
Leveraging a Compound Graph based DHT for
Multi-Attribute Range Queries with Performance

Analysis
Haiying Shen, * Member, IEEE, Cheng-Zhong Xu, Member, Senior IEEE

F

Abstract—Resource discovery is critical to the usability and acces-
sibility of grid computing systems. Distributed Hash Table (DHT) has
been applied to grid systems as a distributed mechanism for providing
scalable range-query and multi-attribute resource discovery. Multi-DHT-
based approaches depend on multiple DHT networks with each network
responsible for a single attribute. Single-DHT-based approaches keep
the resource information of all attributes in a single node. Both classes
of approaches lead to high overhead. In this paper, we propose a Low-
Overhead Range-query Multi-attribute DHT-based resource discovery
approach (LORM). Unlike other DHT-based approaches, LORM relies
on a single compound graph based DHT network and distributes
resource information among nodes in balance by taking advantage
of the compound graph structure. Moreover, it has high capability to
handle the large-scale and dynamic characteristics of resources in grids.
Experimental results demonstrate the efficiency of LORM in comparison
with other resource discovery approaches. LORM dramatically reduces
maintenance and resource discovery overhead. In addition, it yields
significant improvements in resource location efficiency. We also ana-
lyze the performance of the LORM approach rigorously by comparing
it with other multi-DHT-based and single-DHT-based approaches with
respect to their overhead and efficiency. The analytical results are
consistent with experimental results, and prove the superiority of the
LORM approach in theory.

Keywords: Multi-attribute range query, Distributed hash table,
Peer-to-Peer, Resource discovery, Grids, Cycloid.

1 INTRODUCTION

Grid systems integrate computers, clusters, storage systems
and instruments to provide a highly available infrastructure
for large scientific computing centers. Scalable and efficient
resource discovery is critical to providing usability and ac-
cessibility in large-scale grid systems. The resources required
by applications are often described by multi-attribute range
queries. Such a query consists of a set of attributes such as
available computing power and memory with a range for each
attribute. A fundamental service of resource discovery is to
locate resources according to the attribute inputs. Recently,

• * Corresponding Author. Email: shenh@clemson.edu.

• H. Shen is with the Department of Electrical and Computer Engineering,
Clemson University, Clemson, SC, 29634. C. Xu is with the Department
of Electrical and Computer Engineering, Wayne State University, Detroit,
MI 48202.

Distributed Hash Table (DHT) architecture has been intro-
duced to grid systems for large-scale and dynamic resource
discovery due to its high scalability and dynamism-resilience
features. DHT can efficiently route messages to the unique
owner of any given object. Because of its single deterministic
object location, the object can be either a resource attribute or a
value. Therefore, it is a challenge to realize resource discovery
with both range-query and multi-attribute requirements.

According to how to leverage the deterministic object
location function of DHTs for multi-attribute range queries
in grids, most current pure DHT based approaches can be
classified into multi-DHT-based, single-DHT-based central-
ized and single-DHT-based decentralized approaches. Multi-
DHT-based approaches support multi-attribute range queries
by relying on multiple DHT networks with each network
responsible for a single attribute [2, 5]. To locate resources
specified by several attributes and ranges, each query for a
resource is presented to the appropriate DHT and then the
results are concatenated in a database-like join operation.
However, maintaining multiple DHT networks generates a
high cost, especially in a highly dynamic environment. Single-
DHT-based centralized approaches [32] keep the resource
information of all values for a specific attribute in a single
node. In order to discovery resources satisfying user specified
constraints, all nodes in the distributed system form a DHT and
act as both resource servers and clients. The DHT server nodes
collect the information of node resources, receive resource
queries and send the requested resource information to the
nodes. Though these approaches only need to maintain one
DHT, it leads to high resource discovery latency since range
searching is conducted in a very large resource information
directory. Moreover, the centralized approach for an attribute
may overload directory nodes by letting them maintain a high
volume of information and process resource queries. Single-
DHT-based decentralized approach [7, 8] is based on one
DHT and provides range searching. It maps the attribute and
value of a resource separately to one DHT, and processes
a query by searching them separately. Though it incurs less
DHT maintenance overhead and searching latency, it doubles
the overhead for resource information maintenance, resource
reporting and resource searching. This is because it separates
each resource information piece to two parts in resource re-

2

porting and resource searching. In addition, it also accumulates
resource information of a specific attribute in a single node,
overloading these nodes for query processing.

To reduce overhead and enhance efficiency of resource
discovery in grids, we propose a DHT-based resource dis-
covery approach with features of Low-Overhead, Range-query
and Multi-attribute (LORM) [40]. Unlike the aforementioned
three groups of DHT-based approaches, LORM is built on a
single DHT called Cycloid [41]. Instead of collecting resource
information of all values of an attribute in a single node or
separating each piece of resource information, LORM arranges
each node to be responsible for the resource information of a
specific attribute within a value range by taking advantage of
the compound graph structure of Cycloid, which connects clus-
ters by a cycle. Specifically, the resource information of one
attribute is gathered in one cluster, and is further distributed
among the nodes in the cluster according to the resource
values. LORM achieves high efficiency through balanced
distribution of maintenance overhead and resource discovery
operations. We demonstrate its effectiveness and efficiency via
simulation in comparison with other DHT-based approaches.
We also analyze the performance of LORM rigorously and
compare it with multi-DHT-based and single-DHT-based ap-
proaches with respect to their overhead and efficiency. The
analytical results are consistent with the experimental results.
The results prove the superiority of LORM through theory.

The proposed LORM approach can also be applied to
other compound graph based overlays such as Kcube [18]
and dBCube [10], in which clusters are connected by a
structure such as Kautz digraph and de Bruijn graph. Then,
for range-query and multi-attribute resource discovery, as in
Cycloid, LORM can collect the resource information of one
attribute in one cluster and further distribute the information
among nodes in one cluster based on resource values.

The remainder of this paper is structured as follows. Sec-
tion 2 describes a review of DHT-based resource discovery
approaches for grid systems and methods for multidimensional
and (or) range queries. Section 3 describes LORM, focusing
on its resource discovery framework and algorithms. Section 4
presents the performance analysis of LORM in comparison to
other representative DHT-based resource discovery methods.
Section 5 analyzes the performance of LORM and other
approaches with regards to the consistency between analytical
results and experimental results in both a static environment
and a dynamic environment. Section 6 concludes the paper
and provides remarks on possible future work.

2 RELATED WORK

Recently, numerous approaches have been proposed for re-
source discovery in grid systems. DHT [46, 25, 19, 20, 37,
58, 36, 41] has been widely adopted for resource discovery
in grids. Current pure DHT based approaches to achieve
multi-attribute range query can be generally classified into
three groups: (1) Multi-DHT-based approach that adopts one
DHT for each attribute, and processes multi-attribute range
queries in parallel in corresponding DHTs [2, 5]. In this
approach, multiple DHTs for multiple attributes need to be

maintained, and the DHT key is used as the index for the
resource value for range queries. However, the construction
and maintenance of multiple DHTs are costly, especially in
a dynamic environment. For example, suppose that there are
m types of resource attributes. Then, m DHTs are needed.
Although one node does not necessarily have all attributes, it
is a member in each of the m DHTs. The number of routing
tables that a node maintains is m. Each routing table contains
log n entries for a network with overall n nodes. Therefore,
each node needs to maintain m× log n neighbors. (2) Single-
DHT-based centralized approach that pools together resource
information of all values for a specific resource attribute in
a single node [32]. In this approach, the key in the DHT
functions as the index for the resource attribute. However, this
approach overloads directory nodes for maintaining high vol-
ume of resource information in their directories and resource
query processing. In addition, a large directory size leads
to inefficiency in resource searching. (3) Single-DHT-based
decentralized approach that separately maps the resource
attribute and value in the resource information to a single DHT,
and processes a query by searching them separately [7, 8]. It
brings about more overhead in resource reporting and search-
ing, and produces more maintenance overhead for resource
information by doubling the information pieces. In addition,
it accumulates resource information of a specific attribute in
a single node, which may lead to overloaded nodes.

There are other resource discovery methods for grids. The
works in [45, 39] focus on multi-attribute resource discovery
without considering range. They represent server meta-data as
points in a multidimensional space and then express queries
as predicates over these points. The works in [52, 47] leverage
the tree structure for queries in grids. The works in [13, 31, 26]
are based on unstructured P2P networks. However, tree-based
approaches are not resilient to network churn and searching
in unstructured networks generates a very high overhead.

There are many solutions to realize range queries and
multidimensional queries over existing P2P systems. These
methods can complement the pure DHT based approaches in
structures, routing and data representation to achieve higher
performance. ZNet [44], Midas [30], ERQ [56], SCAN [48]
and SONAR [38] are multi-attribute range querying methods.
Many other methods [27, 57, 17, 59, 29, 22] rely on a tree
structure for this purpose. Shen and Li [43] and Zhang et
al. [53] proposed two-layered architecture to support mul-
tidimensional range queries in P2P networks. Also, some
methods [54, 6] use an index service or structure for mul-
tidimensional searching in P2P networks. Datta et al. [12]
described how range queries can be supported in a structured
overlay network that provides O(log n) search complexity on
top of a trie abstraction. Wu et al. [51] proposed Roogle, a de-
centralized non-flooding P2P search engine that can efficiently
support high-dimensional range queries in P2P systems. Gane-
san et al. [16] showed how multidimensional queries may
be supported in a P2P system by adapting traditional spatial
database technologies (kd-trees and space-filling curves) with
P2P routing networks and load-balancing algorithms. Chen et
al. [11] exploited Bloom Filter for multi-keyword search over
DHT P2P networks.

3

Also, there have been numerous studies on the problem
of multidimensional or range queries in the database field.
Early such works kd-tree [4], bdd-trees [3] and vp-tree [15].
Papadias et al. [33] showed how a variety of three- or
four-dimensional queries that correspond to different relations
can be processed using spatial data structures. In order to
reduce the computing cost in dimensionality reduction while
ensuring high query precision, Ravi et al. [23] proposed a
technique that uses aggregate data from the existing index
rather than the entire data. Castelli et al. [9] observed that
a fundamental underpinning of any Content-based routing
(CBR) protocol is for messages and subscriptions to “meet”
at some points in the network, and thus proposed the
HyperCBR which enforces this topological property in a
multidimensional space. Weng et al. [49] proposed strategies
to efficiently execute range queries on distributed machines,
when partial replica optimization is employed.

LORM [40] is based on Cycloid [41]. It is advantageous
over the three groups of DHT-based grid resource discovery
methods in that it only relies on a single DHT to realize multi-
attribute range-query resource discovery with low overhead.
Moreover, unlike most other multidimensional range querying
methods, LORM uses a DHT without the need of building an
additional structure.

3 RANGE-QUERY AND MULTI-ATTRIBUTE RE-
SOURCE DISCOVERY

3.1 An Overview of Cycloid
This section provides an overview of DHT overlay networks
followed by a high-level view of the Cycloid DHT. DHT
overlays are a class of decentralized systems at the application
level that partition ownership of a set of objects among partici-
pating nodes, and can efficiently route messages to the unique
owner of any given object. Each object or node is assigned
with an ID (i.e., key) that is the consistent hash value [24]
of the object name or node IP address. The overlay network
provides two main functions: Insert(key,object) and
Lookup(key) that store an object to a node and retrieve
the object, respectively. The message for the two functions is
forwarded from node to node, based on the routing algorithm
through the overlay network, until it reaches the object’s
owner. Each node maintains a routing table that records its
neighbors in the overlay network.

Early studies have resulted in numerous DHT overlay
networks. Our previous study has analyzed these overlays
with various topologies and characteristics, and has designed
the Cycloid overlay [41], which is based on a compound
graph of cube-connected cycles [34]. Cycloid distinguishes
itself from other DHTs by its higher scalability since its
maintenance overhead is constant regardless of network size.
Cycloid’s low maintenance cost, balanced load distribution,
and compound graph structure give LORM the capability of
handling the challenges in resource discovery in grids. We
present an overview of Cycloid in below.

Cycloid is a constant-degree overlay with n=d·2d nodes,
where d is DHT dimension. It achieves a time complexity
of O(d) per lookup request by using O(1) neighbors

(x, 2047)

(x, 50)

a: (3, 200)d: (10, 200)

(x,1800)

b: (5, 200)
(x, 1200)

a: (3, 200)

c: (8, 200)

d: (10, 200)

(x, 800)

(x,1000) (x, 500)

Fig. 1. Cycloid structure.

Cycloid DHT layer

Grid layer

Fig. 2. LORM architecture.

per node. Figure 1 shows a high-level structure of a 11-
dimensional Cycloid, where x∈[0, 10]. The ID of each node
or object in Cycloid is represented by a pair of indices
(k, ad−1ad−2 . . . a0), where k is called cyclic index and
ad−1ad−2......a0 is called cubical index. The cyclic index
is an integer in [0, d − 1] and the cubical index is a binary
number in [0, 2d − 1]. For example, in Figure 1, the ID of
node a is (3, 200), i.e., k = 3 and ad−1ad−2 . . . a0 = 200 (in
decimal value). For a given object or node, its cyclic index
is its consistent hash value modulated by d and its cubical
index is its consistent hash value divided by d.

As shown in Figure 1, the nodes with the same cubical
index ad−1ad−2......a0 are ordered by their k on a small cycle,
which we call cluster. The node with the largest k in a cluster
is called the primary node of the nodes at the cluster. All
clusters are ordered by their cubical index ad−1ad−2......a0 on
a large cycle. For example, in the figure, nodes a, b, c and
d with the same cubical index 200 constitute a cluster. All
clusters are connected in the order of their cubical indices.
The cluster with cubical index equals 200 has a preceding
cluster with cubical index equals 50 and a succeeding cluster
with cubical index equals 500. Node d is the primary node of
the nodes in its cluster.

Each node maintains a routing table recording the links to
seven neighbors. The links include the node’s predecessor and
successor in its cluster, two primary nodes in the preceding and
the succeeding cycles, one cubical neighbor, and two cyclic
neighbors. We do not explain the cubical neighbor and the
cyclic neighbors here since they are not closely related to
the design of LORM. In Cycloid, an object is assigned to
a node whose ID is the closest to the object’s ID. If the target
node of an object’s ID (k, ad−1 . . . a1a0) is a participant, the
object will be mapped to this node. Otherwise, the object is
assigned to the node whose ID is first numerically closest
to ad−1ad−2 . . . a0 and then numerically closest to k. For
example, in Figure 1, an object with ID=(3, 200) is assigned
to node a = (3, 200). An object with ID=(6, 200) is assigned
to node b = (5, 200) since there is no node with ID=(6, 200)
and (5, 200) is the node ID that is the closest to (6, 200).

The consistent hashing produces a bound of O(log n)
imbalance of keys between nodes, where n is the number
of nodes in the system. Cycloid exhibits a more balanced
distribution of key loads between the nodes than other DHTs
on average. The balanced key load distribution helps LORM
to prevent resource information imbalance, which is a severe
problem in most grids centrally or hierarchically administered
for resource discovery. For more information about Cycloid,

4

please refer to [41]. Figure 2 shows a high level architecture
for the application of Cycloid to grids for resource discovery.
LORM relies on a single Cycloid with constant maintenance
overhead. The goal of LORM is to address multi-attribute and
range query resource discovery with low overhead and high
efficiency.

3.2 LORM Framework and Algorithms

3.2.1 Resource Information Representation

Usually, the resources required by applications are described
by specifying a set of attributes such as available CPU time,
memory, network bandwidth. It is a challenge to effectively lo-
cate resources across widely dispersed domains based on a list
of predefined attributes. Without loss of generality, we assume
that each resource is described by a set of attributes with glob-
ally known types and values/ranges or string description. E.g.,
“CPU=1000MHz”, “Free memory>2MB” or “OS=Linux”.
We define resource information as information of available
resources and resource queries. We use πa to denote the
value/range (e.g., “2”) or string description (e.g., “Linux”)
of a particular attribute a (e.g., “Free memory” and “OS”).
Resource information of a resource requester j is represented
in a set of 3-tuple representation: < a, πa, ip addr(j) >,
in which ip addr(j) denotes the IP address of node j. The
available resource information of node i is represented in the
form of < a, δπa, ip addr(i) >, in which δπa is the πa of its
available resource.

3.2.2 Resource Information Mapping

Usually, the operation in resource discovery is to pool together
the information of available resources in a number of directory
nodes, and direct resource requests to these nodes, which re-
turn the resource owners of desired resources to the requesters.
A directory node stores resource information in a directory.
Recall that a Cycloid consists of a number of clusters, which
together constitute a large cycle. As shown in Figure 3, the
basic idea of LORM is to arrange each cluster to be respon-
sible for the information of one attribute, and distributes the
information among nodes within the cluster based on resource
value/range or string description. Towards this end, LORM
assigns each resource a Cycloid ID (k, ad−1ad−2 . . . a0). Its
cubical index ad−1ad−2 . . . a0 represents resource attribute a,
and its cyclic index k represents resource value πa. Recall
that in a Cycloid ID, the cubical indices ad−1ad−2 . . . a0 dif-
ferentiate clusters, and the cyclic indices k differentiate node
positions in a cluster. As a result, the resource information is
distributed in the Cycloid structure as shown in Figure 3.

LORM can build all nodes in a grid system into a Cycloid
structure. For a grid system with m types of resource attributes,
if m is smaller than the number of clusters in the Cycloid,
some clusters will not be used. In this case, if m is fixed, in
order not to waste maintenance overhead, LORM can choose
partial relatively stable nodes to build a Cycloid with m
clusters. If m is larger than the number of clusters in the
Cycloid, a cluster may be responsible for more than one
resource attribute. In this case, a directory node in the cluster
maintains one directory for each attribute.

In the following, we present the details of the design
of LORM by answering three questions: (1) how to create
resource ID? (2) how nodes report their resource information
of available resources to their directory nodes? and (3) how
nodes query resources from their directory nodes?

Resource Hash
CPU 50
Free memory 200
Disk 500
External memory 800
Software package 1000
Web service 1200
Bandwidth 1800
Database 2047

TABLE 1
Resources and their Hash

values.

CPU

Database

B d idth

e: (0.2]

CPU

Web
a: (0,3]d: (8,10]

Bandwidth

M

f: (2,5]g: (5,10]

b: (3,5]

Software

Web
service

c: (5,8]
Memory

package Disk

External
memory

2/27

Fig. 3. Resource information
distribution in LORM.

3.2.3 Resource ID
Consistent hash functions such as SHA-1 are widely used in
DHT networks for node or file ID due to its collision resistant
nature. Using such a hash function, it is computationally
infeasible to find a message that corresponds to a given
hashed value, or find two different messages that produce
the same message digest. The consistent hash function is
effective in clustering messages based on message keywords
such as resource attributes or attribute string descriptions,
but cannot guarantee that an ordered list of numerical values
will have a list of hash values in the same order. Therefore,
consistent hash function is effective for cubical index based
on resource attribute and for cyclic index based on attribute
string description, whereas may not be appropriate for cyclic
index based on resource values. Locality preserving hashing
function [7] helps to solve the problem. We use v to denote a
value, use H to denote a consistent hash function, and use H
to denote a locality preserving hashing function.

Definition 1 [7]. Hash function H is a locality preserving
hashing function if it has the following property: Hvi

< Hvj

iff vi < vj , and if an interval [vi, vj] is split into [vi, vk] and
[vk, vj], the corresponding interval [Hvi ,Hvj] must be split
into [Hvi

,Hvk
] and [Hvk

,Hvj
].

We assume that each resource represented by a value has a
minimum value and a maximum value denoted by πmin and
πmax, respectively. Since the ID length of a cluster is d− 1,
we define a locality preserving hashing function to be

H = (π − πmin)× (d− 1)/(πmax − πmin),
where π is a value for resource attribute a in the range
[πmin, πmax]. As a result, each resource value of attribute a
has a H value within [0, d − 1]. Therefore, LORM assigns
each piece of resource information a Cycloid ID denoted by
rescID=(Hπa

,Ha), where

Hπa =
{
Hπa

πa is a value
Hπa πa is a string.

That is, the cubical index Ha is the consistent hash function
value of the resource attribute, and the cyclic index Hπa

is
the locality preserving hashing value of resource value πa or
the consistent hash function value Hπa

of string description.

5

Thus, using the resource ID of a resource, a node can use
the Insert() and Lookup() APIs to report and request
resource information of the resource in a distributed manner.

3.2.4 Resource Information Reporting
Algorithm 1 shows the pseudocode for the different operations
of a node in the LORM resource discovery. The operations
include resource reporting and resource querying. In resource
reporting, each node periodically reports its available re-
sources with multiple attributes to the system via interface
Insert(rescID,rescInfo) for each attribute, where
rescInfo=<a, δπa, ip addr(i)> is the resource information
(Lines 2-6 in Algorithm 1). Based on the Cycloid key as-
signment policy, in which a key is assigned to a node with the
closest ID to its ID, the information of the same attribute will
be mapped to the same cluster. Within each cluster, each node
is responsible for the information of a resource whose cyclic
index falls into the key space range it supervises. That is, the
information of a resource is stored in a node whose cyclic
index is the closest to the cyclic index in rescID. We call the
node or the ID of the node the root of the key or rescInfo.

For example, for the resources and their hashed values
listed in Table 1, the resource information will be stored in
nodes in Figure 1 as illustrated in Figure 3. In the clusters
responsible for memory and CPU, each node is responsible
for the resource information in its range. For instance, node
a supervises range (0,3] and node b supervises range (3,5]
in their own cluster. The resource information of node i,
<mem, 2G, ip addr(i)>, has rescID=(H2,Hmem)=(2,200),
and it will be routed to and stored in node a via func-
tion Insert((H2,Hmem),<mem,δπmem,ip_addr(i)>).
Similarly, if node j has resource 1.8GHz CPU, the re-
source information will be reported and stored in node e by
Insert((H1.8,HCPU),<CPU,δπCPU,ip_addr(j)>).

Proposition 3.1: In LORM, given a range query [π1, π2]
for a resource where πmin 6 π1 6 π2 6 πmax, a node that
contains attribute value π within [π1, π2] must have an ID that
satisfies root(Hπ2 ,Ha) > ID > root(Hπ1 ,Ha).

Proof: In LORM with n=d·2d nodes, a node re-
ports its resource information using the Cycloid interface
Insert((Hδπa

,Ha),rescInfo). Attribute a with value
δπa will be stored in root(Hδπa

,Ha) whose ID is the closest to
(Hδπa ,Ha). According to Definition 1, because π1 6 π 6 π2,
the resource information of value v will be stored in node i
that satisfies root(H(π1)) 6 i 6 root(H(π2)).

3.2.5 Resource Information Querying
To simplify the description of resource querying, we let
AQ denote the set of attributes in a query Q. A multi-
attribute query Q is composed of a set of sub-queries on
each attribute in AQ. For each sub-query, a node sends out
Lookup(rescID,<a, πa, ip_addr(i)>), where πa is the
value or string description of the requested resource (Lines
9-12 in Algorithm 1). The query is routed to the directory
node for the desired resource. All sub-queries are processed in
parallel. For example, when node k needs a multiple-attribute
resource, say 1.8GHz CPU and 2GB memory, it sends requests
Lookup(H1.8,HCPU) and Lookup(H2,Hmem), which

will be resolved in parallel. In Figure 3, the queries will arrive
at node a and node e, which reply to the requester node k with
the requested resource information
<mem, δπmem, ip_addr(i)> where δπmem = 2 and
<CPU, δπCPU , ip_addr(j)> where δπCPU = 1.8. After
the requester node receives all responses, it then concate-
nates the results in a database-like “join” operation based
on ip addr (Lines 15-18 in Algorithm 1). The results
are the nodes that have the resources queried by the re-
quester. For range queries such as “Free memory>2GB”
and “CPU>1.8GHz”, according to Proposition 3.1, in ad-
dition to responding with satisfied resource information in
their own directories, nodes a and e forward the resource
queries to their immediate successors in their own clusters.
The successors check their own directories, respond satisfied
resource information to the requester, and forward the queries
to their immediate successors in their own clusters. This
process is repeated until a successor has no satisfied resource
information. If the requested resource range is less than a
specified value, then the request receivers forward queries
to their predecessors. If a requester’s query has both lower
and upper bounds such as “1GB6memory62GB”, it can first
choose the middle value in [lower bound, upper bound] for
the destination of resource query. The root which receives the
query will generate and forward two queries to its successor
and predecessor, respectively. The queries will be forwarded in
both directions. A query receiver stops forwarding the query
if its resource information is outside of the bound range.

Algorithm 1 Pseudo-code for the operations of node i in the
LORM resource discovery.

1: /*periodically report resource information of its available re-
sources with attributes A={a1, a2 ... am}*/

2: for each a ∈ {a1, a2 ... am} do
3: //Ha is the consistent hash values of attribute a. Hδπa =Hδπa

if πa is a value, and Hδπa =Hδπa if πa is a string
4: rescID=(Hδπa ,Ha)
5: Insert(rescID,<a, δπa, ip_addr(i)>)
6: end for
7:
8: /*request resources using a multi-attribute range-query,

Q={(a1, πa1),(a2, πa2). . . (am, πam)}, AQ={a1,a2. . .am}*/
9: for each a ∈ AQ do

10: rescID=(Hπa ,Ha)
11: lookup(rescID,<a, πa, ip_addr(i)>)
12: end for
13: /*after receiving responses of resource request Q*/
14: //IP addr(a) is a list of ip addr as the response for

lookup(rescID,<a, πa, ip_addr(i)>)
15: IP addr(Q)=IP addr(a1)∩IP addr(a2)∩. . .∩IP addr(am)
16: for each ip addr(j) ∈ IP addr(Q) do
17: SendMsg(ip addr(j)) //request resource from node j
18: end for

3.2.6 Comparative Discussion
The multi-DHT-based approach and single-DHT-based decen-
tralized approach need to probe all nodes in the system for
a resource in a certain range in the worst case. Unlike these
approaches, LORM reduces the probing scope for subsequent
range queries after the Lookup() operation from network
size n to cluster size d because all information about one

6

attribute for all resources is gathered in a single cluster rather
than spreads all over the system. Reducing the system-wide
probing scope to cluster-wide scope significantly reduces the
resource searching cost. To deal with the load imbalance
caused by the distribution of resource information, load bal-
ancing methods [42] can be adopted into the LORM.

Proposition 3.2: With high probability1, in LORM with
n = d · 2d nodes, the number of nodes that must be contacted
to report resource information or to find a desired resource of
an m-attribute resource is O(md).

Proof: In a Cycloid DHT, the number of nodes that must
be contacted for an object allocation or object owner using
interface Insert() is O(d) w.h.p. As resource information
is allocated to nodes based on object allocation policy, the
information reporting for one resource attribute also takes
O(d) hops. Therefore, it takes O(md) for the information
reporting of an m-attribute resource. For a range query, d
nodes in one cluster are needed to probe in the worst case.
Therefore, the total number of nodes contacted for searching
an m-attribute resource is m(O(d) + d) = O(md).

The CAN DHT [36] has a m-torus topology based on a m-
dimensional Cartesian coordinate space. Thus, it can support
multi-attribute range queries in a natural manner by using
each dimension to represent an attribute. A resource is then
represented by an m-dimensional CAN ID, in which the value
in a dimension represents the resource value/description of the
corresponding resource. Thus, for m resources in a grid, m-
torus CAN should be built. In LORM, d · 2d = n, 2d = m,
the average path length is d and the size of routing table is 7.
In an m-torus CAN, the average routing path length is

(m/4)(n1/m) > m/4 = 2d/4 > d (when d > 4), (1)

and the routing table size is

2m = 2 · 2d = 2d+1 > 7 (when d ≥ 2). (2)

Therefore, in a large-scale system when d > 4, the average
path length and routing table size (i.e., maintenance overhead)
of the m-torus CAN are larger than those of LORM. Also,
even though some nodes only possess or query for part of the
m resources, they still need to generate the resource ID and
process the resource reporting and querying based on the m
dimensions, which brings about unnecessary cost.

3.3 Dynamism-Resilient LORM

An effective resource discovery algorithm should work for
grid systems with dynamic node joins and departures. Cycloid
has a self-organization mechanism to maintain its structure
and stored objects, which helps LORM to handle dynamism.
When a node joins in the system, in addition to reporting its
resources using Insert(rescID,rescInfo), it receives
the resource information in its responsible ID region from
its neighbors based on the Cycloid’s key assignment policy.
For example, if node h with ID (2,150) joins the system in
Figure 3, then the resource information in the range (2,3] is
transferred from node a to the newly-joined node h. When

1. An event happens with high probability (w.h.p.) when it occurs with
probability 1−O(n−1).

a node departs from the system, it transfers its resource
information to its neighbors. For instance, if node a leaves,
it transfers its resource information to node d or b based on
the ID closeness. That is, the information in the range (0,1] is
transferred to node d, and the information in the range (1,3] is
transferred to node b. If node a is the only node in its cluster,
because the cluster ID of Memory 200 is closer to the cluster
ID of CPU 50 than the cluster ID of disk 500 as shown in
Figure 1, it transfers its information to the CPU cluster.

For node failures or departures without warning, LORM
resorts to the periodical resource information reporting by
which the lost resource information will be recovered in
its new root. Specifically, when a node receives a resource
request, if it cannot locate the requested resource, it assumes
that the old root of the resource information failed, and waits
for a period of time T which is the resource information
reporting period. Within T , the lost resource information will
be reported to the node, and the request can be resolved.
With this self-organization mechanism, instead of relying on
specific nodes, resource information is always stored in a node
responsible for the ID region where the information ID locates
even in the dynamic situation, and the Lookup(rescID)
requests will always be forwarded to the node that has the
required resource information.

Proposition 3.3: In a dynamic environment, in LORM,
node joins and warned-departures will generate little adverse
effect on resource querying, and a query for a resource whose
root failed or departed without warning can be resolved within
T that is the resource information reporting period.

Proof: In Cycloid, any node joining or leaving leads to file
transfer in order to maintain the consistency of file locations
based on file assignment policy. A resource query is always
forwarded to the root of the resource, so the node joining and
leaving will result in little adverse effect on resource querying.
If a root cannot resolve a resource request due to node failure
or departure without warning, the lost resource information
will be reported to the root in the next T .

As indicated previously, when the number of resource
attributes in the system m is less than the number of clusters
c = 2d in Cycloid when using all nodes to build the Cycloid,
LORM can only choose stable nodes to form Cycloid in
order to achieve m = c. To make our analysis applicable to
both cases, in the analysis, we assume all resource discovery
methods use the existing n nodes in a grid system to build
DHT overlay(s) for resource discovery, and define

α =
{

1 m ≤ c
dm/ce m > c.

Proposition 3.4: In LORM with n = d · 2d nodes, with
the assumption that each resource attribute has k pieces of
resource information and the information is uniformly dis-
tributed, w.h.p., when an (n + 1)st node joins or leaves the
network, if the node is the only node in its cluster, responsi-
bility for O(k) pieces of resource information changes hands
(and only to or from the joining or leaving node). Otherwise
O(k/d) pieces of resource information change hands.

Proof: Since each resource attribute has k pieces of

7

resource information and the information is uniformly dis-
tributed, a cluster has αk pieces of resource information
and each node has O(αk/d)=O(k/d) pieces of resource
information when the cluster has d nodes. If a joining or
leaving node is the only node in its cluster, it needs to hand
over O(αk)= O(k) pieces of resource information. Otherwise,
O(αk/d)= O(k/d) pieces of information change hands.

4 COMPARATIVE STUDY AND ANALYSIS

There are mainly three classes of approaches dependent on
DHTs for resource discovery in grids: multiple-DHT-based,
single-DHT-based centralized and single-DHT-based decen-
tralized. We use Mercury [5], SWORD [32] and MAAN [7]
as representatives of multiple-DHT-based, single-DHT-based
centralized and single-DHT-based decentralized classes, re-
spectively. We analyze LORM in comparison with these
approaches. LORM maps resource attribute and value or string
description to two levels of the compound graph based Cycloid
DHT. Mercury uses multiple DHTs with one DHT responsible
for each attribute and maps resource value to each DHT.
SWORD maps resource information including both attribute
and value in a flat DHT, and MAAN maps attribute and value
separately to a flat DHT. To be comparable, we use Chord for
attribute hubs in Mercury, and we replace Bamboo DHT with
Chord in SWORD.

In Mercury, for higher efficiency of resource querying,
a node within one of the hubs can hold the data record
while the other hubs can hold a pointer to the node. This
strategy can also be applied to other methods to improve
the efficiency. To make the different methods comparable,
we don’t consider this strategy in the comparative study. We
analyze their performance in terms of structure maintenance
overhead, resource information maintenance overhead, and
the efficiency of resource discovery. In the analysis, we use
attribute value to represent the locality preserving hash value
of both attribute value and attribute string description. We use
directory size to represent the number of resource information
pieces in a directory.

4.1 Maintenance Overhead

Proposition 4.1: In a grid system with n nodes and m re-
source attributes, LORM can reduce the structure maintenance
overhead of multiple-DHT-based resource discovery methods
(e.g. Mercury) by a factor of no less than m.

Proof: LORM is based on Cycloid, in which each node
is responsible for maintaining 7 ≤ log(n) neighbors in a
large-scale system. In multiple-DHT-based methods such as
Mercury, each node is responsible for maintaining log(n)
neighbors for each DHT of one resource. Therefore, each node
has m log(n) neighbors. The structure maintenance overhead
can be saved by a factor of m log(n)

7 ≥ m log(n)
log(n) = m.

Proposition 4.2: In a grid system, the total number of
resource information pieces in single-DHT-based decentralized
resource discovery methods (e.g. MAAN) is twice of those in
LORM, single-DHT-based centralized methods (e.g. SWORD)
and multi-DHT-based methods (e.g. Mercury).

Proof: For each piece of resource information, MAAN
splits its a and πa, and stores the two pieces of information
separately, while LORM, single-DHT-based centralized (e.g.
SWORD) and multi-DHT-based methods (e.g. Mercury) only
store one information piece. Therefore, the size of the total
resource information of MAAN is twice of others. Conse-
quently, other methods generate half of the overhead for the
maintenance of resource information in MAAN.

Proposition 4.3: In a grid system with n nodes and m
resource attributes, with the assumption that each type of
resource attribute has k pieces of resource information and
its values are uniformly distributed, LORM can reduce the
number of resource information pieces in a directory node in
the single-DHT-based decentralized resource discovery meth-
ods (e.g. MAAN) by a factor of d

α (1 + m
n).

Proof: For k pieces of resource information of a resource
attribute, MAAN splits the attribute and value. k pieces are
stored in the same node, and the other k pieces are uniformly
distributed among the n nodes based on the value. A directory
node has a total of k + m · kn pieces. LORM does not split
the information, and all resource information of a particular
resource attribute is in a cluster with d nodes. With the uniform
distribution assumption, each directory node is responsible
for at most αk/d pieces of resource information. Therefore,
LORM can reduce the total size of resource information in a
directory node in MAAN by a factor of k+m· k

n

αk/d = d
α (1 + m

n).

Proposition 4.4: In a grid system with n nodes and m
resource attributes, with the assumption that each type of
resource attribute has k pieces of resource information and
its values are uniformly distributed, LORM can reduce the
resource information size in a directory node in single-DHT-
based centralized methods (e.g. SWORD) by a factor of d

α .
Proof: In LORM, all resource information of a particular

resource attribute is in a cluster with d nodes. With the
uniform distribution assumption, each directory node has at
most αk/d pieces of resource information. In SWORD, all
resource information of a particular resource attribute is in a
single node. Thus, LORM can reduce the resource information
size in a directory node in SWORD by a factor of k

αk/d = d
α .

Proposition 4.5: For any set of n nodes and m resource
attributes, with the assumption that each type of resource
attribute has k pieces of resource information and its val-
ues are uniformly distributed, multi-DHT-based methods (e.g.
Mercury) can achieve more balanced resource information
distribution than LORM by a factor of αn

dm .
Proof: The proof of Proposition 4.4 shows that each

directory node is responsible for at most αk/d pieces of
resource information in LORM. In Mercury, for one attribute,
a node is responsible for k

n pieces of resource information.
Given m resource attributes, each node is responsible for mk

n
pieces of resource information. Thus, Mercury can achieve
more balanced resource information distribution than LORM
by a factor of αk/d

mk
n

= αn
dm .

Proposition 4.6: Multi-DHT-based methods (e.g. Mercury)

8

and LORM (when m ≤ c) achieve more balanced resource
information distribution than the single-DHT-based decentral-
ized resource discovery methods (e.g. MAAN) and single-
DHT-based centralized methods (e.g. SWORD).

Proof: Propositions 4.3 and 4.4 show that LORM
achieves more balanced resource information distribution than
the single-DHT-based decentralized method (e.g. MAAN) and
single-DHT-based centralized method (e.g. SWORD) when
m ≤ c. Proposition 4.5 shows that multi-DHT-based meth-
ods (e.g. Mercury) achieves more balanced distribution than
LORM. Therefore, multi-DHT-based methods and LORM
achieve more balanced resource information distribution than
the single-DHT-based decentralized methods and single-DHT-
based centralized methods.

4.2 Efficiency of Resource Discovery
We define the contacted nodes as the nodes that are involved
in resource discovery, which include query routing nodes and
directory nodes receiving resource queries.

Proposition 4.7: To discover resources for an m-attribute
non-range resource query in an n-node network, w.h.p.,
LORM can reduce the total number of contacted nodes of
single-DHT-based decentralized resource discovery methods
(e.g. MAAN) by a factor of logn

d .
Proof: For each piece of resource information including

an attribute and value or string description, MAAN splits
the attribute and value or string description and stores the
information separately, while LORM only stores one piece
of resource information. For each non-range resource query,
LORM needs one DHT lookup, while MAAN needs two DHT
lookups for each attribute: attribute name and value. For an
m-attribute resource query, LORM needs m DHT lookups,
and MAAN needs 2m DHT lookups. Hence, for one resource
query, the number of lookups in MAAN is 2m

m =2 times of
LORM. On the average case, one lookup needs log n/2 hops
in Chord [46] and d hops in Cycloid [41]. Thus, LORM can
reduce the total number of contacted nodes of MAAN by a
factor of 2 logn/2

d = logn
d .

Proposition 4.8: To discover resources for an m-attribute
non-range resource query in an n-node network, w.h.p., multi-
DHT-based methods (e.g. Mercury) and single-DHT-based
centralized methods (e.g. SWORD) can reduce the total num-
ber of contacted nodes of single-DHT-based decentralized
resource discovery methods (e.g. MAAN) by a factor of 2.

Proof: For each non-range resource query, the multi-
DHT-based methods (e.g. Mercury) and single-DHT-based
centralized methods (e.g. SWORD) need one DHT lookup,
while MAAN needs two DHT lookups for each attribute;
attribute name and value. For an m-attribute resource query,
the former methods need m DHT lookups, and MAAN needs
2m DHT lookups. Hence, the former methods can reduce the
number of contacted nodes in MAAN by a factor of 2.

When a range resource query is routed to its root, the
root node checks its directory for the range query. Then,
in SWORD, the resource searching stops; in Mercury and
MAAN, the node forwards the query to its successor or pre-
decessor according to their closeness to the queried range; in

LORM, the node forwards the query to its successor or prede-
cessor in its cluster according to their closeness to the queried
range. The nodes receiving the query repeat the process. We
call the nodes that receive a resource query and check their di-
rectories for the queried resource visited nodes of the resource
query. Visited nodes are included in the contacted nodes.

Proposition 4.9: In an n-node network, w.h.p., LORM can
reduce at least m(n−d)

4 visited nodes to discover required re-
source for an m-attribute range resource query in system-wide
range resource discovery methods (e.g. MAAN and Mercury),
and SWORD can reduce md

4 visited nodes in LORM, in the
average case.

Proof: In Mercury, a range query needs n
2 contacted

nodes in the worst case. Thus, on the average case, the total
number of visited nodes for an m-attribute resource range
query on the average case is m(1 + n

4). MAAN has two
lookups for each attribute query. m-attribute resource query
needs m(2 + n

4) hops. In LORM, the nodes needed to be
visited for a resource query is m(1 + d

4) on the average case.
Therefore, LORM can reduce at least m(1 + n

4) − m(1 +
d
4) = m(n−d)

4 visited nodes for an m-attribute resource query
in system-wide range resource discovery methods such as
MAAN and Mercury, on the average case. Because SWORD
doesn’t need to forward query for range query, it reduces
m(1 + d

4)−m = md
4 contacted nodes in LORM.

Proposition 4.10: In an n-node network, w.h.p., LORM can
reduce at least mn contacted nodes to discover the required
resource for an m-attribute resource range query in system-
wide range resource discovery methods (e.g. MAAN and
Mercury), in the worst case.

Proof: Mercury uses one DHT for each attribute. For each
attribute in a resource requester, it needs log n hops for the
request to reach its root node [46]. After that, n nodes need to
be probed for the range query, in the worst case, because all
resource information of the attribute spreads over the n nodes.
Therefore, for each attribute query, log n+n hops are needed
in the worst case. For a resource query with m attributes,
Mercury needs to contact m(log n+n) nodes. MAAN has two
lookups for each attribute query since it lookups attribute name
and value or string description separately. Only one lookup
needs system-wide probing on n nodes. Consequently, each
query of an attribute needs (2 log n+n) hops, and m-attribute
resource query needs m(2 log n+ n)> m(log n+ n) hops in
MAAN. The number of nodes that need to be contacted in
LORM for a resource query is m · d ≤ m · log n in the worst
case. Therefore, LORM can reduce at least m(log n + n) −
m · log n = mn contacted nodes for an m-attribute resource
query in system-wide range resource discovery methods such
as MAAN and Mercury, in the worse case.

5 PERFORMANCE COMPARISON

This section presents the performance evaluation of LORM in
average case in comparison with Mercury [5], SWORD [32],
MAAN [7]. We designed and implemented a simulator in Java
for the evaluation of LORM, Mercury, Sword and MAAN. To
be comparable, we used Chord for Mercury and SWORD. In

9

the experiments, the dimension was set to 8 in Cycloid, and
11 in Chord, and each DHT had 2048 nodes. We assumed
there were m = 200 resource attributes, and each attribute
had k = 500 values. The size distribution of process CPU
and memory requirements, and process lifetime fit a bounded
Pareto distribution [55, 35, 50, 21]. The bounded Pareto
distribution was also used for node capacity [28]. Therefore,
we used Bounded Pareto distribution function to generate
resource values owned by a node and requested by a node.
This distribution reflects real world where there are machines
with capacities that vary by different orders of magnitude. The
resource attributes in a node resource request were randomly
generated.

5.1 Maintenance Overhead

In DHT overlays, each node needs to maintain a number
of neighbors (outlinks) in its routing table. Therefore, the
maintenance of routing tables or the outlinks constitutes a
large part of the DHT overlay maintenance overhead. Proposi-
tion 4.1 shows that LORM can reduce the DHT maintenance
overhead of Mercury by a factor of no less than m. Thus,
we use “Analysis−LORM” to represent the experiment results
of Mercury divided by m = 200. Figure 4(a) plots the
number of outlinks maintained by each node in Mercury,
“Analysis−LORM” and LORM versus network size. From
the figure, we can see that the number of outlinks per node
in LORM is less than that of “Analysis−LORM”. Mercury
has dramatically more outlinks per node than LORM. The
experiment results are consistent with Proposition 4.1. Recall
that Mercury has multiple DHTs with each DHT responsible
for one resource attribute, such that each node has a total
number of outlinks equals to the product of routing table size
and the number of DHTs. It means that in Mercury, each node
needs much higher overhead to maintain its outlinks than in
LORM.

In addition to the outlinks, a directory node also needs to
maintain resource information in its directory. It is desirable
to distribute the information among nodes uniformly so that
the information maintenance overhead as well as the resource
discovery load can be distributed among nodes to avoid
bottlenecks. The directory size is a metric for the balance of
the resource information distribution. The average directory
size is the total number of resource information pieces divided
by the total number of nodes.

Proposition 4.2 proved that LORM can reduce the total
(average) directory size of MAAN by half. Proposition 4.3
proved that LORM can reduce the directory size of MAAN
by d(1 + m

n). Figure 4(b) plots the experiment results of the
average and the 1st and 99th percentiles of directory size per
node in MAAN and LORM. It also plots the analysis results
of LORM based on MAAN according to Propositions 4.2
and 4.3. That is, in the figure, the analysis results of the 1st
and 99th percentiles are calculated as the experiment results of
MAAN divided by the factor of d(1+ m

n) = 8× (1+ 200
2048) =

8.78, and the analysis results of the average directory size are
calculated as the experiment results of MAAN divided by 2.
We can see that the experiment results of the average directory

100
120

p
s

e

Mercury

SWORD

60
80

100
120

g
ic

a
l
h
o
p
s

a
tt
ri
b
u
te

e
 q

u
e
ry

Mercury

SWORD

Analysis-
SWORD/Mercury
MAAN

20
40
60
80

100
120

ra
g
e
 l
o
g
ic

a
l
h
o
p
s

r
m

u
lt
i-
a
tt
ri
b
u
te

e
s
o
u
rc

e
 q

u
e
ry

Mercury

SWORD

Analysis-
SWORD/Mercury
MAAN

LORM

Analysis LORM0
20
40
60
80

100
120

1 2 3 4 5 6 7 8 9 10A
v
e
ra

g
e
 l
o
g
ic

a
l
h
o
p
s

fo
r

m
u
lt
i-
a
tt
ri
b
u
te

re

s
o
u
rc

e
 q

u
e
ry

Number of attributes per resource query

Mercury

SWORD

Analysis-
SWORD/Mercury
MAAN

LORM

Analysis-LORM0
20
40
60
80

100
120

1 2 3 4 5 6 7 8 9 10A
v
e
ra

g
e
 l
o
g
ic

a
l
h
o
p
s

fo
r

m
u
lt
i-
a
tt
ri
b
u
te

re

s
o
u
rc

e
 q

u
e
ry

Number of attributes per resource query

Mercury

SWORD

Analysis-
SWORD/Mercury
MAAN

LORM

Analysis-LORM0
20
40
60
80

100
120

1 2 3 4 5 6 7 8 9 10A
v
e
ra

g
e
 l
o
g
ic

a
l
h
o
p
s

fo
r

m
u
lt
i-
a
tt
ri
b
u
te

re

s
o
u
rc

e
 q

u
e
ry

Number of attributes per resource query

Mercury

SWORD

Analysis-
SWORD/Mercury
MAAN

LORM

Analysis-LORM

(a) Average number of contacted
nodes (Propositions 4.7 and 4.8)

100000
120000

fo
r

y

Mercury

SWORD

60000
80000

100000
120000

c
a
l
h
o
p
s
 f
o
r

a
tt
ri
b
u
te

c
e
 q

u
e
ry

Mercury

SWORD

Analysis-
SWORD/Mercury
MAAN

20000
40000
60000
80000

100000
120000

a
l
lo

g
ic

a
l
h
o
p
s
 f
o
r

m
u
lt
i-
a
tt
ri
b
u
te

re

s
o
u
rc

e
 q

u
e
ry

Mercury

SWORD

Analysis-
SWORD/Mercury
MAAN

LORM

A l i LORM0
20000
40000
60000
80000

100000
120000

1 2 3 4 5 6 7 8 9 10

T
o
ta

l
lo

g
ic

a
l
h
o
p
s
 f
o
r

m
u
lt
i-
a
tt
ri
b
u
te

re

s
o
u
rc

e
 q

u
e
ry

Number of attributes per resource query

Mercury

SWORD

Analysis-
SWORD/Mercury
MAAN

LORM

Analysis-LORM0
20000
40000
60000
80000

100000
120000

1 2 3 4 5 6 7 8 9 10

T
o
ta

l
lo

g
ic

a
l
h
o
p
s
 f
o
r

m
u
lt
i-
a
tt
ri
b
u
te

re

s
o
u
rc

e
 q

u
e
ry

Number of attributes per resource query

Mercury

SWORD

Analysis-
SWORD/Mercury
MAAN

LORM

Analysis-LORM0
20000
40000
60000
80000

100000
120000

1 2 3 4 5 6 7 8 9 10

T
o
ta

l
lo

g
ic

a
l
h
o
p
s
 f
o
r

m
u
lt
i-
a
tt
ri
b
u
te

re

s
o
u
rc

e
 q

u
e
ry

Number of attributes per resource query

Mercury

SWORD

Analysis-
SWORD/Mercury
MAAN

LORM

Analysis-LORM

(b) Total number of contacted nodes
(Propositions 4.7 and 4.8)

Fig. 5. The number of hops for query routing in different
resource discovery approaches.

size of LORM match the analytical results in Proposition 4.2.
Recall that MAAN separates resource attribute and value or
string description of a piece of resource information, and stores
the information separately. Therefore, MAAN doubles the total
resource information size and needs information maintenance
overhead twice as high as others. The experiment results of
the 1st and 99th percentiles are close to the analytical results.
The experimental results of the 99th percentile of LORM are
slightly higher than the analytical results. This is because that
the resource values are randomly chosen in the experiment
and are not completely uniformly distributed. In addition, all
resource information of the same attribute is collected in one
cluster with only d=8 nodes. It is very likely that a node has
much more resource information than other nodes in the same
cluster, resulting in slightly higher 99th percentile than that
when the values are uniformly distributed.

Proposition 4.4 proved that LORM can reduce the direc-
tory size of SWORD by a factor of d. Figure 4(c) plots
the experiment results of the average and the 1st and 99th
percentiles of directory size per node in SWORD and LORM.
It also plots the analytical results of LORM based on the
experiment results of SWORD. The analytical results of
the 1st and 99th percentiles are the experiment results of
SWORD divided by the factor of d. Proposition 4.2 implies
that the average directory size of LORM equals to SWORD.
Therefore, the analytical results of the average directory size
of LORM in the figure equal to the experimental results of
SWORD. We can see that the experimental results of the
average directory size of LORM match the analytical results
as implied in Proposition 4.2. The experimental results of the
99th percentile are only slightly higher than the analytical
results in Proposition 4.4. This is because that the attribute
values are randomly distributed among d nodes, and some
nodes have more resource information than others with random
distribution.

Figure 4(d) plots the experimental results of the average
and the 1st and 99th percentiles of directory size per node
in Mercury and LORM. It also plots the analytical results of
LORM based on Mercury. Proposition 4.5 proved that Mercury
can achieve more balanced resource information distribution
than LORM by a factor of n

dm . Therefore, the analytical results
of the 1st and 99th percentiles of LORM in the figure are
calculated as the experimental results of Mercury multiplied
and divided by the factor of n

dm = 2048
8×200 = 1.28, respectively.

Proposition 4.2 implies that the average directory size of
LORM equals that of Mercury. Thus, the analytical results of

10

10000
b

y

100

1000

10000
n
ta

in
e
d
 b

y

o
d
e

Mercury
Analysis-LORM
LORM

10

100

1000

10000
k
s
 m

a
in

ta
in

e
d
 b

y

e
a
c
h
 n

o
d
e

Mercury
Analysis-LORM
LORM

1

10

100

1000

10000

100 600 1100 1600 2100O
u
tl
in

k
s
 m

a
in

ta
in

e
d
 b

y

e
a
c
h
 n

o
d
e

Number of nodes

Mercury
Analysis-LORM
LORM

1

10

100

1000

10000

100 600 1100 1600 2100O
u
tl
in

k
s
 m

a
in

ta
in

e
d
 b

y

e
a
c
h
 n

o
d
e

Number of nodes

Mercury
Analysis-LORM
LORM

1

10

100

1000

10000

100 600 1100 1600 2100O
u
tl
in

k
s
 m

a
in

ta
in

e
d
 b

y

e
a
c
h
 n

o
d
e

Number of nodes

Mercury
Analysis-LORM
LORM

(a) Average number of outlinks
(Proposition 4.1)

600
500
600

e

MAAN
LORM

300
400
500
600

o
ry

 s
iz

e

MAAN
LORM
Analysis-LORM

100
200
300
400
500
600

ir
e

c
to

ry
 s

iz
e

MAAN
LORM
Analysis-LORM

0
100
200
300
400
500
600

100 200 300 400 500

D
ir

e
c
to

ry
 s

iz
e

MAAN
LORM
Analysis-LORM

0
100
200
300
400
500
600

100 200 300 400 500

D
ir

e
c
to

ry
 s

iz
e

Values per attribute

MAAN
LORM
Analysis-LORM

0
100
200
300
400
500
600

100 200 300 400 500

D
ir

e
c
to

ry
 s

iz
e

Values per attribute

MAAN
LORM
Analysis-LORM

(b) MAAN versus LORM
(Proposition 4.2 & Proposition 4.3)

600
500
600

e

SWORD
LORM

300
400
500
600

o
ry

 s
iz

e

SWORD
LORM
Analysis-LORM

100
200
300
400
500
600

ir
e

c
to

ry
 s

iz
e

SWORD
LORM
Analysis-LORM

0
100
200
300
400
500
600

100 200 300 400 500

D
ir
e

c
to

ry
 s

iz
e

SWORD
LORM
Analysis-LORM

0
100
200
300
400
500
600

100 200 300 400 500

D
ir
e

c
to

ry
 s

iz
e

Values per attribute

SWORD
LORM
Analysis-LORM

0
100
200
300
400
500
600

100 200 300 400 500

D
ir
e

c
to

ry
 s

iz
e

Values per attribute

SWORD
LORM
Analysis-LORM

(c) SWORD versus LORM
(Proposition 4.4)

600
500
600

e

Mercury
LORM

300
400
500
600

ry
 s

iz
e

Mercury
LORM
Analysis-LORM

100
200
300
400
500
600

re
c
to

ry
 s

iz
e

Mercury
LORM
Analysis-LORM

0
100
200
300
400
500
600

100 200 300 400 500

D
ir
e

c
to

ry
 s

iz
e

Mercury
LORM
Analysis-LORM

0
100
200
300
400
500
600

100 200 300 400 500

D
ir
e

c
to

ry
 s

iz
e

Values per attribute

Mercury
LORM
Analysis-LORM

0
100
200
300
400
500
600

100 200 300 400 500

D
ir
e

c
to

ry
 s

iz
e

Values per attribute

Mercury
LORM
Analysis-LORM

(d) Mercury versus LORM
(Proposition 4.5)

Fig. 4. Overhead in different resource discovery approaches.

1000000
10000000

s

1000
10000

100000
1000000

10000000

e
d
 n

o
d
e
s

10
100

1000
10000

100000
1000000

10000000

a
l
v
is

it
e
d
 n

o
d
e
s

MAAN Analysis-MAAN
Mercury LORM
Anal sis Merc r Anal sis LORM

1
10

100
1000

10000
100000

1000000
10000000

1 2 3 4 5 6 7 8 9 10

T
o
ta

l
v
is

it
e
d
 n

o
d
e
s

Number of attributes per resource query

MAAN Analysis-MAAN
Mercury LORM
Analysis-Mercury Analysis-LORM

1
10

100
1000

10000
100000

1000000
10000000

1 2 3 4 5 6 7 8 9 10

T
o
ta

l
v
is

it
e
d
 n

o
d
e
s

Number of attributes per resource query

MAAN Analysis-MAAN
Mercury LORM
Analysis-Mercury Analysis-LORM

1
10

100
1000

10000
100000

1000000
10000000

1 2 3 4 5 6 7 8 9 10

T
o
ta

l
v
is

it
e
d
 n

o
d
e
s

Number of attributes per resource query

MAAN Analysis-MAAN
Mercury LORM
Analysis-Mercury Analysis-LORM

(a) Visited nodes of MAAN/Mercury
and LORM (Proposition 4.9)

30000
35000

e
s
 SWORD

LORM

15000
20000
25000
30000
35000

e
d
 n

o
d
e
s
 SWORD

LORM
Analysis-SWORD
Analysis-LORM

5000
10000
15000
20000
25000
30000
35000

a
l
v
is

it
e
d
 n

o
d
e
s
 SWORD

LORM
Analysis-SWORD
Analysis-LORM

0
5000

10000
15000
20000
25000
30000
35000

1 2 3 4 5 6 7 8 9 10

T
o
ta

l
v
is

it
e
d
 n

o
d
e
s

Number of attributes per resource query

SWORD
LORM
Analysis-SWORD
Analysis-LORM

0
5000

10000
15000
20000
25000
30000
35000

1 2 3 4 5 6 7 8 9 10

T
o
ta

l
v
is

it
e
d
 n

o
d
e
s

Number of attributes per resource query

SWORD
LORM
Analysis-SWORD
Analysis-LORM

0
5000

10000
15000
20000
25000
30000
35000

1 2 3 4 5 6 7 8 9 10

T
o
ta

l
v
is

it
e
d
 n

o
d
e
s

Number of attributes per resource query

SWORD
LORM
Analysis-SWORD
Analysis-LORM

(b) Visited nodes of SWORD and
LORM (Proposition 4.9)

Fig. 6. Searching cost in different resource discovery
approaches.

average directory size of LORM in the figure are calculated
as the experimental results of Mercury. We can see that the
experimental results of the average directory size of LORM
match the analytical results as implied in Proposition 4.2.
The experimental results of the 99th percentile are also only
slightly higher than the analytical results due to the same
reason observed in Figure 4(b) and (c). In addition, the results
of the 1st percentile are lower than the analytical results in
Proposition 4.4. This is because when attribute values are
randomly selected, some values may not be chosen and hence
some nodes in a cluster in LORM may not be assigned
resource information.

In general, the experimental results of LORM match the
analytical results. From Figures 4(b), (c) and (d), we can
observe that MAAN and SWORD exhibit significantly larger
variance of directory size than Mercury and LORM. MAAN
and SWORD distribute resource information to directory
nodes based on resource attribute. As there are 200 resource
attributes, the information is accumulated in 200 nodes among
2048 nodes, leading to large variance of directory size. On
the other hand, Mercury uses one DHT for each attribute, and
classifies resource information based on value in each DHT.
The widespread information distribution helps to distribute
resource information uniformly. LORM arranges different Cy-
cloid clusters to be responsible for resource information based
on resource attribute and allocates information to a node based
on its range, leading to more balanced information distribution.
Therefore, Mercury and LORM can achieve more balanced
distribution of load due to resource information maintenance
and resource discovery operation. This result is in agreement
with Proposition 4.6.

5.2 Efficiency of Resource Discovery

For a non-range query, Proposition 4.7 shows that LORM can
reduce the total number of contacted nodes of MAAN by a
factor of logn

d = 11
8 ; Proposition 4.8 shows that Mercury and

SWORD can reduce the total number of contacted nodes of
MAAN by a factor of 2. We conducted an experiment to eval-
uate the efficiency of different resource discovery approaches.
We varied the number of attributes in a query from 1 to 10
with step size of 1. The logical hop metric is measured by the
number of hops traversed during a search until a query for re-
source information reaches its root (i.e., contacted nodes). We
randomly chose 100 nodes and let each node send 10 resource
queries. Figure 5(a) and (b) show the experimental results of
the average and total logical hops for multi-attribute resource
queries versus the number of attributes in a resource query
in Mercury, SWORD, MAAN and LORM. The figures also
plot the analytical results of LORM and SWORD/Mercury
based on the experimental results of MAAN denoted by
“Analysis-LORM” and “Analysis-SWORD/Mercury”. That is,
“Analysis-LORM” and “Analysis-SWORD/Mercury” are the
experimental results of MAAN divided by 11

8 and 2, re-
spectively. Because the difference between Mercury, SWORD
and “Analysis-SWORD/Mercury” is no more than 0.3 in
Figure 5(a), and their difference is no more than 800 in
Figure 5(b), these curves are completely overlapped. In order
to make the figure clear, we only draw the curve of Mer-
cury and also use it to represent SWORD and “Analysis-
SWORD/Mercury”. From the figure, we can see that the exper-
imental results of LORM is very close to the analytical results,
and the experimental results of SWORD/Mercury exactly
match the the analytical results in Proposition 4.7 and 4.8.

Comparing the different methods, we can see that
MAAN generates the highest number of contacted hops and
SWORD/Mercury produce the least number of contacted hops.
This is because MAAN needs two lookups for resource
attribute and value, and others only need one lookup. The
reason that LORM has higher number of hops than Mercury
and SWORD is due to their time complexity of lookups. Chord
has a time complexity of O(log n) per query, and Cycloid has
a time complexity of O(d) per query due to its constant-degree
feature. Specifically, LORM is based on Cycloid which has a
constant 7 neighbors per node, whereas Mercury and SWORD
have log n = 12 neighbors each node. Due to the tradeoff
between the number of neighbors per node and lookup path
length, Cycloid has high lookup path length. These results
are consistent with the file lookup path length in [41]. The

11

5000000
6000000

in
g

Mercury
SWORD

3000000
4000000
5000000
6000000

se
a
rc

h
in

g

o
st

Mercury
SWORD
MAAN
LOWER

1000000
2000000
3000000
4000000
5000000
6000000

re
ct

o
ry

 s
e
a
rc

h
in

g

co
st

Mercury
SWORD
MAAN
LOWER

0
1000000
2000000
3000000
4000000
5000000
6000000

1 2 3 4 5 6 7 8 9 10

D
ir
e
ct

o
ry

 s
e
a
rc

h
in

g

co
st

Number of attributes

Mercury
SWORD
MAAN
LOWER

0
1000000
2000000
3000000
4000000
5000000
6000000

1 2 3 4 5 6 7 8 9 10

D
ir
e
ct

o
ry

 s
e
a
rc

h
in

g

co
st

Number of attributes

Mercury
SWORD
MAAN
LOWER

0
1000000
2000000
3000000
4000000
5000000
6000000

1 2 3 4 5 6 7 8 9 10

D
ir
e
ct

o
ry

 s
e
a
rc

h
in

g

co
st

Number of attributes

Mercury
SWORD
MAAN
LOWER

(a) Directory searching cost

50000
60000

in
g SWORD

LOWER

30000
40000
50000
60000

se
ar

ch
in

g
os

t

SWORD
LOWER

10000
20000
30000
40000
50000
60000

ec
to

ry
 s

ea
rc

hi
ng

co

st

SWORD
LOWER

0
10000
20000
30000
40000
50000
60000

1 2 3 4 5 6 7 8 9 10

D
ire

ct
or

y
se

ar
ch

in
g

co
st

SWORD
LOWER

0
10000
20000
30000
40000
50000
60000

1 2 3 4 5 6 7 8 9 10

D
ire

ct
or

y
se

ar
ch

in
g

co
st

Number of attributes

SWORD
LOWER

0
10000
20000
30000
40000
50000
60000

1 2 3 4 5 6 7 8 9 10

D
ire

ct
or

y
se

ar
ch

in
g

co
st

Number of attributes

SWORD
LOWER

(b) Directory searching cost of LORM and SWORD

1000000
10000000

in
g

1000
10000

100000
1000000

10000000

p
ro

ce
ss

in
g

st

10
100

1000
10000

100000
1000000

10000000

q
u
e
ry

 p
ro

ce
ss

in
g

co
st

Mercury SWORD
MAAN LORM

1
10

100
1000

10000
100000

1000000
10000000

1 2 3 4 5 6 7 8 9 10To
ta

l q
u
e
ry

 p
ro

ce
ss

in
g

co
st

Number of attributes per query

Mercury SWORD
MAAN LORM

1
10

100
1000

10000
100000

1000000
10000000

1 2 3 4 5 6 7 8 9 10To
ta

l q
u
e
ry

 p
ro

ce
ss

in
g

co
st

Number of attributes per query

Mercury SWORD
MAAN LORM

1
10

100
1000

10000
100000

1000000
10000000

1 2 3 4 5 6 7 8 9 10To
ta

l q
u
e
ry

 p
ro

ce
ss

in
g

co
st

Number of attributes per query

Mercury SWORD
MAAN LORM

(c) Total processing cost

Fig. 7. Searching cost in different resource discovery approaches.

3500000
4000000

n
 Routing+visited nodes

1500000
2000000
2500000
3000000
3500000
4000000

n
g
 t
im

e
 i
n

y
 (

s
e

c
.)

Routing+visited nodes
Directory seaching

500000
1000000
1500000
2000000
2500000
3000000
3500000
4000000

o
c
e
s
s
in

g
 t
im

e
 i
n

M
e

rc
u

ry
 (

s
e

c
.)

Routing+visited nodes
Directory seaching

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000

1 2 3 4 5 6 7 8 9 10

P
ro

c
e
s
s
in

g
 t
im

e
 i
n

M
e

rc
u

ry
 (

s
e

c
.)

Number of attributes

Routing+visited nodes
Directory seaching

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000

1 2 3 4 5 6 7 8 9 10

P
ro

c
e
s
s
in

g
 t
im

e
 i
n

M
e

rc
u

ry
 (

s
e

c
.)

Number of attributes

Routing+visited nodes
Directory seaching

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000

1 2 3 4 5 6 7 8 9 10

P
ro

c
e
s
s
in

g
 t
im

e
 i
n

M
e

rc
u

ry
 (

s
e

c
.)

Number of attributes

Routing+visited nodes
Directory seaching

(a) Mercury

60000
70000

n
 Routing+visited nodes

Di t hi

30000
40000
50000
60000
70000

n
g
 t
im

e
 i
n

D
 (

s
e

c
.)

Routing+visited nodes
Directory seaching

10000
20000
30000
40000
50000
60000
70000

o
c
e
s
s
in

g
 t
im

e
 i
n

W
O

R
D

 (
s
e

c
.)

Routing+visited nodes
Directory seaching

0
10000
20000
30000
40000
50000
60000
70000

1 2 3 4 5 6 7 8 9 10

P
ro

c
e
s
s
in

g
 t
im

e
 i
n

S
W

O
R

D
 (

s
e

c
.)

Number of attributes

Routing+visited nodes
Directory seaching

0
10000
20000
30000
40000
50000
60000
70000

1 2 3 4 5 6 7 8 9 10

P
ro

c
e
s
s
in

g
 t
im

e
 i
n

S
W

O
R

D
 (

s
e

c
.)

Number of attributes

Routing+visited nodes
Directory seaching

0
10000
20000
30000
40000
50000
60000
70000

1 2 3 4 5 6 7 8 9 10

P
ro

c
e
s
s
in

g
 t
im

e
 i
n

S
W

O
R

D
 (

s
e

c
.)

Number of attributes

Routing+visited nodes
Directory seaching

(b) SWORD

6000000
7000000

n

Routing+visited nodes
Directory seaching

3000000
4000000
5000000
6000000
7000000

g
 t
im

e
 i
n

(s
e

c
.)

Routing+visited nodes
Directory seaching

1000000
2000000
3000000
4000000
5000000
6000000
7000000

c
e
s
s
in

g
 t
im

e
 i
n

M
A

A
N

 (
s
e
c
.)

Routing+visited nodes
Directory seaching

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

1 2 3 4 5 6 7 8 9 10

P
ro

c
e
s
s
in

g
 t
im

e
 i
n

M
A

A
N

 (
s
e
c
.)

Number of attributes

Routing+visited nodes
Directory seaching

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

1 2 3 4 5 6 7 8 9 10

P
ro

c
e
s
s
in

g
 t
im

e
 i
n

M
A

A
N

 (
s
e
c
.)

Number of attributes

Routing+visited nodes
Directory seaching

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

1 2 3 4 5 6 7 8 9 10

P
ro

c
e
s
s
in

g
 t
im

e
 i
n

M
A

A
N

 (
s
e
c
.)

Number of attributes

Routing+visited nodes
Directory seaching

(c) MAAN

40000
45000
50000

n
 Routing+visited nodes

Di t hi

20000
25000
30000
35000
40000
45000
50000

n
g
 t
im

e
 i
n

(s
e
c
.)

Routing+visited nodes
Directory seaching

5000
10000
15000
20000
25000
30000
35000
40000
45000
50000

o
c
e
s
s
in

g
 t
im

e
 i
n

L
O

R
M

 (
s
e
c
.)

Routing+visited nodes
Directory seaching

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

1 2 3 4 5 6 7 8 9 10

P
ro

c
e
s
s
in

g
 t
im

e
 i
n

L
O

R
M

 (
s
e
c
.)

Number of attributes

Routing+visited nodes
Directory seaching

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

1 2 3 4 5 6 7 8 9 10

P
ro

c
e
s
s
in

g
 t
im

e
 i
n

L
O

R
M

 (
s
e
c
.)

Number of attributes

Routing+visited nodes
Directory seaching

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

1 2 3 4 5 6 7 8 9 10

P
ro

c
e
s
s
in

g
 t
im

e
 i
n

L
O

R
M

 (
s
e
c
.)

Number of attributes

Routing+visited nodes
Directory seaching

(d) LORM

Fig. 8. Searching latency in different resource discovery approaches.

figures also show that the average number and total number
of logical hops increase as the number of attributes in each
resource request grows. It is because a node needs to send
out multiple queries for multiple attributes. This result is in
agreement with the analytical result in Proposition 3.4 that
the number of contacted nodes increases in proportion with
the number of attributes in a resource query.

For a range resource query, after the root node for the
resource information is reached, the root node needs to probe
other nodes for the requested resources in a range. We use
the number of visited nodes to represent resource searching
efficiency. More visited nodes imply less efficiency in resource
searching. The proof in Proposition 4.9 shows that to query
an m-attribute resource with range requirement in an n-node
network, the total number of visited nodes is m(1 + n

4) in
Mercury, m(2+ n

4) in MAAN, m(1+ d
4) in LORM and m in

SWORD. Based on the analysis, we calculated the number of
visited nodes for one query. It is m(1 + n

4) = 513m in Mer-
cury, m(2+n

4) = 514m in MAAN, m(1+ d
4) = 3m in LORM,

and m in SWORD. The total number of visited nodes for 1000
queries is the product of the result and 1000. Figure 6(a)
and Figure 6(b) plot the experiment results and analytical
results of the number of visited nodes versus the number
of attributes per query. Figure 6(a) demonstrates the results
of MAAN/Mercury and LORM, and Figure 6(b) shows the
results of SWORD and LORM. In Figure 6(a), the results of
MAAN, Mercury, “Analysis-MAAN” and “Analysis-Mercury”
are completely overlapped because their values differ no more
than 70000. Therefore, for clarity, we only show the results of
MAAN to represent itself and the others. In the figure, the y
axis is shown in logarithmic scale and MAAN and Mercury
have dramatically large results. Also, the experimental results
and analytical results of LORM are completely overlapped.
Actually, Figure 6(b) shows that the experimental results of
LORM are a little lower than its analytical results.

Except that the experiment results of LORM are marginally
lower than its analysis results, The experimental results of
other methods are almost consistent with their analytical

600
700

p
e
r

c
.) Routing

Di hi

400
500
600
700

a
te

n
c
y
 p

e
r

u
e

ry
 (

s
e

c
.) Routing

Directory searching

100
200
300
400
500
600
700

p
o
n
s
e
 l
a
te

n
c
y
 p

e
r

u
rc

e
 q

u
e
ry

 (
s
e
c
.) Routing

Directory searching

0
100
200
300
400
500
600
700

Mercury SWORD MAAN LORM

R
e
s
p
o
n
s
e
 l
a
te

n
c
y
 p

e
r

re
s
o
u
rc

e
 q

u
e
ry

 (
s
e
c
.) Routing

Directory searching

0
100
200
300
400
500
600
700

Mercury SWORD MAAN LORM

R
e
s
p
o
n
s
e
 l
a
te

n
c
y
 p

e
r

re
s
o
u
rc

e
 q

u
e
ry

 (
s
e
c
.) Routing

Directory searching

0
100
200
300
400
500
600
700

Mercury SWORD MAAN LORM

R
e
s
p
o
n
s
e
 l
a
te

n
c
y
 p

e
r

re
s
o
u
rc

e
 q

u
e
ry

 (
s
e
c
.) Routing

Directory searching

(a) Processing time

6
7

p
e
r

e
c
.) Routing

4
5
6
7

la
te

n
c
y
 p

e
r

u
e
ry

 (
s
e
c
.) Routing

Directory searching

1
2
3
4
5
6
7

p
o
n
s
e
 l
a
te

n
c
y
 p

e
r

u
rc

e
 q

u
e
ry

 (
s
e
c
.) Routing

Directory searching

0
1
2
3
4
5
6
7

SWORD LORM

R
e
s
p
o
n
s
e
 l
a
te

n
c
y
 p

e
r

re
s
o
u
rc

e
 q

u
e
ry

 (
s
e
c
.) Routing

Directory searching

0
1
2
3
4
5
6
7

SWORD LORM

R
e
s
p
o
n
s
e
 l
a
te

n
c
y
 p

e
r

re
s
o
u
rc

e
 q

u
e
ry

 (
s
e
c
.) Routing

Directory searching

0
1
2
3
4
5
6
7

SWORD LORM

R
e
s
p
o
n
s
e
 l
a
te

n
c
y
 p

e
r

re
s
o
u
rc

e
 q

u
e
ry

 (
s
e
c
.) Routing

Directory searching

(b) Processing time of SWORD &
LORM

Fig. 9. Efficiency of different resource discovery ap-
proaches.

results. Mercury and MAAN visit tremendously more nodes
than SWORD and LORM. Recall that Mercury and MAAN
accumulate resource information based on attribute value,
which spreads along the entire DHT ID space. They need to
probe nodes along a very large ID space. In contrast, SWORD
accumulates resource information based on node attribute. All
information of a particular attribute is in one directory node,
and no node needs to be probed. Therefore, a resource query
for an m-attribute resource needs m visit nodes. SWORD’s ex-
perimental results exactly match its analytical results. LORM
stores resource information of a specific attribute name in a
cluster, and only the nodes in the cluster should be probed.
This limits the node probing scope to a cluster rather than the
entire system. As a result, SWORD and LORM incur much
less cost for a range query than Mercury and MAAN.

We note SWORD achieves efficiency at the cost of high
information maintenance overhead in directory nodes, and
high directory searching cost. To verify this, we record the
directory size of each visited node, and use the sum of the
sizes to represent the directory searching cost as shown in
Figure 7(a). Since the results of LORM and SWORD are
overlapped, we show their results in Figure 7(b) for clear
demonstration. We can see that SWORD leads to higher
directory searching cost than LORM due to its large directory.
Although LORM needs to probe nodes in a cluster, because of
balanced information distribution, it still has a lower directory

12

searching cost than SWORD. From Figure 7(a), we can also
find that MAAN and Mercury generate significantly higher
cost, due to their large number of probed nodes. Also, MAAN
produces higher cost than Mercury because of its doubled
directory size. Considering that the number of visited nodes
is significantly larger than the routing hops, we can conclude
that LORM is the most efficient in terms of the total searching
cost for resource queries. Since a node communication costs
more than a directory entry search, we assume that each node
contact consumes 0.2 unit cost, while each directory entry visit
consumes 0.01 unit cost. Figure 7(c) plots the total resource
query processing cost. We can find that the results are almost
the same as the results in Figures 6(a) and (b) because the
latency of probing constitutes the main part of the latency.

Cost aside, resource querying latency is another important
metric to measure the efficiency of a resource discovery
approach. Since node communication takes longer time than
directory searching at a node and directory searching latency
is based on the directory size, we assume that the time for
each node communication was 0.2 second, and the time for
each directory searching is the product of 0.01 second and
the directory size. Such assumption does not affect the rel-
ative performance comparison between different approaches.
Communication nodes include the nodes along the route for
forwarding resource query and the visited nodes. Figure 8
shows the breakdown of total resource querying latency into
the factors of node communication and directory searching. In
Mercury, SWORD and MAAN, directory searching constitutes
the major part. Mercury and MAAN need to probe nodes for
range query in the entire system, leading to high directory
searching delay. Though SWORD does not need to probe
nodes, it has all the information of one resource attribute in one
node. Therefore, all queries for the same resource attribute will
reach a node which will become a bottleneck, resulting in high
searching delay. With limited probing scope within a cluster
and more balanced resource information distribution, LORM
has much less directory searching delay. Although LORM has
longer path length for each lookup operation, its constraint
probing scope saves the latency for node communication.

To be comparable, we choose the results in the case of
one-attribute resource query and put them in one figure.
Figure 9(a) and (b) show the average response latency for all
resource queries. We can observe that Mercury and MAAN
take dramatically longer response latency than SWORD and
LORM, and the latency of MAAN is longer than Mercury.
It is shown that Mercury and MAAN take approximately
the same time for routing, and MAAN has longer directory
searching latency than Mercury. The reason that they have
almost the same routing latency is because all queries for all
attributes are processed at the same time. However, MAAN
produces larger directory size due to its doubled resource
information, leading to longer latency for directory searching.
From Figure 9(b), we can see that LORM has a shorter
response latency than SWORD, though it takes longer latency
for routing. It is because Cycloid has a little longer query
routing path length than Chord, and LORM needs to probe
nodes in a cluster for range queries while SWORD does
not need to probe nodes. However, LORM introduces more

10
12

h
o
p
s

u
e
ry

Mercury

SWORD

6
8

10
12

o
g
ic

a
l
h
o
p
s

u
rc

e
 q

u
e
ry

Mercury

SWORD

MAAN

2
4
6
8

10
12

v
e
ra

g
e
 l
o
g
ic

a
l
h
o
p
s

e
r

re
s
o
u
rc

e
 q

u
e
ry

Mercury

SWORD

MAAN

LORM

0
2
4
6
8

10
12

0.05 0.15 0.25 0.35

A
v
e
ra

g
e
 l
o
g
ic

a
l
h
o
p
s

p
e
r

re
s
o
u
rc

e
 q

u
e
ry

Mercury

SWORD

MAAN

LORM

Analysis-
Mercury/SWORD
Analysis-LORM

0
2
4
6
8

10
12

0.05 0.15 0.25 0.35

A
v
e
ra

g
e
 l
o
g
ic

a
l
h
o
p
s

p
e
r

re
s
o
u
rc

e
 q

u
e
ry

Node join/leave rate

Mercury

SWORD

MAAN

LORM

Analysis-
Mercury/SWORD
Analysis-LORM

0
2
4
6
8

10
12

0.05 0.15 0.25 0.35

A
v
e
ra

g
e
 l
o
g
ic

a
l
h
o
p
s

p
e
r

re
s
o
u
rc

e
 q

u
e
ry

Node join/leave rate

Mercury

SWORD

MAAN

LORM

Analysis-
Mercury/SWORD
Analysis-LORM

(a) Average number of contacted
nodes (Propositions 3.3, 4.7, and 4.8)

1000

o
d

e
s

e
ry

Merc r LORM
100

1000

it
e
d
 n

o
d
e
s

c
e
 q

u
e
ry

Mercury LORM
MAAN SWORD
Analysis-Mercury Analysis-LORM

1

10

100

1000

ra
g
e
 v

is
it
e
d
 n

o
d
e
s

r
re

s
o
ru

c
e
 q

u
e
ry

Mercury LORM
MAAN SWORD
Analysis-Mercury Analysis-LORM
Analysis-MAAN Analysis-SWORD

1

10

100

1000

0.1 0.2 0.3 0.4A
v
e
ra

g
e
 v

is
it
e
d
 n

o
d
e
s

p
e
r

re
s
o
ru

c
e
 q

u
e
ry

Node join/leave rate

Mercury LORM
MAAN SWORD
Analysis-Mercury Analysis-LORM
Analysis-MAAN Analysis-SWORD

1

10

100

1000

0.1 0.2 0.3 0.4A
v
e
ra

g
e
 v

is
it
e
d
 n

o
d
e
s

p
e
r

re
s
o
ru

c
e
 q

u
e
ry

Node join/leave rate

Mercury LORM
MAAN SWORD
Analysis-Mercury Analysis-LORM
Analysis-MAAN Analysis-SWORD

1

10

100

1000

0.1 0.2 0.3 0.4A
v
e
ra

g
e
 v

is
it
e
d
 n

o
d
e
s

p
e
r

re
s
o
ru

c
e
 q

u
e
ry

Node join/leave rate

Mercury LORM
MAAN SWORD
Analysis-Mercury Analysis-LORM
Analysis-MAAN Analysis-SWORD

(b) The number of visited nodes
(Propositions 3.3, and 4.9)

Fig. 10. Efficiency of different resource discovery ap-
proaches in churn.

balanced resource information distribution, while SWORD
accumulates information of a specific attribute to a single node,
so LORM has less directory searching latency than SWORD.
The results show that LORM is most efficient in resource
query processing.

5.3 Performance in a Dynamic Environment

This section evaluates the efficiency of the LORM in a highly
dynamic environment in comparison with other approaches
with the DHT stabilization mechanism. In this experiment,
the resource join/departure rate R was modelled as a Poisson
process as in [46]. For example, there is one resource join
and one resource departure every 2.5 seconds with R = 0.4.
We varied R from 0.1 to 0.5, with step size of 0.1. We set
the number of total resource requests to 10000. Experiment
results show that there were no failures in all test cases.
Figure 10(a) shows the experimental and analytical results of
the average number of logical hops for a non-range resource
query as R changes. The analytical results are drawn from the
proof of Proposition 4.7 and 4.8. Compared with the logical
hop evaluation in Figure 5 in a static environment, we can
see that the measured number of hops in the presence of
node joining and leaving is very close to that in a static
environment and does not change with the rate R. This is
consistent with Proposition 3.3 that node joins and departures
generate little adverse effect on resource querying. We can
also observe that the analytical results are slightly higher than
the experiment results. This is because that the lookup path
is reduced sometimes due to the node departures. The results
are also consistent with Proposition 4.7 and 4.8 in terms of
the number of contacted hops for a resource query.

Figure 10(b) shows the analytical results and experimental
results of the average visited nodes per range resource query.
The results of Mercury, MAAN, “Analysis-Mercury” and
“Analysis-Mercury” are overlapped since their results differ no
more than 30. Thus, we only draw the result of Mercury. The
analytical results are drawn from the proof of Proposition 4.9.
First, we can see that the experimental results are consistent
with the analytical results. Because Mercury and MAAN are
system-wide range resource discovery methods that distribute
resource information in all nodes based on attribute values,
they incur much more node communication for a resource
query due to system-wide probing. Second, the results are
consistent with the results in Figure 6 in the static situation.
Thus, the results are in agreement with Proposition 3.3 that

13

dynamism generates little adverse effect on the efficiency
of resource querying. In conclusion, the experimental results
confirm that LORM can effectively resolve resource queries
in a dynamic environment.

5.4 Summary

In summary, LORM leads to superior performance over exist-
ing multi-attribute range querying methods:
• It generates lower structure maintenance overhead.
• It produces more balanced load distribution among di-

rectory nodes for directory information maintenance and
resource discovery.

• It is more efficient in querying with respects of the
number of hops traversed in routing and the cost of
searching the directory.

• It is more efficient in query response latency.
• It is churn resilient.

6 CONCLUSIONS

Resource discovery is a critical issue for grid systems in which
applications are composed of hardware and software resources.
Previous resource discovery approaches either depend on mul-
tiple DHTs with each DHT responsible for a resource or rely
on one DHT by pooling resource information of an attribute
in a single node, leading to high maintenance overhead or
inefficiency due to load imbalance. In this paper, we pro-
pose a Low-Overhead Range-query Multi-resource discovery
approach (LORM). Unlike most previous resource discovery
methods which depend on multiple DHTs with each DHT
responsible for a resource, LORM relies on a single DHT
with constant maintenance overhead to achieve range-query
multi-attribute resource discovery with low overhead. It avoids
bottlenecks by achieving a balanced distribution of load due to
resource information maintenance as well as resource discov-
ery operation itself. Furthermore, LORM is able to deal with
dynamic node changes and variation of resource availability.
We experimentally and analytically study the performance of
LORM in comparison with the previous resource discovery
methods with regards to their structure maintenance over-
head, resource information maintenance overhead and resource
searching efficiency. We show the consistency of the analytical
results with the experimental results. Both simulation and
analytical results show the superiority of LORM in comparison
with other representative approaches in terms of overhead
cost and efficiency of range query and multi-attribute resource
discovery. We plan to further explore and elaborate upon
the LORM design to discover resources based on semantic
information.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants OCI-
1064230, CNS-1049947, CNS-1025652, CNS-1025649, CNS-
0917056, CNS-0702488, CNS-0914330, and CCF-1016966,
Microsoft Research Faculty Fellowship 8300751, and Sandia
National Laboratories grant 10002282.

REFERENCES

[1] D. Abramson, J. Giddy, and L. Kotler. High performance
parametric modelling with Nimrod/G: killer application for the
global grid? In Proc. of IPDPS, 2000.

[2] A. Andrzejak and Z. Xu. Scalable, efficient range queries for
grid information services. In Proc. of P2P, 2002.

[3] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and
A. Wu. An optimal algorithm for approximate nearest neighbor
searching. In Proc. of SODA, 1994.

[4] J. L. Bentle, J. H. Friedman, and R. A. Finkel. An algorithm
for finding best matches in logarithmic expected time. ACM
Transactions on Mathematical Software, 3(3):209–226, 1977.

[5] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury:
Supporting scalable multi-attribute range queries. In Proc. of
ACM SIGCOMM, pages 353–366, 2004.

[6] D. Boukhelef and H. Kitagawa. Efficient management of
multidimensional data in structured peer-to-peer overlays. In
Proc. of VLDB, 2009.

[7] M. Cai, M. Frank, J. Chen, and P. Szekely. MAAN: A multi-
attribute addressable network for grid information services.
Journal of Grid Computing, 2004.

[8] M. Cai and K. Hwang. Distributed aggregation algorithms with
load-balancing for scalable grid resource monitoring. In Proc.
of IPDPS, 2007.

[9] S. Castelli, P. Costa, and G. P. Picco. Hypercbr: Large-scale
content-based routing in a multidimensional space. In Proc. of
INFOCOM, 2008.

[10] C. Chen and D. Agrawal. dBCube: a new class of hierarchi-
cal multiprocessor interconnection networks with area efficient
layout. TPDS, 4(12):1332 – 1344, 1993.

[11] H. Chen, H. Jin, J. Wang, L. Chen, Y. Liu, , and L. M. Ni.
Efficient multi-keyword search over p2p web. In Proc. of WWW,
2008.

[12] A. Datta, M. Hauswirth, R. John, R. Schmidt, and K. Aberer.
Range queries in trie-structured overlays. In Proc. of P2P, 2005.

[13] C. Doulkeridis, A. Vlachou, K. Nrvg, Y. Kotidis, and M. Vazir-
giannis. Multidimensional routing indices for efficient dis-
tributed query processing. In Proc. of CIKM, 2009.

[14] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke.
Condor-G: a computation management agent for multiinstitu-
tional grids. In Proc. HPDC, 2001.

[15] A. Fu, P. M. S. Chan, Y. L.Cheung, and Y. S. Moon. Dynamic
vp-tree indexing for n-nearest neighbor search given pair-wise
distances. VLDB Journal, 9(2):154–173, 2000.

[16] P. Ganesan, B. Yang, and H. Garcia-molina. One torus to rule
them all: Multi-dimensional queries in p2p systems. In Proc.
of WebDB. ACM Press, 2004.

[17] J. Gao and P. Steenkiste. An adaptive protocol for efficient
support of range queries in DHT-based systems. In Proc. of
ICNP, 2004.

[18] D. Guo, H. Chen, Y. Hec, H. Jin, C. Chen, H. Chen, Z. Shu,
and G. Huang. Kcube: A novel architecture for interconnection
networks. Information Processing Letters, 2010.

[19] D. Guo, Y. Liu, and X. Li. Bake: A balanced kautz tree structure
for peer-to-peer networks. In Proc. of INFOCOM, 2008.

[20] D. Guo, J. Wu, H. Chen, and X. Luo. Moore: An extendable
peer-to-peer network based on incomplete kautz digraph with
constant degree. In Proc. of INFOCOM, 2007.

[21] M. Harchol-Balter and A. Downey. Exploiting process lifetime
distributions for dynamic load balancing. TOCS, 1997.

[22] H. V. Jagadish. Vbi-tree: A peer-to-peer framework for sup-
porting multi-dimensional indexing schemes. In Proc. of ICDE,
page 34, 2006.

[23] K. V. R. Kanth, D. Agrawal, A. E. Abbadi, and A. Singh.
Dimensionality reduction for similarity searching in dynamic
databases. In Proc. of ACM SIGMOD, 1998.

[24] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and
R. Panigrahy. Consistent hashing and random trees: Distributed

14

caching protocols for relieving hot spots on the World Wide
Web. In Proc. of STOC, pages 654–663, 1997.

[25] D. Li, X. Lu, and J. Wu. FISSIONE: a scalable constant degree
and low congestion DHT scheme based on Kautz graphs. In
Proc. of INFOCOM, 2005.

[26] J. Li and S. Vuong. Grid resource discovery based on semantic
p2p communities. In Proc. of ACM-SAC, 2006.

[27] M. Li, W.-C. Lee, and A. Sivasubramaniam. Dptree: A balanced
tree based indexing framework for peer-to-peer systems. In
Proc. of ICNP, 2006.

[28] Q. Li, L. Feng, J. Pei, S. Wang, X. Zhou, and Q. Zhu. Advances
in Data and Web ManagementJoint International Conferences.
Lecture Notes in Computer Science, 2009.

[29] B. Liu, W.-C. Lee, and D. L. Lee. Supporting complex multi-
dimensional queries in p2p systems. In Proc. of ICDCS, 2005.

[30] V. March and Y. M. Teo. Multi-attribute range queries in read-
only DHT. In Proc. of ICCCN, pages 419–424, 2005.

[31] M. Marzolla, M. Mordacchini, and S. Orlando. Peer-to-peer
systems for discovering resources in a dynamic grid. Parallel
Computing, 2006.

[32] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat.
Scalable wide-area resource discovery. Technical Report TR
CSD04-1334, EECS Dept., Univ. of California, Berkeley, 2004.

[33] D. Papadias, Y. Theodoridis, and E. Stefanakis. Multidimen-
sional range query processing with spatial relations. Geograph-
ical Systems, 4:343–365, 1997.

[34] F. P. Preparata and J. Vuillemin. The cube-connected cycles: A
versatile network for parallel computation. CACM, 1981.

[35] K. Psounisa, P. M. Fernandezb, B. Prabhakarc, and F. Pa-
padopoulosd. Systems with multiple servers under heavy-tailed
workloads. Performance Evaluation, 2005.

[36] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A scalable content-addressable network. In Proc. of ACM
SIGCOMM, pages 329–350, 2001.

[37] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location and routing for large-scale peer-to-peer systems.
In Proc. of Middleware, 2001.

[38] T. Schtt, F. Schintke, and A. Reinefeld. A structured overlay for
multi-dimensional range queries. In Proc. of Euro-Par, 2007.

[39] H. Shen. A p2p-based intelligent resource discovery mechanism
in internet-based distributed systems. JPDC, 2008.

[40] H. Shen, A. Apon, and C. Xu. LORM: Supporting low-
overhead p2p-based range-query and multi-attribute resource
management in grids. In Proc. of ICPADS, 2007.

[41] H. Shen, C. Xu, and G. Chen. Cycloid: A scalable
constant-degree P2P overlay network. Performance Evaluation,
63(3):195–216, 2006.

[42] H. Shen and C.-Z. Xu. Hash-based proximity clustering for
efficient load balancing in heterogeneous dht networks. JPDC,
2008.

[43] X. Shen and Z. Li. Multi-dimensional queries in dht-based
peer-to-peer systems. In Proc. of SKG, 2009.

[44] Y. Shu, B. C. Ooi, K.-L. Tan, and A. Zhou. Supporting multi-
dimensional range queries in peer-to-peer systems. In Proc. of
P2P, 2005.

[45] D. Spence and T. Harris. XenoSearch: Distributed resource
discovery in the XenoServer open platform. In Proc. of HPDC,
pages 216–225, 2003.

[46] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: A scal-
able peer-to-peer lookup protocol for Internet applications.
IEEE/ACM TON, 11(1):17–32, 2003.

[47] H. Sun, J. Huais, Y. Liu, and R. Buyya. RCT: A distributed
tree for supporting efficient range and multi-attribute queries in
grid computing. Future Generation Computer Systems, 2008.

[48] X. Sun. SCAN: A small-world structured p2p overlay for multi-
dimensional queries. In Proc. of WWW, 2007.

[49] L. Weng, U. Catalyurek, T. Kurc, G. Agrawal, and J. Saltz.
Optimizing multiple queries on scientific datasets with partial

replicas. In Proc. of Grid Computing, 2007.
[50] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson.

Self-similarity through high-variability: statistical analysis of
ethernet lan traffic at the source level. TON, 1997.

[51] D. Wu, Y. Tian, and K.-W. Ng. Roogle: Supporting efficient
high-dimensional range queries in P2P systems. In Proc. of
Euro-Par, 2006.

[52] P. Yalagandula and M. Dahlin. A scalable distributed informa-
tion management system. In Proc. of ACM SIGCOMM, 2004.

[53] L. Zhang, Z. Wang, and D. Feng. Two-level indexing for high-
dimensional range queries in peer-to-peer networks. In Proc. of
MMSP, 2009.

[54] M. Zhang and J. Q. Yang. A multi-dimensional query scheme
in structured overlays. Key Engineering Materials, 2010.

[55] X. Zhang, Y. Qu, and L. Xiao. Improving distributed workload
performance by sharing both cpu and memory resources. In
Proc. of ICDCS, pages 233–241, 2000.

[56] Y. Zhang, L. Liu, D. Li, and X. Lu. DHT-based range query
processing for web service discovery. In Proc. of ICWS, 2009.

[57] Z. Zhang, S.-M. Shi, and J. Zhu. SOMO: Self-organized
metadata overlay for resource management in P2P DHT. In
Proc. of IPTPS, 2003.

[58] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,
and J. Kubiatowicz. Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. J-SAC, 12(1):41–53, 2004.

[59] C. Zheng, G. Shen, S. Li, and S. Shenker. Distributed segment
tree: Support of range query and cover query over DHT. In
Proc. of IPTPS, 2006.

Haiying Shen received the BS degree in Computer Science and Engineering from Tongji
University, China in 2000, and the MS and Ph.D. degrees in Computer Engineering from
Wayne State University in 2004 and 2006, respectively. She is currently an Assistant
Professor in the Holcombe Department of Electrical and Computer Engineering at
Clemson University. Her research interests include distributed and parallel computer
systems and computer networks, with an emphasis on peer-to-peer and content delivery
networks, mobile computing, wireless sensor networks, and grid and cloud computing.
She was the Program Co-Chair for a number of international conferences and member of
the Program Committees of many leading conferences. She is a Microsoft Faculty Fellow
of 2010 and a member of the IEEE and ACM.

Cheng-Zhong Xu received B.S. and M.S. degrees from Nanjing University in 1986 and
1989, respectively, and a Ph.D. degree in Computer Science from the University of Hong
Kong in 1993. He is currently a Professor in the Department of Electrical and Computer
Engineering of Wayne State University and the Director of Sun’s Center of Excellence in
Open Source Computing and Applications. His research interests are mainly in
distributed and parallel systems, particularly in scalable and secure Internet services,
autonomic cloud management, energy-aware task scheduling in wireless embedded
systems, and high performance cluster and grid computing. He has published more than
160 articles in peer-reviewed journals and conferences in these areas. He is the author of
Scalable and Secure Internet Services and Architecture (Chapman & Hall/CRC Press,
2005) and a co-author of Load Balancing in Parallel Computers: Theory and Practice

Haiying Shen Haiying Shen received the BS
degree in Computer Science and Engineering
from Tongji University, China in 2000, and the
MS and Ph.D. degrees in Computer Engineering
from Wayne State University in 2004 and 2006,
respectively. She is currently an Assistant Pro-
fessor in the Holcombe Department of Electrical
and Computer Engineering at Clemson Univer-
sity. Her research interests include distributed
and parallel computer systems and computer
networks, with an emphasis on peer-to-peer and

content delivery networks, mobile computing, wireless sensor networks,
and grid and cloud computing. She was the Program Co-Chair for
a number of international conferences and member of the Program
Committees of many leading conferences. She is a Microsoft Faculty
Fellow of 2010 and a member of the IEEE and ACM.-0.2in

Haiying Shen received the BS degree in Computer Science and Engineering from Tongji
University, China in 2000, and the MS and Ph.D. degrees in Computer Engineering from
Wayne State University in 2004 and 2006, respectively. She is currently an Assistant
Professor in the Holcombe Department of Electrical and Computer Engineering at
Clemson University. Her research interests include distributed and parallel computer
systems and computer networks, with an emphasis on peer-to-peer and content delivery
networks, mobile computing, wireless sensor networks, and grid and cloud computing.
She was the Program Co-Chair for a number of international conferences and member of
the Program Committees of many leading conferences. She is a Microsoft Faculty Fellow
of 2010 and a member of the IEEE and ACM.

Cheng-Zhong Xu received B.S. and M.S. degrees from Nanjing University in 1986 and
1989, respectively, and a Ph.D. degree in Computer Science from the University of Hong
Kong in 1993. He is currently a Professor in the Department of Electrical and Computer
Engineering of Wayne State University and the Director of Sun’s Center of Excellence in
Open Source Computing and Applications. His research interests are mainly in
distributed and parallel systems, particularly in scalable and secure Internet services,
autonomic cloud management, energy-aware task scheduling in wireless embedded
systems, and high performance cluster and grid computing. He has published more than
160 articles in peer-reviewed journals and conferences in these areas. He is the author of
Scalable and Secure Internet Services and Architecture (Chapman & Hall/CRC Press,
2005) and a co-author of Load Balancing in Parallel Computers: Theory and Practice

Cheng-Zhong Xu Cheng-Zhong Xu received
B.S. and M.S. degrees from Nanjing University
in 1986 and 1989, respectively, and a Ph.D.
degree in Computer Science from the University
of Hong Kong in 1993. He is currently a Profes-
sor in the Department of Electrical and Com-
puter Engineering of Wayne State University
and the Director of Sun’s Center of Excellence
in Open Source Computing and Applications.
His research interests are mainly in distributed
and parallel systems, particularly in scalable and

secure Internet services, autonomic cloud management, energy-aware
task scheduling in wireless embedded systems, and high performance
cluster and grid computing. He has published more than 160 articles in
peer-reviewed journals and conferences in these areas. He is the author
of Scalable and Secure Internet Services and Architecture (Chapman &
Hall/CRC Press, 2005) and a co-author of Load Balancing in Parallel
Computers: Theory and Practice (Kluwer Academic/Springer, 1997).
He serves on five journal editorial boards including IEEE TPDS and
JPDC. He was a program chair or general chair of a number of con-
ferences, including Infoscale’08, EUC’08, and GCC’07. He is a recipient
of the Faculty Research Award of Wayne State University in 2000, the
President’s Award for Excellence in Teaching in 2002, and the Career
Development Chair Award in 2003. He is a senior member of the IEEE.

