centric storage.

External storage. External storage schemes [4], [5], [6],
[7], [8] store and access all of the data generated by
sensor nodes to a single sink that is located outside
of the WSN. A data query needs to travel to the sink
to find the data source, thus the centralized sink may
become a bottleneck. This method may also waste energy
when non-essential data is sent to the base station [8].
In addition, the energy cost is not distributed in balance.
Because of the energy consumption, external storage
schemes would only be used in small-scale WSNs with
low data generation rates.

Local storage. In local storage schemes [9], [10], [11],
[12], [13], all sensed data is stored locally at the sensor
nodes that detected the data. Because data can reside

anywhere in the network, a data query must be flooded
to all sensor nodes in the network, leading to high over-
head and energy cost. Directed diffusion protocol [9] was
developed to save the cost in data querying. In this pro-
tocol, nodes disseminate the messages of their interests
throughout the sensor network. The events matching an
interest flow towards the interested nodes along multiple
paths. Finally, an interested node determines routes for
future data flow by choosing a high-quality path from
each source node.

Zhang et al. [10] proposed an index-based data dis-
semination scheme in which sensed data is stored at
the detecting or nearby nodes and the data location
information is pushed to a number of index nodes. This
scheme avoids unnecessary data transmission and con-
trols message flooding over the entire network. TAG [11]
provides SQL-like semantics in data querying. It uses
a delivery tree to distribute operators such as “count”,
“min” or “max” to tree nodes, and uses the aggregation
method to gather querying results from the leaves to the
root. GRAB [12] forwards data along interleaved mesh to
a receiver. It also controls bandwidth by using the credits
of data messages, thus allowing the sender to adjust the
reliability of data delivery. TTDD [13] is a two-tier data
dissemination protocol that maintains a grid structure
with each grid having a grid server. Compared to GRAB
which needs to disseminate the existence of sinks to all
nodes in a mobile environment, TTDD only needs sinks
to send their existence to grid servers.

Data-centric storage. Most recent research focuses on
distributed data storage schemes for WSNs [14], [16],
[17], [18]. These schemes map data to geographical lo-
cations and all the data with the same general name
is stored at the node closest to the geographical loca-
tion. Queries for data with a particular name can then
be sent directly to the node storing the named data,
thereby avoiding flooding. These techniques differ in the
aggregation mechanisms used, but are loosely based on
the idea of geographic hashing. One such data storage
scheme is Geographic Hash Table (GHT) that provides a
hash function for mapping event data to locations [14].
GHT hashes a data name to a key first and then decides
where the data should be stored based on the key.
GHT saves the data having the same name at the same
location and uses geographical routing for locating data.

Distributed Index of Features (DIFS) [19] and Dis-
tributed Multi-dimensional Range Queries (DIM) [16]
extend the GHT approach to provide distributed hier-
archies of indices to data. In these two techniques, the
storage atom is multi-attribute data. DIMENSIONS [17]
incorporates long-term storage which progressively dis-
cards old data while preserving its key features for future
data mining.

To improve routing performance, GLS [20] arranges
each mobile node to periodically update a small set
of location servers with its current location. When a
node queries for the locations of other nodes, it uses
predefined identifiers and a spatial hierarchy to find

3

a location server for those nodes. GEM [21] embeds a
labelled graph to the topology of a network to enable
nodes to perform efficient routing by merely knowing
the labels of its neighbors. Caruso et al. [22] proposed a
GPS-free coordinate-based routing algorithm for WSNs.
TSAR [23] has two tiers: a proxy tier and a sensor tier. At
the proxy tier, it uses a multi-resolution index structure.
At the sensor tier, it supports adaptive summarization
that trades off energy cost against overhead.

Some effort has been devoted to building practical
data centric storage (DCS) structures. Since point-to-
point DCS is difficult to deploy, pathDCS [24] was
proposed to provide an approach that only needs the
construction of a standard tree and uses tree-based
communication primitives. Aly et al. [25] noticed the
importance of uniform data distribution, and proposed
KDDCS to use a K-D tree to maintain balanced data
storage and avoid bottlenecks. Bian et al. [26] proposed
a scalable routing system which is featured by the use
of hierarchical location names such as country, state,
and city instead of location coordinates. Thus, an aggre-
gated routing table can be built to ensure its scalability.
EASE [27] is aimed at answering approximate node
location queries and reducing the overhead. It stores
data for imprecise locations at certain nodes to avoid
frequent location updates when an object is within the
approximation radius. Rendered Path (REP) [28] has
been proposed to meet the heterogeneous node deploy-
ment. REP removes the need for powerful nodes by
estimating the distances between node pairs instead of
directly measuring distances.

3 THE DESIGN OF SDS
3.1 Design Goals and Strategies

SDS is unique in its spatial-temporal and similarity
search functionalities. Meanwhile, SDS aims to reduce
overhead, energy consumption and searching latency.
(1) Similarity searching functionality. This functional-
ity is very useful for collecting data that has inner
relationship, especially when a user is unsure of the
exact keywords to be searched or when it is difficult to
normalize attributes. SDS divides an entire monitored
area into a number of grid zones, and relies on locality
sensitive hashing [29] to map data to zones in a locality-
preserving manner as shown in Figure 1. That is, the
physical closeness of zones represents the similarity of
data in the zones. Thus, by searching a particular zone’s
nearby zones, a node can find similar data to the data
in that particular zone.
(2) Spatial-temporal searching functionality. This func-
tionality makes it possible to search for data of events
that occurred in a specified location within a specific
time period. SDS tackles this challenge by building a
two-dimensional space in each zone, in which it maps
data to the nodes in a zone based on both location and
time.
(3) Low overhead. Low overhead or energy consump-
tion is crucial to WSNs, which are constrained by their

36 37 38 39 40

26 27 28 29 30

31 32 33 34 35

11 12 13 14 15

2016 17 18 19

21 22 23 24 25

1 2 3 4 5

6 7 8 9 10

Zone node Zone headZone node Zone head

Fig. 1. SDS zones and data transmission.

limited energy supply. SDS always produces a small
number of messages for data searching. In addition, its
carpooling routing algorithm enables messages to travel
together. Moreover, without using GPS, SDS routing
leads to comparable routing performance by utilizing
only limited location information in mobile condition.
(4) Low latency. Latency is determined by the efficiency
of routing and data processing. Zone-based routing in
SDS utilizes zones rather than individual nodes as a rout-
ing step unit, thus accelerating message transmission.
Further, it reduces congestion due to many messages
as in Directed Diffusion. In addition, unlike GHT that
searches each attribute in a query and then performs
merging operation for the final results, SDS leads to low
latency without the need of a merging operation.

3.2 Overlay Maintenance
Consider a large-scale WSN that is deployed in a vast
field, in which sensors are disseminated randomly. With-
out the loss of generality, we assume that the field is a
rectangle. SDS can also be extended to other shapes of
fields. As shown in Figure 1, SDS divides the entire field
horizontally and vertically to small rectangular zones.
The division is based on the geographical layout of the
entire area.

Before deployment, each node is configured to be
aware of the zone layout by knowing: (1) The num-
ber of zones horizontally nx and vertically ny ; (2) The
zone ID assignment scheme, e.g., IDs are assigned to
successive zones in a sequential order from left to right
starting from the bottom-left zone; and (3) The ID and
geographical location (x,y) of its own zone. Therefore,
a node in the zone with IDi can calculate the relative
horizontal and vertical distances from any zone with IDj

by δXi,j = (IDj − IDi)%nx and δYi,j = (IDj − IDi)/nx,
respectively. The Euclidean distance between the two
zones is |IDi, IDj | =

√
δX2

i,j + δY 2
i,j . Additionally, the

zone IDs of the up, down, left and right neighboring
zones, if exist, can also be calculated by IDi + nx,
IDi − nx, IDi − 1, and IDi + 1, respectively.

Each zone has a head which functions as the server
for all other nodes (i.e., clients) in the zone. The head
maintains the links to the neighboring clients within

4

its zone, and the heads in its neighboring zones. It
periodically exchanges “hello” messages with its clients
and neighboring zone heads. A head communicates
with its neighboring heads by specifying the IDs of the
neighboring zones in the messages.

In order to save energy, we assume every node has
two interfaces to adapt to different transmission range:
a short range interface and a long range interface. The
short range interface enables nodes to communicate with
other nearby nodes and is what is used most of the time.
The long range interface enables adjacent head nodes to
directly route messages when necessary.

Each sensor in the WSN has an identifier which is the
consistent hash value [30] of its IP address. The identi-
fiers of nodes in a zone are normalized to identifiers from
1 to N . To further reduce energy consumption, in each
zone, all nodes except the head are in sleep mode. Nodes
in sleep mode still can sense data, but rely on the head
for other functions. The nodes rotate the responsibility of
acting as the zone head in a round-robin manner in the
order of their identifiers to balance the workload and
energy consumption among nodes. Each node keeps a
countdown timer. Once becoming a head, a node sets its
countdown timer to the length of duty period Lh and
triggers it to start the count down. With the knowledge
of all the nodes in its zone, the head knows the next head
among clients in the round-robin manner. On timeout,
it transfers its duty to the next head and sends it the
information of links of clients and neighboring heads.

The round-robin head election is suitable for the case
when nodes have homogeneous capacity in terms of
computing resource, energy and mobility. In the case
when nodes have heterogeneous capability in computing
and energy, nodes with larger capability have higher
priority to be selected as heads. In a dynamic environ-
ment, nodes with lower mobility have higher priority
to be selected as heads. The head’s duty period can be
adjusted to balance the head change overhead and the
effect of load balance.

3.3 Data Processing and Mapping

After sensing an event, a sensor processes the event
data, maps the data to a number of zones, and then
stores the data to certain nodes in the zones. Each data
item is described by a set of keywords. To process the
sensed data, a sensor derives the keywords of the data
through a strategy that allows the content of data to be
described by keywords [31], [32], [33]. For example, the
keywords five car north are derived from data five cars are
moving north. We use d to denote a data item consisting
of keywords vd, represented by d = (vd

1 , v
d
2 , ..., v

d
m). A

sensed data item is represented by a descriptor consist-
ing of the following tuple: < d, ID, t, s, (x, y) >, where
ID is the ID of the zone in which the data is sensed, t
is the time when the data is sensed, s is the identifier of
the sensor which sensed the data, and (x, y) is the exact
geographical location where the event occurred.

Attribute Keywords Weight
Object Car, Plane, Truck, etc. 0.3
Model F-16, F-17, etc. 0.2
Color Red, Purple, etc. 0.1
Direction North, South, etc. 0.1
Division AirForce, etc. 0.1
Pressure Integer 0.1
Speed Float 0.1
...

TABLE 1
Example of weight settings.

Note that a data keyword usually belongs to an event
attribute such as object, direction, or speed. E.g, key-
word “plane” belongs to the attribute “object”. Table 1
illustrates an example of different attributes along with
possible keywords. A WSN is usually for specific use
(e.g., battlefield or habitat monitoring), so it is easy to
retrieve the possible attributes for a specific application.
Thus, we specify that SDS has a pre-defined attribute
list geared towards its WSN application, and a detected
event is described by the keywords belonging to the
attributes. As shown in Table 1, SDS assigns weights
to different attributes based on their importance in the
event description. For example, “object” is a decisive
factor to determine the similarity of two sensed events,
so it is assigned a higher weight. Other attributes such
as “speed”, “direction” and “pressure” have less impor-
tance and hence are assigned lower weights.

Given m attributes in an attribute list associated with
weight wi (1 ≤ i ≤ m) in a WSN application, a data
item is denoted by d = (vd

1 , v
d
2 , ..., v

d
m), where vd

i is the
keyword for the ith attribute associated with weight wi.
Then, the similarity of data item d2 to data item d1 is
calculated by:

Similarity =
∑m

i=1 wi ×B(vd1
i , vd2

i)∑m
i=1 wi

, (1)

where B(i, j) is a boolean value function, returning
1 when vd1

i = vd2
i and 0 otherwise. For example, if a

WSN application has an attribute list with the first five
attributes in Table 1, the similarity of data item
Plane|F − 16|Blue|Northwest|AirForce to
Plane|F − 16|White|Southeast|AirForce is
(0.3*1+0.2*1+0.1*0+0.1*0+0.1*1)/(0.3+0.2+0.1+0.1+0.1)=0.75.

For data mapping, SDS resorts to a locality-sensitive
hashing function (LSH) [29] to transform d to a series
of hash values. A detailed description of the LSH ap-
proach can be found in [29]. Data items having common
keywords will have the same hash values, while similar
data items will have similar hash values. The number
of hash values of a data item can be flexibly set in
LSH. Higher values tend to lead to fine-grained data
clustering while lower values tend to lead to coarse-
grained data clustering. Taking one resultant LSH hash
value as an example, if the difference between d1, d2

and d3 is d1 > d2 > d3, their hash values conform to
hd1 > hd2 > hd3 , where hd is the hash value of d.

In the mapping between data and zones, the ID dif-
ferences between zones indicates the similarity between
the data stored in the zones. To achieve this objective,

5

(1) Providing Spatial-Temporal search. This service could search

data in a certain length of time or a series of nodes where events

happened. These are the two most important and used attributes in

querying data, we implement this by using grid zone and store

similar data within the zone in two dimensional order.

(2) Similarity search functionality. Similarity query has not yet

been examined in current work. However, this feature is very use-

ful when we are collecting data that has inner relationship, but

could not be obtain using range searching. Also, this function could

at the same provide range search with relative low cost but high

reliability. We use min-wise hash function to hash the list of

attributes in every event data, and disseminate them in different

zones.

(3) Reducing overhead. Overhead is crucial to wireless networks,

which is directly related to power consumption. Because normally,

using index in multi-dimensional range search is not feasible in

wireless networks [11], this kind of search usually leads to high

overhead. We use similarity search to provide range-based search,

therefore could significantly reduce the communication cost. Also,

when GPS aid is not available, our algorithm reduces the overhead

of previous routing algorithms without geographic knowledge

(4) Better latency. Latency is a very important metric in wireless

sensor networks, which indicates whether transmission between

nodes is efficient. Latency is the result of many factors such as

congestion and average hop count. In our approach, we use zone as

unit to store data and query to reduce congestion, and we did some

optimization to our routing algorithm.

3.2 Data Mapping

We consider a large-scale sensor network that is deployed to

a vast field. In our approach, we assume this grid field is retangular,

and each zone is defined as a retangular within this field. Sensors

are disseminated randomly, every sensor has its own id in the zone,

starting with zero. Every sensor is aware of the ID of the zone it

resides, but we do not utilize GPS-like devices to locate nodes.

As shown in Figure 1, the sense field is divided into small

zones. Each zone has an ID. This ID stands for the range of data it

holds, for example, if the zones have IDs like 5, 10, 15,…, this

means every zone is responsible for data between [ID-5, ID). For

any two adjacent zones, all sensor nodes in one zone can communi-

cate with all sensor nodes in the other zone. In each zone, nodes

rotate to wake up and act as the grid head in a round-robin manner.

A zone head is responsible for forwarding messages, and other

nodes wake up periodically in order to balance the workload and

energy consumption of each node. For example, there are five

nodes A, B, C and D in grid 8. Node A is zone head, it can transmit

message to B, C, D and the nodes in its neighbor grid. After a pre-

defined time period, one of node of B, C and D wakes up and rep-

laces node A to become the zone head.

Figure2 shows a specific zone, in which there are two axis, time

and location (ID) where event happened. Data are stored both in

time order and ID order, when events happened, we use routing

algorithm to store data in this pattern. We just mentioned that each

node has its virtual id, and we would notice each data zone would

contain different number of nodes, thus every node in a certain

zone may be responsible to a range of data storage. For example,

there are 9 nodes within a zone, node 1, 2, 3 may each hold 1/3 of

the total length of time, and they are all responsible for the same

first 1/3 of ID range data. Then similarly we could assign node 4-9

duties. This simple mapping is useful; when we use spatial and

temporal search, we wish to return a thorough set of data in all

sensors, so an efficient way to store data for range-based search is

needed. We will discuss details about general range-based query in

section 3.5.

Figure 1. Dividing a sensor network into grids.

Figure 2. A specific zone.

3.3 Data Processing

After sensing data, each sensor node hashes an event data in-

to a series of hash values. These hash values are mapped to the

zones where the event data should be stored. For example, a sensor

senses data d at node with id n at time t, in which can be presented

as 5-dimensional data represented by <a1, a2, a3, a4, a5>.

SDS employs min-wise data processing method proposed [6]

to preprocess the multi-dimensional event data. Figure 2 shows the

Grid node Grid head

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

20 16 17 18 19

A

B C

D

 0 1 2

 3 4 5

 6 7 8

Map

Time

Location

 0 1

 8

 2

 5

 6

 7

 4

 3

 H

Fig. 2. Spatial-temporal data mapping.
a data item with hash value h is mapped to the first
zone with ID ≥ h. For example, a data item with h = 5
will be stored in zone 5. If all nodes in zone 5 fail, the
data will be stored in zone 6. Thus, we can see that the
distance between neighboring zones in one horizontal
level indicates the similarity of data in the zones.

Within a zone, the data is further distributed among
nodes according to their time and location. In static de-
ployment, we first introduce a simple mapping. We then
extend this mapping to dynamic network environment
in Section 3.6. Figure 2 shows this data mapping within
a zone in a spatial-temporal two-dimensional manner.
Given a zone containing N client nodes, the zone head
calculates k = b

√
Nc. The identifiers of nodes in the

zone are normalized to identifiers from 1 to N . The head
virtually arranges the nodes into a k × k grid as shown
in the figure. Assume there are S zones in the WSN in
total. The head divides the range [1, S] into k even parts.
Taking a certain period of time, say one month, as a unit
time interval T , the head divides T into k parts evenly.
During T , for a node with identifier i, it is responsible for
the data of events that occurred during the (bi/kc+ 1)th

time interval at the (i%k + 1)th location.
For example, in Figure 2, there are 9 nodes with

identifier 0-8 within a zone, then b
√
Nc = 3. For node

4, b4/3c + 1 = 2, 4%3 + 1 = 2. Thus, it is responsible
for the second 1

3 of the total time interval during T ,
and the second 1

3 of the total range of location. In other
words, a data item with t and ID will be stored in the
node located in line t%T

k and column ID%S
k in the two-

dimensional space. Therefore, the data mapped to a zone
is distributed among the zone nodes in balance.

3.4 SDS Routing Algorithm

In SDS, the operation of data storing and querying
are performed by the SDS routing algorithm. We aim
to develop a lightweight routing algorithm with high
efficiency and low energy consumption. Also, in order to
avoid generating high cost for centralized computing of
routes in the requesters, we aim to provide a decentral-
ized routing algorithm in which the requester or relay
node selects the next relay node by itself. Moreover, a
node selects the relay node without relying on geograph-
ical information, thus reducing energy consumption.

Recall that one data item has a series of hash values
(say n values). Thus, one data item is stored in n nodes.
When a node senses an event, it calculates n hash
values of the data using LSH, (h1, h2, h3 · · · , hn). It then
sends the event data < d, ID, t, s, (x, y) > to its zone
head along with the n destinations. Therefore, the head
then sends n copies of data to destination zones with

h2

h3

h2

h3
X

h4h4

source source

h1

h2

h1

h2

y

() C li ti (b) I d li ti(a) Carpooling routing (b) Improved carpooling routing

Fig. 3. Examples of two routing algorithms.

IDs equal to hi(1 ≤ i ≤ n) respectively along with
other heads. After a data item is routed to the head
of its destination zone, the head assigns the data to
the node responsible for it. Using the data assignment
method described in Section 3.3, the head identifies the
destination node of the data based on the zone ID of the
event collector and the moment that the event happened.
It then forwards the data to the node. We propose the
normal and improved carpooling routing algorithms for
data storage and search.

3.4.1 Carpooling Routing Algorithm
In the carpooling routing algorithm, the source head
determines the next hop among its neighbor heads based
on each hash value. Assume the IDs of its neighboring
zones are IDj(1 ≤ j ≤ 4). The next hop for each hash
value hi is the head in the zone with min|IDj , hi|(1 ≤
j ≤ 4). That is, the next hop is the neighboring head that
is the closest to the destination zone. Data copies target-
ing different destination zones but the same direction
are very likely to have the same next hop. In order to
save overhead, the source head conducts the carpooling
operation. That is, rather than sending n pieces of data
to n nodes directly, the source head only sends one copy
to each different next hop indicating destination zones.
After the next hop receives the data, it chooses the next
hop in the same manner as the original head did. This
process is repeated until the data is forwarded to its
destination zones. Figure 1 presents an example of the
routing algorithm.

By combining messages in the same direction together
in routing, the carpooling algorithm decreases routing
cost. However, it does not reduce the cost to its mini-
mum. For example, as shown in Figure 3(a), the source
head combines the messages to destinations h2, h3 and
h4 together, and forwards the message to h4. The zone
head of h4 sends a message to h2 and h3, respectively.
However, as shown in Figure 3(b), if the head sends
one message to h2 which further sends a message to
h3, it will further reduce the routing cost. Therefore, we
propose the improved carpooling algorithm.

3.4.2 Improved Carpooling Routing algorithm
The goal of the improved carpooling routing algorithm is
to combine the messages towards the same direction as
much as possible and forward the combined messages as
far as possible. When a source head originates a message
with destinations h1, h2, .., hn, it first divides the entire
WSN area into four quadrants, i.e., Qi (1 ≤ i ≤ 4), using

6

the X and Y axes as shown in Figure 3(2). As introduced
in Section 3.2, given the ID of a destination zone, a node
can calculate the position of the destination zone relative
to its own zone in the WSN layout. Thus, the source can
locate the n destination zones with ID hi (1 ≤ i ≤ n) in
the four quadrants, and get four subsets of destinations.
A node on the X or Y axes can be divided into either
the clockwise or counterclockwise quadrant. We classify
such a node to the quadrant with more destinations in
order to increase the possibility that it is in the same
quadrant with more nodes in the routing, so that its
message can be “carpoolled” with others. For example,
in Figure 3, h4 is classified into h2.

For the subset of each quadrant Qi(1 ≤ i ≤ 4) with
destinations DQi = hQi

1 , hQi

2 , ..., hQi
p , the source head s

first identifies the temporary destination in Qi, denoted by
hQi

t , and |hQi

t , s| = min|hQi

k , IDs|(1 ≤ k ≤ p). The list of
the temporary destinations along with their destinations
is tempDests = {(hQ1

t , DQ1); · · · ; (hQ4
t , DQ4)}. The head

s can then use the carpooling routing algorithm to send
a message to each temporary destination along with the
message’s destinations.

Note that messages in the same direction are more
likely to have the same next hop. In order to optimally
combine the messages for different destinations with
the same next hop, s calculates the next hops for the
destinations in the vertical and horizontal directions,
respectively, and chooses the list with less distinct next
hops. Then, s sends one message to the next hop in
the chosen group along with temporary destinations and
their associated destinations. Upon receiving a message,
a node conducts the same operation as s. Eventually, this
recursive process leads the message to each destination
at minimal cost. Algorithm 1 shows the pseudo-code for
the improved carpooling algorithm.

3.4.3 Range-based Similarity Search

When a node searches for similar data, it can specify
similarity degree. Recall that the difference of zone IDs
represents the similarity degree of data in the zones.
Thus, if a requester wants to receive more data with
less similarity degree, it can specify a range r to indi-
cate the zone range needed to be searched during data
retrieval. For instance, for a hash value h, the zones with
ID ∈ [h − r, h + r] are searched. In routing, the head in
the destination zone h forwards the query to the heads
in zones h − 1 and h + 1. These heads further forward
the query to zone h − 2 and h + 2, and so on until the
heads in zone h− r and h+ r receive the query. After a
node receives a query, it checks whether the data it stores
meets the similarity requirements using Equation (1) and
responds with the desired data. For instance, if a query
has:

〈h1, h2, ..., hn〉, similarity = 50%, r = 1, (2)
then zones with IDs ∈ [hi − 1, hi + 1](1 ≤ i ≤ n) will be
searched, and data with similarity no less than 50% to
the query will be retrieved.

1: Route Msg(msg, dest[n])
2: /*send the msg to the nodes inside my zone*/
3: if dest.contains(my zone()) then
4: send msg to node();
5: dest.remove(my zone());
6: end if
7: /*divide destinations to 4 quadrant sets*/
8: for each h in dest do
9: Integer QID = calQuadrant(h)

10: D[QID].add(h)
11: end for
12: /*calculate the temporary destination for each quadrant set*/
13: for i=1 to 4 do
14: tempD = getClosestD(D[i], my zone())
15: /*generate next hops for the temporary destination in both

horizontal and vertical directions*/
16: next hopH=closestNeighborH(my zone(),tempD)
17: next hopV=closestNeighborV(my zone(),tempD)
18: next hopsH.add(next hopH, (tempD, D[i]))
19: next hopsV.add(next hopV, (tempD, D[i]))
20: end for
21: next hops=shortL(Carpool(next hopsV),Carpool(next hopsH))
22: /*send the msg to the next hop with a temporary destination and a

destination list*/
23: for all key next hop in next hops do
24: send msg(next hop, msg);
25: end for

Algorithm 1: Pseudo-code of the SDS improved car-
pooling routing conducted by a node.

3.5 Load Balancing
3.5.1 Storage Load Balancing
Storage load balancing is used to prevent imposing too
high of a storage load on some nodes and better utilize
the nodes with light storage load. A node’s storage
usage status is represented by the percentage of its used
storage, denoted by S. The storage usage status of a zone
with N nodes is calculated by

∑N
i=1 Si/N . We define φ

as a threshold of the percentage of a zone’s used storage
to indicate when a zone is at risk of being overloaded.
Periodically, clients report their storage usage percent-
ages to their head, and neighboring heads exchange zone
storage usage.

When receiving a data storage request, a zone head
first examines if its zone’s storage usage has reached
threshold φ. If so, the head node resorts to the neighbor-
ing zones. It forwards the request to the head of its most
lightly loaded neighboring zones, and creates an index
in itself indicating the host zone of the data. Later on,
when the head receives a query for the data, according
to the index, it forwards the query to the actual host
neighboring zone of the data.

3.5.2 Routing Load Balancing

d i idestination

source
or relay

Fig. 4. Multiple short-
est routes.

Routing load balancing is used
to evenly utilize all zones to
forward the query and storage
requests. As shown in Figure 4,
in the SDS routing scheme,
the calculated shortest route be-
tween a source or relay and
destination is not unique. We
are interested in finding out the
maximum number of possible

7

shortest routes between a pair of zone heads Ha with
(Xa, Ya) and Hb with (Xb, Yb). To simplify the analysis,
we assume |Xa−Xb| = |Ya−Yb| and define C = |Xa−Xb|.
C is the maximum number of inflexion points in the
horizontal and vertical routing process, respectively. Dif-
ferent shortest pathes have different number of inflex-
ion points. The problem of choosing j inflexion points
among C inflexion points is equivalent to the problem of
putting C balls into j boxes, and the number of choices
is
(C−1
C−k

)
[34]. For each choice with j inflexion points,

there are 2j possible routes. Consequently, the maximum
number of possible shortest routes between Ha and Hb

equals
∑C

j=1

(C−1
C−j

)
2j . SDS distributes the routing load

to all possible routes of each query by letting each
query issuer list all the shortest calculated paths and
randomly choose one at each time. Therefore, when
two nodes frequently communicate with each other, the
routing load will be evenly distributed among the nodes
between them.

3.6 Dynamic Data Management

3.6.1 Tree-based Data Storage
In a mobile WSN, sensor nodes move around in the area.
Node mobility has posed a challenge to the network
management and data storage [35], [36]. SDS is also
designed to operate in a dynamic environment where
sensor nodes are mobile and may fail constantly.

As aforementioned, nodes with lower mobility have a
higher priority of being selected as heads in a dynamic
environment. According to the heads’ signal strength,
each client can locate its own head and know whether it
has left its original zone. Also, according to the strength
of the signal from its neighboring heads, a head can tell
if it is moving out of its own zone. In order to enhance
the localization accuracy, we can incorporate the state-
of-the-art approaches [37], [38], [39] by utilizing beacons
to enable a node detecting whether it has departed its
original zone by examining the signal strength from the
beacons (i.e., a set of pre-selected landmarks nodes).
When a node departs its original zone and moves into a
new zone, it informs the heads in both zones. Therefore,
a zone head always knows the number of nodes in its
zone. Before a head moves out of its original zone, it
chooses the next node in a round-robin manner as a
new head and becomes a client in the new zone. Note
that the zones under node mobility are no longer strict
rectangles, but the membership of each node is still
strictly ensured to be unique.

The two-dimensional spatial-temporal storage space
method described in Section 3.3 divides a zone into grids
for data distribution among zone nodes. This method
arranges each grid to have one node, but this is not
sufficiently robust in a dynamic environment. Firstly, in a
dynamic environment, the number of nodes is constantly
changing. Thus, there may not be a node for a grid and
some extra nodes may not be fully utilized to store data,
especially when we seek to find a reasonable granularity.
For example, if we want a 5 × 5 division for a zone

 T

 H

 V0

 1 0

 V1

 1 0









 



 TT
m

m

k

k ,
1

1

1

m0-1 m1-1 mk-1-1

Vk-1

 1 0













T
mk 1

1
,0













T
m

T
m kk 11

2
,

1









S

k

1
,0









S

k
S

k

2
,

1







 
SS

k

k
,

1

Fig. 5. Tree-based robust data storage structure.

originally containing 25 nodes, but has only 23 nodes
due to node mobility, it will be costly to alter the storage
structure and reassign duties to nodes. Secondly, the
maintenance of the two-dimensional spatial-temporal
storage space is difficult due to node mobility.

Therefore, we extend the two-dimensional storage
space to an easy-to-maintain tree structure that is effi-
cient under both static and dynamic environments. Fig-
ure 5 shows the tree structure. It is a generalization of the
two-dimensional storage space in Figure 2. The tree root
is the head of the zone that is responsible for maintaining
the tree structure. The second level consists of k virtual
nodes with identifier Vi (i ∈ {0, k}) having mi leaves.
Virtual nodes are responsible for non-overlapping spatial
slices of the entire space interval. Therefore, every virtual
node Vi is responsible for a spatial slice [i

kS,
i+1
k S), as

shown in Figure 5. The virtual nodes are not real nodes
and function to help keep the tree structure. The use of
virtual nodes does not bring about extra communication
cost, since they do not change the manner in which the
head node communicates with leaf nodes.

Further, the leaves in the tree are real nodes that store
data. Every virtual node Vi has mi leaves, and the leaves
are ordered from 0 to mi. We call the order number
as leafId. Each leaf node with leafId j (0 ≤ j ≤ mi)
stores the data of time slice [j

kT,
j+1

k T). The number of
leaves managed by a second-level virtual node is not
fixed in order to adapt to different numbers of nodes
and network dynamics. Recall that nodes within a zone
have a consecutive sequence of normalized identifiers as
shown in Figure 2. A leaf node j under virtual node i
has the normalized identifier: j +

∑i−1
x=0mx.

To achieve a balanced initial state, when nodes are de-
ployed, the number of virtual nodes k is set to b

√
Nc, and

the number of nodes under each virtual node is set to
bN

k c. The tree-based structure is then maintained under
node joins and departures. For robust maintenance of the
structure, we constitute all nodes under one virtual node
into a ring structure by adding a link between the first
node and the last node. Figure 6(a) shows the logical
ring structure of leaf nodes in one virtual node. Each
node has a predecessor and successor. We define the first
node whose leafId is equal to or follows leafId in the ring
the successor of the leafId. A data item is assigned to a
node with leafId j according to its time slice. If the node
is not present, the data is stored in the successor of the
leafId.

8

mi-1

 H










T

m
T

m ii

4
,

2










T

m
T

m ii

3
,

2

 4

 3

 2

 1

 0

 5

mi-1

(a) Node departure

mi-1

 4

 3

 1

 0

 5

 H

 2










T

m
T

m ii

4
,

3

mi-1










T

m
T

m ii

3
,

2

(b) Node join
Fig. 6. Structure maintenance for node dynamism.

3.6.2 Node Departure and Failure
Before a client leaves, it notifies its zone head and its
predecessor and successor. It then transfers its data to
its successor. Its predecessor and successor then connect
to each other. In Figure 6(a), node 2 originally stores the
data in time slice [2

mi
T, 3

mi
T). Before it leaves, it transfers

all of its data to node 3. As a result, node 3 is responsible
for [2

mi
T, 4

mi
T).

Recall that nodes in a zone become the zone head in
a round-robin manner. Before a head leaves its zone, it
notifies the node that will become the next head. It then
provides the new head with all the information stored
in itself. The new head node conducts the operations
for client departure in order to leave the ring, i.e., the
control of its original virtual node. We will address the
extreme case that all nodes in a virtual node have left in
Section 3.6.4. Algorithm 2 describes the pseudo-code for
the process of node departure.

When a node fails, it does not have the chance to
inform its head, predecessor and successor. When a head
node does not receive the signal from one of its client for
a certain time period, it assumes the client fails. It then
notifies the failed node’s predecessor and successor to
connect to each other. In a node failure, data in a failed
node is lost. To handle the data loss, each zone head can
have a copy of all data in its zone. After restarting, a
failed node can ask for its data from the zone head.

1: Head Leave()
2: /*choose a new head*/
3: new head = get nexthead()
4: transfer info(new head)
5: Client Leave()
6: /*new head notifies its clients in the zone*/
7: new head.build connections()
8:
9: Client Leave()

10: notify zone head
11: notify predecessor and successor
12: if have data() then
13: /*transfer data to its successor*/
14: transfer data(successor)
15: end if
16: return me

Algorithm 2: Pseudo-code for node departure.

3.6.3 Node Join
When a node joins in a new zone, it will firstly inform
its new zone head, who has the information of the tree
structure. It assigns the newly-joined node to a virtual
node with the objective to balance the load among
virtual nodes and the load among real nodes (i.e., leaves)

under the same virtual node. Here, the load of a leaf
node is the ring space owned by itself and the load
of a virtual node is the number of leaves owned by
itself. Recall that at the initial stage, all virtual nodes
have the same number of leaves. Due to node mobility
and failure, some virtual nodes will have more leaves
while others have less. The head tries to add newly-
joined nodes to less loaded virtual nodes. Specifically,
it firstly finds a virtual node that has the least leaves. It
then finds a client node that has more workload than any
of the other nodes. Finally, the head inserts the new node
into a position on the ring that releases the workload of
the more loaded node. As shown in Figure 6(b), node
3 was responsible for [2

mi
T, 4

mi
T). After a new node

joins in the system, the head positions it between node 1
and 3 by assigning it leafId 2. Then, [2

mi
T, 4

mi
T) is split

into [2
mi
T, 3

mi
T) and [3

mi
T, 4

mi
T). Algorithm 3 shows the

pseudo-code of node the join operation conducted by a
zone head. min load vnode() is to find a virtual node
that has the least number of leaf nodes.

1: Client Join(new node, tree)
2: /*find a virtual node with the least number of leaves*/
3: vnode = min load vnode(tree)
4: insert point = null
5: max load = 0
6: for all node in vnode do
7: /*find a virtual node that has maximum duty*/
8: if node.check load() > max load then
9: insert point = node

10: max load = node.get load()
11: end if
12: end for
13: new node.id = insert point.id− 1
14: transfer data(new node, insert point)

Algorithm 3: Pseudo-code of node join operation
conducted by a zone head.

3.6.4 Load Balance
In order to achieve an appropriate granularity of tem-
poral or spatial data storage, the load between virtual
nodes should also be balanced. Load balancing between
virtual nodes can be treated as a series of node departure
and join operations. SDS sets a pre-defined threshold t0
for the load difference between the virtual node with the
maximum load, denoted by vh, and the virtual node with
the minimum load, denoted by vl. The head periodically
calculates the load difference between vh and vl, denoted
by d. In the case that d > t0, d/2 leaf nodes depart
vh and join in vl. This process is repeated until t0 is
reached. Algorithm 4 shows the pseudo-code of the load
balancing between virtual nodes.

4 ANALYSIS OF SDS
4.1 Analysis of the SDS Routing Algorithm
First, we analyze the routing cost of SDS with and
without the carpooling algorithm. In SDS without the
algorithm, a message is transferred to each of the n desti-
nations separately. As we indicated earlier, message can
be routed between neighboring zones when necessary.

9

1: Balance Load(tree, t0)
2: while true do
3: vh = max load vnode(tree)
4: vl = min load vnode(tree)
5: /*find the difference between vh and vl*/
6: d = vh.load− vl.load
7: if d < t0 then
8: return
9: else

10: /*d/2 nodes leave the vh, and join in vl*/
11: for i = d/2; i > 0; i−− do
12: notify vh.min load node() to leave vh and join in vl

13: end for
14: end if
15: end while

Algorithm 4: Pseudo-code of load balancing between
virtual nodes.

Without loss of generality, in the analysis, we assume a
message is routed horizontally first and then vertically.
Let c be the cost of one data transmission between a pair
of neighboring head nodes. We use (X,Y) to represent
a zone, where X and Y denote the sequence number
of the zone in the horizontal and vertical directions.
For a single query issued by node in zone (X0, Y0), to
nodes in zone (X1, Y1), (X2, Y2), ..., (Xn, Yn), SDS with-
out carpooling routing algorithm sends out n requests
to n different zones. The cost of the query routing is:

C
w/o
X0,Y0,n =

n∑
i=0

(|X0 −Xi|+ |Y0 − Yi|)× c (3)

The carpooling algorithm reduces cost by combining
the paths of requests with a common path. We estimate
the upper bound and lower bound of this carpooling
routing cost denoted by Cw. It can be seen that the
longest distance the data traversed towards right and
left directions are

max{X0 −X1, ..., X0 −Xn}, (4)
and

|min{X0 −X1, ..., X0 −Xn}|. (5)
Since the routing is firstly on the horizontal
direction, the horizontal routing cost can be at
most minimized to (max{X0 −X1, ..., X0 −Xn} +
|min{X0 −X1, ..., X0 −Xn}|. Considering the normal
vertical routing cost, we have

Cw
X0,Y0,n ≤ (max{X0 −X1, ..., X0 −Xn}+ (6)

|min{X0 −X1, ..., X0 −Xn}|+
n∑

i=0

|Y0 − Yi|)× c.

In the ideal situation where carpooling can save the
horizontal routing cost as well as the vertical routing
cost, we have the lower-bound of the querying cost:

Cw
X0,Y0,n ≥ (max{X0 −X1, ..., X0 −Xn}+ (7)

|min{X0 −X1, ..., X0 −Xn}|+
max{Y0 − Y1, ..., Y0 − Yn}+

|min{Y0 − Y1, ..., Y0 − Yn}|)× c.

Given Equation (3) and (6), it can be observed that

C
w/o
X0,Y0,n − C

w
X0,Y0,n ≥ (

n∑
i=0

|X0 −Xi|)− (8)

(max{X0 −X1, ..., X0 −Xn}+
|min{X0 −X1, ..., X0 −Xn}|)× c > 0.

Equation (8) shows that even in the worst case, SDS
with carpooling algorithm, Cw

X0,Y0,n, is less than SDS
without the algorithm, Cw/o

X0,Y0,n. In addition, the cost
saving increases as n grows.

Because the requester and queried nodes are all ran-
domly distributed, we assume all zones have the same
probability to issue queries. With the assumption that
there is only one node in each zone that issues a query,
then the expected cost of a query with carpooling mech-
anism is:

ECw =

∑√Z
Y =0

∑√Z
X=0 C

w
X,Y,n

Z
, (9)

where Z is the number of zones in the network.

4.2 Analysis of the Spatial-temporal Storage and
Querying
We will first analyze the storage cost of SDS. We use
Sst

c to denote the spatial-temporal pattern storage cost
in SDS, and Sc to denote the storage cost without
the SDS’s spatial-temporal storage scheme. Without the
spatial-temporal storage scheme, all data matched to
one zone is stored in each node in the zone, while
this storage scheme distributes the data among the zone
nodes according to spatial and temporal order. We use β
to denote the resultant fraction of all data stored in one
node due to the distribution. Suppose that every zone
contains N nodes on average, we have

Sc

Sst
c

=
s×N

(s× β)×N
, (10)

where s is the size of the memory used for data storage
in a node. We assume that data is evenly distributed in
both spatial and temporal space. Thus, β equals to 1

N .
Therefore, Sc

Sst
c

= N. (11)

The result means that spatial-temporal data storage
scheme in SDS reduces the memory consumption.

Now, we analyze the querying cost of SDS based on
spatial-temporal data storage compared with GHT [15]
for large-range queries. For a multi-attribute (i.e., key-
word) query, GHT hashes each keyword for searching
and merges the located data as the final results. For
a spatial-temporal range query, GHT breaks the range
query to separate sub-queries. For example, for query
“what are the airplanes located in Chicago between 1pm
to 4pm?”, GHT breaks the time range to time points 1pm,
2pm, 3pm, 4pm or smaller grains. For a GHT query,
assuming the number of sub-queries of each attribute
has an expected value ā, then the total routing cost for
one query is

Cst
GHT = EGHT ×A× ā, (12)

where EGHT is the expected cost of one source-
destination transmission in GHT and A is the num-
ber of attributes in the query. According to SDS data

10

distribution, nodes within a zone are arranged in both
spatial and temporal order, thus data within a range
can be retrieved by one query. Recall that SDS sends
n requests to n zones for each query, and ECw is the
expected routing cost for a inter-zone data transmission.
We use cz to denote the routing cost for a intra-zone data
transmission. Then, the total routing cost is
Cst

SDS = n× (cz + ECw) = n× (cz + ESDS × n), (13)
where ESDS denotes the SDS’s expected routing cost to
only one zone. By comparing Cst

GHT and Cst
SDS , we have

Cst
GHT

Cst
SDS

=
EGHT ×A× ā

n× (cz + ESDS × n)

=
EGHT

ESDS
× A

n
× ā

n
× n

cz

ESDS
+ n

. (14)

Recall that SDS routes a message horizontally first
and then vertically. GHT can conduct diagonal routing.
Therefore, GHT can at most reduce the SDS routing cost
by
√

2 times for one source-destination routing. Hence,

EGHT ≤ ESDS ≤
√

2EGHT . (15)
Sensors often generate data with many attributes to meet
analysis need and n is usually a small number, in most
cases, A > n. (16)
For a query with a large spatial-temporal range,

ā ≥ n. (17)
Because the cost of inter-zone transmission (i.e., ESDS)
usually consumes more energy than intra-zone transmis-
sion (i.e., cz), we have n

cz

ESDS
+ n
≈ 1. (18)

By applying Equations (15)(16)(17)(19) to Equations 14,
we have Cst

GHT

Cst
SDS

> 1. (19)

Therefore, we can conclude that in a scenario where data
has a series of attributes or a large spatial or temporal
querying range, SDS achieves better performance over
GHT in spatial-temporal search in terms of routing cost.
This conclusion is confirmed by the experiment results
in Section 5.1.

5 PERFORMANCE EVALUATION

We used The One simulator [40] to evaluate the per-
formance of SDS with the improved carpooling routing
algorithm (SDS+IR) and SDS with the normal carpooling
routing algorithm (SDS) in comparison with Directed
Diffusion (DD) [9] and GHT [15]. For a multi-attribute
(i.e., keyword) query, DD uses broadcasting to search all
desired data. GHT hashes each keyword for searching
and merges the located data as the final results. For
reference, we also included the results of SDS using geo-
graphical routing [15] rather than the ID-based carpool-
ing routing algorithm, denoted by SDS+GEO. It routes
data directly from a requester to destination nodes.

The test scenario is a 400m×400m rectangular field,
in which 400 nodes are randomly and independently
disseminated. The field is divided into 16 data zones,

12000

14000
SDS+IR
S S G O

2000

4000

6000

8000

10000

12000

O
ve

rh
ea

d

SDS+GEO
SDS
GHT
DD

0
1 2 4 8 16

Number of queries per batch

(a) Overhead

0.8
0.9

0 1
0.2
0.3
0.4
0.5
0.6
0.7

La
te

nc
y

(s
ec

.)

SDS+IR SDS+GEO
SDS GHT

0
0.1

1 2 4 8 16

Number of queries per batch

DD

(b) Latency

Fig. 7. Performance of spatial-temporal data search.
each of which has an area of 25m2 containing 25 nodes.
The nodes located in the boundary zones of the WSN
area send event data at a speed of 1kbps for 1400s.
Each event data item has a randomly chosen size in
[10,100] bytes, and contains time and location along
with ten different keywords. The number of hash values
for a data item after the LSH operation was set to 5.
Before data querying operation, we gave each test 80s
to distribute event data. The ways how nodes generate
queries are different in different experiments and will be
explained later. We used the following metrics to test the
performance of different methods.
(1) Overhead. This is the sum of the products of path
lengths and message weights, which is the length of a
message divided by the average message length. We use
message weight rather than length in order to conduct
fair comparison since the message lengths of queried
results of different approaches are different. This metric
measures the cost of data querying and reflects energy
consumption cost.
(2) Latency. This is the time period between a query
is issued and a response is received, which reflects the
effectiveness of a method in quick data retrieval.
(3) Total number of hop counts. This is the number of
hops in a query routing, and it reflects the efficiency of
the routing algorithms.
(4) Discovery rate. This is defined as the number of
retrieved similar data items divided by all the existing
similar data items. This metric reflects the effectiveness
of a data storage method in similarity data searching.
(5) Success rate. This is defined as the number of suc-
cessfully resolved queries divided by the total number
of queries. This metric reflects the effectiveness of a data
storage method in a dynamic WSN environment.
(6) Total number of discovered events. This is the num-
ber of discovered events using a search method. Com-
paring it with the existing events matching a query, the
effectiveness of similarity search can be measured.
(7) Overlay maintenance cost. This is the average number
of communication messages sent by a node in a zone for
overlay maintenance, and it reflects the energy consump-
tion cost for overlay maintenance.

5.1 Spatial-Temporal and Range Querying
In this experiment, nodes generate queries targeted at
events occurring within a time interval of 2s and a
location range of 20. We define a batch as a group of

11

queries, in which the number of queries was set to
2i(0 ≤ i ≤ 4). To send a batch of a queries, we randomly
selected a nodes to generate queries with an interval of
0.1s between selections. After all queries in the batch
were resolved, another batch was sent out. We generated
400 queries in total and calculated the average overhead
per batch and latency per query as the experimental
results. This setting applies to Figure 7, 8, 9.

Figure 7(a) shows the overhead of different methods.
We can observe that SDS+IR, SDS and SDS+GEO gener-
ate the least overhead, DD generates the most overhead,
and GHT falls in the middle. DD uses broadcasting for
data querying, leading to significantly more messages,
hence more overhead. For a query with ten keywords, a
requester in GHT sends out one query for each keyword.
Therefore, in GHT, much more data is routed back to the
requester. In addition, GHT routing utilizes node as a
step unit rather than a zone. As a result, it leads to much
higher overhead than those of the SDS-based schemes.
In contrast, no matter how many keywords a query has,
the SDS-based schemes always sends five queries and it
only returns the desired data. Moreover, the carpooling
routing algorithm utilizes a zone as a step unit, leading
to much less routing hops. We also observe that SDS
and SDS+IR have comparable performance to SDS+GEO,
which takes the geographically shortest path with the aid
of GPS. This result implies a high efficiency of the SDS
carpooling routing algorithms. The experimental results
show that SDS+IR reduces around 15% overhead of SDS
on average, indicating that SDS+IR is advantageous over
SDS because of the improved carpooling. The improve-
ment is not obvious because most of the overhead is
contributed by the communication between head and
clients in a zone as there are only 16 zones while 25
nodes in a zone.

Figure 7(b) shows the average latency of each method.
We can see that DD leads to a much higher latency than
others. When the number of queries increases from 2 to
4, the latency of DD grows sharply due to its excessive
messages and traffic congestion. SDS and GHT have
almost the same latency, while SDS+IR and SDS+GEO
produce the least latency. As previously mentioned, GHT
returns much more data. Thus, the increased traffic
causes congestion, resulting in a higher latency. ID-based
routing in an SDS-based scheme without the aid of GPS
may not always take the shortest path. However, SDS
has less routing traffic, which reduces the possibility of
congestion. With geographical routing, SDS+GEO leads
to a lower latency due to less traffic and hops. SDS+IR
produces latency comparable to SDS+GEO due to its
improved carpooling, which further reduces the routing
traffic and avoids traffic congestion in the heads.

Range querying is used to find data items within
a certain range of similarity degree for a query. The
range was set to 3 in this experiment. Since GHT is
not locality-preserving in data storage, its exact-mapping
querying cannot locate similar data. For comparison, we
still include its querying results for the range [h−r, h+r].

35000
40000

SDS+IR
SDS+GEO

5000
10000
15000
20000
25000
30000

O
ve

rh
ea

d

SDS+GEO
SDS
GHT
DD

0
5000

1 2 4 8 16

Number of queries per batch

(a) Overhead

0.8
0.9

0 1
0.2
0.3
0.4
0.5
0.6
0.7

La
te

nc
y

(s
ec

.)

SDS+IR SDS+GEO
SDS GHT

0
0.1

1 2 4 8 16

Number of queries per batch

SDS GHT
DD

(b) Latency
Fig. 8. Performance of range querying.

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8 16

O
v
e

rh
e

a
d

Number of queries

SDS+I.R.

SDS+GEO

SDS

GHT

DD

(a) Overhead

0.8
0.9

0 1
0.2
0.3
0.4
0.5
0.6
0.7

La
te

nc
y

(s
ec

.)

SDS+IR SDS+GEO
SDS GHT

0
0.1

1 2 4 8 16
Number of queries per batch

DD

(b) Latency
Fig. 9. Performance of single-result data querying.
GHT then needs to query each of the IDs in this range.
Figure 8(a) plots the overhead of the methods. We ob-
serve that DD produces dramatically higher overhead
than others due to its broadcasting. Also, we find that
GHT’s overhead increases greatly as the number of
queries increases. This is because GHT sends out six
more queries then the SDS-based schemes for every
attribute corresponding to the range size. SDS+IR, SDS
and SDS+GEO still generates the least amount of over-
head. In range querying, the destination zones only
need to forward the queries to their neighboring zones,
which generates slightly more overhead. In addition,
they utilize a zone as a step unit, leading to much less
routing hops compared with GHT, which uses a node
as step unit. The results show that the range querying
provided by SDS-based methods are the most efficient
among the approaches. The experiment results show that
on average, SDS+IR reduces the overhead of SDS+GHT
and SDS by 5% and 23%, respectively. This confirms the
advantage of the improved carpooling algorithm.

Figure 8(b) shows that DD’s latency increases dra-
matically due to congestion as traffic grows. GHT and
SDS-based schemes have similar latencies. GHT takes
the shortest path, but its latency is affected by the
congestion caused by the increased traffic. SDS-based
schemes do not need to send as many queries as GHT
since they rely on neighbors to forward queries, thus
reducing traffic and congestion. SDS+GEO has the least
latency as a combined effect of the less traffic of SDS and
short routing path of geographical routing. Also, SDS+IR
achieves approximately the same latency as SDS+GEO
because it further reduces the traffic and the congestion
in heads with the improved carpooling routing.

5.2 Single-Result Querying Performance
In order to compare the performance of each approach
without the influence of congestion due to large amount

12

1E+5

1E+6

ou
nt

s

1E+1

1E+2

1E+3

1E+4

1E+5

l n
um

be
r o

f h
op

 c
o

SDS+IR
SDS+GEO
SDS
GHT

1E+0
100 200 400 800To

ta
l

Number of nodes

DD

(a) Overhead

4.1
4.6

SDS+IR
SDS+GEO

0 6
1.1
1.6
2.1
2.6
3.1
3.6

La
te

nc
y

(s
ec

.) SDS+GEO
SDS
GHT
DD

0.1
0.6

100 200 400 800
Number of nodes

(b) Latency

Fig. 10. Performance of scalability.
of returned data, we tested the performance for queries
with only one returned data item. The queries do not
have a time or location specification. Figure 9(a) shows
the overhead. We can see that SDS-based schemes pro-
duce the least overhead, while DD produces the most.
The overhead of DD grows sharply as the number of
queries increases due to its broadcasting. We also note
that GHT generates more overhead than the SDS-based
schemes. The SDS-based schemes send a query to five
zones as a result of LSH operation. GHT sends a query
to ten destination nodes and forwards the query along
nodes rather than zones, thus resulting in a higher
overhead. The experiment results show that SDS+IR
averagely reduces the overhead of SDS and SDS+GEO by
23% and 12%, respectively, because SDS+IR can further
reduce the number of hops with carpooling.

Figure 9(b) shows the latency of each method. We
observe that DD leads to the highest latency and GHT
produces less latency than the SDS-based schemes, but
performs only slightly worse than SDS+GEO. As the
number of queries increases, DD generates more mes-
sages, which leads to congestion and longer latency.
Without GPS, SDS uses an ID-based routing algorithm
that may not take the shortest path. On the other hand,
SDS+GEO routes query directly to a node along the best
path. Therefore, SDS and SDS+IR have higher latency
than SDS+GEO. SDS+IR has nearly the same perfor-
mance as SDS. This is because in single-result querying,
the returned data results are much less than range-based
querying and do not incur much traffic congestion. Since
SDS+GEO has less traffic than GHT due to less messages,
it has the least latency.

5.3 Scalability

The setting of this experiment is the same as the previous
experiments except that the total number of queries
was set to 200. Figure 10(a) shows the total number of
hops. It demonstrates that DD’s total number of hops
is much higher and grows faster than others, which
shows that DD has poor scalability. On the contrary, the
total number of hop counts of SDS-based schemes and
GHT grows relatively slowly, which implies the high
scalability of these approaches. We find that the number
of hops of SDS-based schemes remain fairly stable. This
implies that these schemes have relatively stable routing
performance in different scale WSNs.

1E+6

1E+7

ou
nt

s

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

l n
um

be
r o

f h
op

 c
o

SDS+IR
SDS+GEO
SDS
GHT

1E+0
0.1 1 10 100To

ta
l

Query frequency

DD

(a) Overhead

2 5

3
SDS+IR
SDS+GEO

0.5

1

1.5

2

2.5

La
te

nc
y

(s
ec

.) SDS+GEO
SDS
GHT
DD

0
0.1 1 10 100

Query frequency

(b) Latency

Fig. 11. Performance of different querying frequency.

0

500

1000

1500

2000

2500

3000

2 4 8 16 32 64

T
o

ta
l n

u
m

b
e
r

o
f
e

v
e

n
ts

Number of queries

Expected

Discovered (Similarity above 50%)

(a) Discovered events

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

D
is

c
o

v
e

ry
 r

a
te

Similarity

DD SDS GHT

(b) Discovery rate

Fig. 12. Performance of similarity searching.

Figure 10(b) illustrates the latency of each approach.
DD has a dramatically higher latency than other meth-
ods especially when there are 100 nodes. DD broadcasts
200 queries among the small number of nodes, which
makes it more likely to generate congestion. In con-
trast, SDS+IR, SDS, GHT and SDS+GEO exhibit similar
low latency performances across varying node numbers.
Therefore, they possess a high scalability.

Next, we tested the performance of different ap-
proaches with different querying frequencies. We ran-
domly chose nodes to send queries for 70s with the
querying frequency varied from 0.1 to 100 queries/s.
Every query returned one data item. Figure 11(a) shows
that the number of hop counts for all approaches in-
creases linearly as the querying frequency increases. DD
performs the worst because its broadcasting leads to
much more traffic. SDS-based schemes have less total
hop counts than GHT due to the same reason as ex-
plained in Section 5.2. The figure shows that SDS+GEO,
SDS+IR and SDS are almost identical, but SDS+GEO and
SDS+IR actually require fewer hops. The reason is that
SDS+GEO routes a query using geographic information
whereas SDS depends on a logical ID-based routing.
Furthermore, SDS+IR reduces hop counts of SDS with
the improved carpooling routing.

In Figure 11(b), the latency of all approaches grows
slightly when the querying frequency increases from 0.1
to 10 queries/s. It then begins to grow sharply when
the frequency increases to 100 from 10 queries/s. In this
case, GHT performs better than SDS. Since the number of
zones is less than the number of nodes, under a heavy
traffic load, routing relying on the zone heads causes
them to become more easily congested than by simply
relying on the nodes. SDS+GEO is the least sensitive to
the increase of querying frequency. It has less traffic than
GHT as described above and it uses greedy forwarding.

13

0%

20%

40%

60%

80%

100%

120%

0% 20% 40% 60% 80% 100%

S
u
c
c
e
s
s
 r

a
te

Percentage of failed nodes

(a) Success rate

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0 5 10 15 20 25 30

S
u
c
c
e
s
s
 r

a
te

Mobility(m/s)

SDS (800 nodes)

SDS (400 nodes)

SDS (200 nodes)

SDS (100 nodes)

(b) Success rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20 25 30

L
a
te

n
c
y

Mobility(m/s)

SDS (800 nodes)

SDS (400 nodes)

SDS (200 nodes)

SDS (100 nodes)

(c) Latency

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30

O
v
e
rh

e
a
d

Mobility(m/s)

SDS (800 nodes)

SDS (400 nodes)

SDS (200 nodes)

SDS (100 nodes)

(d) Overhead
Fig. 13. Performance in a dynamic WSN with node
failures and mobility.

Therefore, it benefits from less congestion. The latency
produced by SDS+IR is less than SDS and very close
to SDS+GEO under high querying frequencies. This is
because its improved carpooling routing algorithm helps
to reduce traffic congestion.

5.4 Similarity Searching
The setting of this experiment is the same as the previous
experiments except the total number of queries was set
to 100, and the number of queries per batch was set
to 2i(1 ≤ i ≤ 6). We set the query range of SDS to
r = 3. All queries had specification of 50% similarity.
Figure 12(a) shows the number of discovered data items
with similarity no less than 50% in SDS and the number
of actual such data items in the system. We find that SDS
can always discover 90% of such data items. The results
confirm that SDS is highly effective in similarity search.

Figure 12(b) shows the discovery rate of each approach
in terms of the similarity between the discovered data
and the query. Discovery rate is defined as the percent
of data items that have a certain similarity to a query
that can be discovered. GHT can only return data with
100% similarity due to its exact matching. Data in GHT is
hashed to nodes using consistent hash functions. Thus,
GHT fails to supply similarity searching. Unlike GHT
and SDS, DD broadcasts queries to nodes and conse-
quently achieves a 100% percent discovery rate for each
similarity. However, its high discovery rate brings high
overhead. SDS provides an optimized trade-off between
overhead and discovery rate of similar data. The results
show SDS obtains a discovery rate above 85% percent
while avoiding the high overhead found with DD.

5.5 Performance in a Dynamic WSN
This experiment tests the performance of SDS with node
failures and node mobility. Figure 13(a) presents the

success rate with different percentage of failed sensor
nodes. As expected, the success rate decreases as the
percentage of failed nodes increase. This is because when
a sensor node fails, event data may be lost on the way to
its destination node where it is to be saved. In addition,
all data in the failed nodes is also lost. Therefore, the
responses of a query may not return all queried data.

This test was conducted in a WSN with 100 × 2i(0 ≤
i ≤ 3) nodes. Each zone has 25 nodes. The moving
speed of the sensor nodes was set to 0-30m/s with
5 increase in each step. The queries were issued at a
speed of 10 queries per second for a period of 40s.
Figure 13(b) illustrates the success rate when the sensor
nodes move at different speeds. It demonstrates that
SDS achieves more than a 92% success rate when the
nodes move at a speed of 30m/s. This shows the stability
of SDS routing algorithm. Due to SDS’s dynamic data
management, a node can always obtain the event data
in a system that it queries even under node mobility.
We can also observe that faster mobility leads to slightly
lower success rates due to the more frequent node
joins and departures. Another phenomenon that can be
observed is the increased success rate when there are
fewer nodes. This is because the number of nodes per
zone is the same in the different scale networks. Thus, a
larger-scale network has more zones and, subsequently,
generates longer message routing paths. Longer routing
paths increase the probability of message transmission
failure in a dynamic network.

Figure 13(c) shows the average latency of data trans-
mission as a function of moving speed. Firstly, we can
see that as the network scale exponentially grows, the
transmission delay increases as well due to the increas-
ing number of nodes that a message needs to traverse.
For a network scale of 800, 400 and 200 nodes, the
latency does not increase dramatically with higher mov-
ing speed, this demonstrates the high scalability of our
dynamic management mechanism. Since the messages
are generated and spread at the same speed in different
scale networks, the network with 100 nodes suffers from
more messages per node. This produces more congestion
and leads to a higher latency escalating rate.

Figure 13(d) demonstrates the generated overhead
versus node moving speed. It shows that this value
increases as the network scale increases and does not
change greatly as the node’s moving speed increases.
Networks with a size 100 and 200 generate nearly the
same overhead at low moving speed. This is because
when there are 100 nodes with the same amount of
traffic, more message retransmissions are issued. These
results show that SDS is suitable for a dynamic environ-
ment with mobile nodes.

Querying frequency influences the performance of
WSNs. To evaluate the performance of SDS with differ-
ent querying frequencies, we conducted our test with
different querying frequencies and the node’s moving
speed of 5m/s. Figure 14(a) shows the success rate as a
function of querying frequency. We see that as the fre-

14

0

0.2

0.4

0.6

0.8

1

1.2

0.1 1 2 10 20 100

S
u

c
c
e
s
s
 r

a
te

Querying frequency

SDS (800 nodes, 5m/s)

SDS (400 nodes, 5m/s)

SDS (200 nodes, 5m/s)

SDS (100 nodes, 5m/s)

(a) Success rate

0

0.5

1

1.5

2

2.5

3

0.1 1 2 10 20 100

L
a
te

n
c
y

Querying frequency

SDS (800 nodes, 5m/s)

SDS (400 nodes, 5m/s)

SDS (200 nodes, 5m/s)

SDS (100 nodes, 5m/s)

(b) Latency

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.1 1 2 10 20 100

O
v
e

rh
e

a
d

Querying frequency

SDS (800 nodes, 5m/s)

SDS (400 nodes, 5m/s)

SDS (200 nodes, 5m/s)

SDS (100 nodes, 5m/s)

(c) Overhead

Fig. 14. Performance in a dynamic WSN with different querying frequency.

14nc
e

with round-robin w/o round-robin> 50

2

4

6

8

10

12

ve
rla

y
m

ai
nt

en
a

co
st

0
100 200 400 800

O
v

Number of nodes

Fig. 15. The cost of overlay
management.

quency increases, the proportion of delivered messages
drops due to network congestion caused by an increased
traffic load. Specifically, the network with only 100 nodes
has the quickest falling success rate because it is the most
heavily loaded. SDS can still keep its success rate about
80% in larger network scales.

In Figure 14(b), as the frequency of querying increases
exponentially, the delay in the different scale networks
rises. We see the increment in networks of more than
200 nodes is not apparent when querying frequency is
between 0.1-10. This is because the amount of traffic
does not yet cause significant congestion. We also see
that every network suffers a sharp increase when the
querying frequency increases to 100, as the messages are
buffered and needs more time to transmit. The network
with 100 nodes has an earlier increase in delay due to its
scale and its processing of the same amount of messages
as networks of other scales.

The overhead with different querying frequency is
shown in Figure14(c). We observe that the overhead of all
networks does not change much when the querying fre-
quency is below 10. This shows SDS does not suffer from
message retransmission. When the querying frequency
becomes higher, the overhead of networks with more
than 200 nodes goes up slightly, which indicates that a
small amount of messages are retransmitted. A decrease
in overhead happens on the network with 100 nodes
under high querying frequency because the congestion is
excessive and fewer messages have a chance to be sent.

5.6 Cost of Round Robin Zone Head Election

In order to show the cost of the round-robin zone head
election, we measured the average, 1st and 99th overlay
maintenance cost of SDS with and without the round-
robin head election algorithm, as shown in Figure 15. We
set the communication interval between a zone head and
its clients to 60s and the interval between two elections
of head nodes to 180s. We see that the SDS with round-
robin generates a little higher average load than the
SDS w/o round-robin. Also, the latter exhibits a much
larger variance than the former. Thus, the cost caused
by the round-robin head election is rewarded by the
even distribution of the communication load among all
of the zone nodes. Without the round-robin algorithm,
the fixed head nodes are responsible for most of the
communication cost and may be overloaded. Also, the

low average cost values shows that the overhead in
maintaining the zone-overlay is acceptable.

6 CONCLUSION

This paper proposes a distributed spatial-temporal sim-
ilarity data storage scheme (SDS). Based on LSH, SDS
efficiently disseminates data in a WSN such that similar
event data is mapped to the same or nearby WSN
neighborhood(s). This enables SDS to offer similarity
searching service. SDS also provides spatial-temporal
data searching by classifying data in a neighborhood into
a two-dimensional or a tree data storage structure con-
sisting of neighborhood nodes. Further, the SDS carpool-
ing routing algorithm efficiently routes queries or data
without relying on GPS. The experimental results show
the distinguishing features of spatial-temporal similarity
data searching of SDS. SDS not only shows superior
performance over Directed Diffusion and GHT in terms
of overhead and flexibility, but also exhibits comparable
latency to GHT which employs geographical routing.
SDS also achieves high reliability and stable performance
in a dynamic environment.

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
NSF-OCI 1064230, CNS-1049947, CNS-1025652, CNS-
1025649, and CNS-0917056, Microsoft Research Faculty
Fellowship 8300751, and Sandia National Laboratories
grant 10002282. An early version of this work [41] was
presented in the Proceedings of ICCCN’09.

REFERENCES

[1] B. Krishnamachari, “networking wireless sensors,” Cambridge Uni-
versity Press, ISBN-10 0-521-83847-9, 2005.

[2] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan,
and S. Shenker, “GHT: A Geographic Hash Table for Data-Centric
Storage,” in Proc. of WSNA, 2002.

[3] G. Campobello, A. Leonardi, and S. Palazzo, “A novel reliable and
energy-saving forwarding technique for wireless sensor networks,”
in Proc. of MobiHoc, 2009.

[4] G. Pottie, “Wireless Integrated Network Sensors,” Communications
of the ACM, no. 51–58, 2000.

[5] S. Saroiu, P. Gummadi, and S. Gribble, “A Measurement Study of
Peer-to-Peer File Sharing Systems,” in Pro. of MMCN, 2002.

[6] G. Asada, M. Dong, T. S. Lin, F. Newberg, G. Pottie, W. J. Kaiser,
and H. O. Marcy, “Wireless integrated network sensors: low power
systems on a chip,” in Proc. of ESSCIRC, 1998.

15

[7] Y. Yao, X. Tang, and E. Lim, “In-network processing of nearest
neighbor queries for wireless sensor networks,” in Proc. of DAS-
FAA06, 2006.

[8] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler, “Lessons
from a Sensor Network Expedition,” in Proc. of EWSN, 2004.

[9] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffu-
sion: A Scalable and Robust Communication Paradigm for Sensor
Networks,” in Proc. of Mobicom, 2000.

[10] W. Zhang, G. Cao, and T. L. Porta, “Data Dissemination with
Ring-Based Index for Wireless Sensor Networks,” in Proc. of ICNP,
2003, pp. 305–314.

[11] S. Madden, M. J. Franklin, and J. M. H. W. Hong, “TAG: a Tiny
AGgregation Service for Ad-Hoc Sensor Networks,” in Proc. of
OSDI, 2002.

[12] F. Ye and G. Zhong, “GRAdient Broadcast: A Robust Data Deliv-
ery Protocol for Large Scale Sensor Networks,” WINET, 2005.

[13] H. Luo, F. Ye, J. Cheng, S. Lu, and L. Zhang, “Ttdd: Two-tier data
dissemination in large-scale sensor networks,” Wireless Networks,
vol. 11, pp. 161–175, 2002.

[14] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Grovindan,
L. Yin, and F. Yu, “Data-centric storage in sensornet with ght: A
geographic hash table,” in Proc. of MONET, 2003.

[15] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, and L. Yin, “Data-
centric storage in sensornets with GHT, a geographic hash table,”
MONET, vol. 8, pp. 427–442, 2003.

[16] X. Li, Y. J. Kim, and W. Hong, “Multi-dimensional range queries
in sensor networks,” in Proc. of SenSys, 2003.

[17] D. Ganesan, “DIMENSIONS: Why do we need a new data
handling architecture for sensor networks,” in Proc. of the ACM
HotNets, 2002, pp. 143–148.

[18] D. Ganesan, A. Cerpa, Y. Yu, D. Estrin, W. Ye, and J. Zhao,
“Networking issues in wireless sensor networks,” JPDC, 2004.

[19] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and
S. Shenker, “Difs: A distributed index for features in sensor net-
works,” in Proc. of SNPA, 2003.

[20] J. Li, J. Jannotti, D. S. J. De, C. David, R. Karger, and R. Morris, “A
scalable location service for geographic ad hoc routing,” in Proc. of
MobiCom, 2000.

[21] J. Newsome and D. Song, “GEM: Graph EMbedding for routing
and data-centric storage in sensor networks without geographic
information,” in Proc. of SenSys, 2003.

[22] A. Caruso, S. Chessa, S. De, and R. Urpi, “GPS free coordinate
assignment and routing in wireless sensor networks,” in Proc. of
IEEE INFOCOM, 2005, pp. 150–160.

[23] P. Desnoyers, D. Ganesan, and P. Shenoy, “Tsar: A two tier
sensor storage architecture using interval skip graphs,” in Proc.
of SenSys05. ACM Press, 2005, pp. 39–50.

[24] C. T. Ee and S. Ratnasamy, “Practical data-centric storage,” in Proc.
of NSDI, 2006.

[25] M. Aly, K. Pruhs, and P. K. Chrysanthis, “KDDCS: A load-
balanced in-network data-centric storage scheme in sensor net-
work,” in Proc. of CIKM, 2006, pp. 317–326.

[26] F. Bian, X. Li, R. Govindan, and S. Schenker, “Using hierarchical
location names for scalable routing and rendezvous in wireless
sensor networks,” in Proc. of SenSys, 2004, pp. 305–306.

[27] J. Xu, X. Tang, and W. chien Lee, “A new storage scheme for
approximate location queries in object tracking sensor networks,”
IEEE TPDS, vol. 19, pp. 262–275, 2008.

[28] M. Li and Y. Liu, “Rendered path: range-free localization in
anisotropic sensor networks with holes,” in Proc. of MobiCom, 2007.

[29] H. Shen, T. Li, and T. Schweiger, “An Efficient Similarity Searching
Scheme Based on Locality Sensitive Hashing,” in Proc. of ICDT,
2008.

[30] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and
R. Panigrahy, “Consistent Hashing and Random Trees: Distributed
Caching Protocols for Relieving Hot Spots on the World Wide
Web,” in Proc. of STOC, 1997, pp. 654–663.

[31] W. Nejdl, W. Siberski, M. Wolpers, and C. Schmnitz, “Routing
and clustering in schema-based super peer networks,” in Proc. of
IPTPS, 2003.

[32] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos,
L. Serafini, and I. Zaihrayeu, “Data management for peer-to-peer
computing: A vision,” in Proc. of WebDB, 2002.

[33] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov, “Piazza: Data
management infrastructure for semantic web applications,” in Proc.
of WWW, 2003.

[34] “In how many ways can m balls be distributed into n boxes?”
http://www.fen.bilkent.edu.tr/ otekman/disc/usef.pdf.

[35] G. Wang, G. Cao, T. L. Porta, and W. Zhang, “Sensor relocation
in mobile sensor networks,” in Proc. of IEEE INFOCOM, 2005.

[36] L. Hu and D. Evans, “Localization for mobile sensor networks,”
in Proc. of MobiCom, 2004.

[37] F. Liu, X. Cheng, D. Hua, and D. Chen, “Location discovery for
sensor networks with short range beacons,” IJAHUC, 2009.

[38] R. Fonseca, S. Ratnasamy, J. Zhao, and C. T. Ee, “Beacon vector
routing: scalable point-to-point routing in wireless sensornets,” in
Proc. of NSDI, 2005.

[39] N. Bulusu, J. Heidemann, and D. Estrin, “Gps-Less Low-Cost
Outdoor Localization For Very Small Devices,” IEEE Personal Com-
munications Magazine, vol. 7, no. 5, pp. 28–34, 2000.

[40] “The one simulator. http://www.netlab.tkk.fi/.”
[41] H. Shen, T. Li, L. Zhao, and Z. Li, “SDS: Distributed Spatial-

Temporal Similarity Data Storage in Wireless Sensor Networks,”
in Proc. of ICCCN, 2009.

Haiying Shen received the BS degree in Com-
puter Science and Engineering from Tongji Uni-
versity, China in 2000, and the MS and Ph.D.
degrees in Computer Engineering from Wayne
State University in 2004 and 2006, respectively.
She is currently an Assistant Professor in the
Department of Electrical and Computer Engi-
neering, and the Director of the Pervasive Com-
munications Laboratory of Clemson University.
Her research interests include distributed com-
puter systems and computer networks, with an

emphasis on peer-to-peer and content delivery networks, mobile com-
puting, wireless sensor networks, and grid computing. Her research
work has been published in top journals and conferences in these
areas. She was the Program Co-Chair for a number of international
conferences and member of the Program Committees of many leading
conferences. She is a member of the IEEE and ACM. She is Microsoft
Research Faculty Fellow of 2010.

Lianyu Zhao received the BS and MS degrees
in Computer Science from Jilin University, China.
He is currently a Ph.D. student in the Depart-
ment of Electrical and Computer Engineering
of Clemson University. His research interests
include wireless sensor network, routing proto-
cols, applications and security issues in P2P
networks.

Ze Li received the BS degree in Electronics and
Information Engineering from Huazhong Univer-
sity of Science and Technology, China, in 2007.
He is currently a Ph.D. student in the Depart-
ment of Electrical and Computer Engineering
of Clemson University. His research interests
include distributed networks, with an emphasis
on peer-to-peer and content delivery networks,
wireless multi-hop cellular networks, game the-
ory and data mining. He is a student member of
IEEE.

