
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

J. Parallel Distrib. Comput. 71 (2011) 407–423

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A flabellate overlay network for multi-attribute search
Ruixuan Li a,∗, Wei Song a, Haiying Shen b, Weijun Xiao c, Zhengding Lu a

a School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
b Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA
c Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA

a r t i c l e i n f o

Article history:
Received 22 January 2010
Received in revised form
24 September 2010
Accepted 5 November 2010
Available online 12 November 2010

Keywords:
Peer-to-peer network
Multi-attribute search
Range query
Virtual replica network
File replication

a b s t r a c t

Peer-to-peer (P2P) technology provides a popular way of distributing resources, sharing, and locating in a
large-scale distributed environment. However, most of the current existing P2P systems only support
queries over a single resource attribute, such as file name. The current multiple resource attribute
search methods often encounter high maintenance cost and lack of resilience to the highly dynamic
environment of P2P networks. In this paper, we propose a Flabellate overlAy Network (FAN), a scalable
and structured underlying P2P overlay supporting resource queries over multi-dimensional attributes. In
FAN, the resources are mapped into a multi-dimensional Cartesian space based on the consistent hash
values of the resource attributes. The mapping space is divided into non-overlapping and continuous
subspaces based on the peer’s distance. This paper presents strategies formanaging the extended adjacent
subspaces, which is crucial to networkmaintenance and resource search in FAN. The algorithms of a basic
resource search and range query over FAN are also presented in this paper. To alleviate the load of the
hot nodes, a virtual replica network (VRN) consisting of the nodes with the same replicates is proposed
for replicating popular resources adaptively. The queries can be forwarded from the heavily loaded nodes
to the lightly loaded ones through VRN. Theoretical analysis and experimental results show that FAN has
a higher routing efficiency and lower network maintenance cost over the existing multi-attribute search
methods. Also, VRN efficiently balances the network load and reduces the querying delay in FAN while
invoking a relatively low overhead.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In the past decade, peer-to-peer (P2P) technology has received
a considerable amount of attention from the research and indus-
trial communities. P2P enables one to search and fully utilize a
variety of resources, such as computing, storing andnetworking re-
sources, and file resources. However, most of the existing P2P sys-
tems only support content search over a single resource attribute
(e.g. keyword or file name). Examples include the file sharing
applications in Napster, Gnutella and BitTorrent. Full-blown P2P
applications require an efficient resource content search over
multi-dimensional resource attributes. For example, in a typical
file sharing system, users may not only want to query by file name,
but also by file type, file size, last-modified time, owner, feedback,
and reputation degree. Thus, an efficient P2P resource search over
multi-dimensional attributes is increasingly needed with the dra-
matic development of P2P applications.

∗ Corresponding author.
E-mail addresses: rxli@hust.edu.cn (R. Li), weisong@smail.hust.edu.cn

(W. Song), shenh@clemson.edu (H. Shen), wxiao@umn.edu (W. Xiao),
zdlu@hust.edu.cn (Z. Lu).

Recently, several works have been proposed to achieve multi-
dimensional attributes’ resource search. CAN distributed hash
table (DHT) [18] is a typical structured P2P overlay supporting
resource search over multi-dimensional attributes. However, the
maintenance cost of CAN is considerably high, especially when
peers frequently join and leave the network due to zone mergence
and division [18]. In order to reduce the maintenance cost,
Shu et al. [21] and Schmidt and Parashara [19] use space-filling
curves, such as z-curve and Hilbert Curve, to divide CAN zones.
However, using space-filling curves may incur zone density for
popular resources and affect the load balance of the DHT. Locher
et al. [16] proposes eQuus using node cliques to reduce the
maintenance cost. Many improved routing algorithms (e.g., range
query [7], KNN query [15]) over CAN have been proposed for
complex queries. However, these routing algorithms inherit the
inherent weakness of CAN. Other researches, such as Mercury [3],
PHT [5], DST [29], and m-Light [25], have been conducted to
address the P2P resource search overmulti-dimensional attributes.
Nevertheless, these methods mainly use high overhead index
structures over DHT overlay to support multi-dimensional search,
rather than addressing the underlying DHT overlay problems.
These approaches often encounter high maintenance cost and lack
resilience to the highly dynamic environment of P2P networks,

0743-7315/$ – see front matter© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2010.11.002

Author's personal copy

408 R. Li et al. / J. Parallel Distrib. Comput. 71 (2011) 407–423

especially when the network size is large, the dimension of
resource attributes are very high, and peers join and leave the
network rapidly.

The goal of our research is to develop a scalable P2P overlay
supporting resource search over multi-dimensional attributes
with high routing efficiency, low maintenance cost, and a fine
load balance. Towards this end, we propose a Flabellate overlAy
Network (FAN) system including FAN network construction, query
routing and peer joining and leaving algorithms. Peers in FAN
can find their desired resources in O(log(N/k)) hops when the
network size is N and each subspace can contain up to k peers.
Joining and leaving the FAN network generates up to O(log(N/k))
messages. Furthermore, we develop a range query algorithm over
the FAN overlay. This uses resource distance and attribute slope to
implement a range query that has a high routing efficiency and low
maintenance cost.

In this paper, we use files as an example for resources. In gen-
eral, the distribution of resources and user accesses are unbalanced
in a P2P network due to the variance of resource popularity. Some
nodes are busy due to hosting many hot resources, while other
nodes only receive few requests. This distribution imbalance de-
grades the quality of service of a P2P network through delayed
querying, message forwarding and so on. To address this issue,
we propose a virtual replica network (VRN) to adaptively replicate
the popular resources along hot search paths in FAN. VRN pushes
the popular resources closer to the consumers and forwards the
queries to the least loaded node, leading to reduced querying de-
lay and a balanced load distribution.

Experimental results show that FAN is an efficient P2P overlay
supporting multi-dimensional resource attributes with low main-
tenance cost and high routing efficiency. The single-dimensional
FAN achieves logarithmic resource search efficiency comparable
to Chord. Furthermore, the experimental results demonstrate that
the VRN replication algorithm can greatly reduce the querying
delay in FAN under a heavy querying load. CAN-based routing al-
gorithms supporting complex queries [7,15] and P2P routing algo-
rithms independent of the underlying P2P framework [4] can be
implemented over FAN to obtain an enhanced performance.

The main contributions of this paper are as follows.

• A P2P flabellate overlay that supports resource search over
multi-attributes within O(log(N/k)) hops.

• A self-maintenance algorithm that ensures the scalability of
FAN and brings O(log(N/k)/k) messages for each node join or
departure.

• A range query algorithm over FAN using resource distance and
attribute slope to achieve an efficient and scalable searching
performance.

• A virtual replica network that balances the load between nodes
and employs the power-law links to efficiently inform the load
information.

• Extensive experiments to show the good performance of FAN.

The rest of this paper is organized as follows. Section 2 dis-
cusses the related research in P2P network. Section 3 presents
the details of the FAN network. Section 4 describes the adaptive
replication network for FAN. Section 5 discusses and evaluates the
performance of FAN and outlines its benefits in comparison with
CAN, Chord and Mercury. Finally, Section 6 concludes this paper
with a discussion of possible improvements to be considered as fu-
ture work.

2. Related work

In the last few years, a number of methods have been proposed
for P2P resource search. A routing algorithm is an essential part

of a resource search. A structured P2P network employs DHT
to build a scalable, load balanced network topology. A peer in
structured P2P network has its own logical identifier and indexes
the resources based on the identifier. The routing algorithms
in structured P2P networks can be divided into two categories:
(a) algorithms supporting single-dimensional resource attributes;
(b) algorithms supporting multi-dimensional resource attributes.

Chord [23] and Tapestry [28] are structured P2P networks sup-
porting resource search over a single attribute. The systems employ
different topologies, such as ring and hypercube, and assign files to
nodes using a consistent hashing function [13] to manage file re-
sources. Their routing efficiency isO(logN). Many P2P applications
need resources described by multi-dimensional attributes, thus
there is a need for a search algorithm overmulti-dimensional data.
CAN [18] is a typical P2P overlay supportingmulti-dimensional re-
source attributes. Each peer in CAN has a set of d-dimensional co-
ordinates. Every node manages a virtual zone containing itself and
stores their immediate neighbor’s routing information. A node in
CAN delivers the search messages towards the target peer through
a simple greedy flooding approach. The CAN routing efficiency is
O(dN1/d), where d is the resource dimension. However, CAN lets a
node hold several zones to deal with nodes leaving and the subse-
quent file resource takeover. Furthermore, when peers frequently
join and leave or adjacent peers fail simultaneously, the mainte-
nance cost of CAN is considerably high.

Recently, many works have been proposed to support P2P
resource search over multi-dimensional attributes. Most of them
are over DHT overlays. For example, Liu proposes an NR-tree [15]
by adapting an R*-tree, Mercury [3] uses a multi-Chord structure,
pSearch [24] employs vector space model (VSM) and latent
semantic indexing (LSI) over CAN. VBI-Tree [12] and BATON [11]
build tree indexing structures over P2P networks to support multi-
dimensional range queries. Distributed segment tree (DST) [28],
range search tree (RST) [9] and m-Light [25] employ tree indexes
by placing data in internal nodes to perform multi-dimensional
range queries with a balanced load distribution. P-Ring [6] uses
a ring index to achieve scalable and robust range querying. Q -
Tree [2] is a range querying tree index that can answer complex
queries rapidly. Although these search methods are built over
a multi-dimensional DHT overlay, they are designed to supply
complex queries rather than improving the efficiency of multi-
dimensional routing of the underlying P2P overlay. Hence, efficient
searchwithmulti-dimensional attributes is exactly themotivation
for the design of FAN. Many improved routing algorithms over
DHT overlay, such as [7,15], and other algorithms independent of
underlying DHT topology, such as [4], can be implemented over
FAN to achieve enhanced performance.

The variance of a resource’s popularity and the skew of the
user’s access make some nodes become heavily loaded. There
are many efforts [8,26,30] that address the issue of relieving the
hot nodes by replicating the popular resources in P2P networks.
Ganesan et al. [8] proposed to dynamically adjust data partitions
based on data and access skew to achieve load balance. Shen
and Xu [20] presented locality-aware and churn-resilient load
balancing algorithms in structured peer-to-peer networks. Wang
et al. [26] proposed to replicate hot resources in a content
distribution network to improve search efficiency. Zhu andHu [30]
utilized the proximity information to guide load balance over
structured P2P networks. The load balancing method in FAN
distinguishes itself from the previous works by taking advantage
of the routing in FAN. In FAN, the query routing messages are
forwarded along the links of extended adjacent subspaces. FAN
creates replicas of hot resources along routing paths based on the
access skew to achieve an improved performance of load balance.

Author's personal copy

R. Li et al. / J. Parallel Distrib. Comput. 71 (2011) 407–423 409

(a) FAN without super-peer. (b) FAN with super-peers.

Fig. 1. A 2-dimensional FAN network structure.

3. FAN protocols

3.1. The basic FAN network architecture

The shared resources in FAN [22] are described by d-dimen-
sional attributes. The FAN uses the consistent hashing functions
to compute the hashed values of resource attributes and maps
the resource into a node of a d-dimensional Cartesian space. We
call this d-dimensional Cartesian space the FAN mapping space.
In the d-dimensional FAN mapping space, given a node P at the
point (x1, x2, . . . , xd), where x1, x2, . . . , xd are the hash values of
different resource attributes of P , we define P ’s distance Dp as its
second moment to the origin of coordinates which is shown in
Eq. (1). In FAN, both the resource search and networkmanagement
are based on the peer’s distance.

Dp = x21 + x22 + · · · + x2d =

d−
i=1

x2i . (1)

FANmapping space is divided into non-overlapping and contin-
uous subspaces based on the peer’s distance. Each node falls into a
unique subspacewhich covers its distance. The FAN subspace is de-
fined as follows. We use A(a, b) to denote a subspace which covers
the peer’s distance range (a, b]. For each node P in the subspace
A(a, b), its distance Dp satisfies a < Dp ≤ b. Furthermore, each
node P whose distance satisfies a < Dp ≤ b belongs to the sub-
space A(a, b). To describe the FAN search algorithm easily, we de-
fine the distance between peer P and a subspace A(a, b) in Eq. (2).

DSPtoA =

a − DP a > DP
0 a ≤ DP ≤ b
DP − b DP > b.

(2)

We draw a 2-dimensional FAN structure in Fig. 1(a). The
resource search in FAN is equal to finding its subspace. Therefore,
a peer in FAN must store the peer routing information in its same
subspace and its adjacent subspaces. For example, in Fig. 1(a), peer
P stores the information of all nodes in subspaces A3 and A2. This
network structure makes peers in FAN store too much routing
information. To reduce the routing information at each peer,
we employ the super-peer technique to manage the subspaces.
Fig. 1(b) illustrates a 2-dimensional FAN structure with super-
peers. That is, the super-peers in neighboring subspaces are
connected to each other, and each super-peer connects to all nodes
in its own subspace.

In FAN, super-peers manage the subspaces and process search
requests. Therefore, the super-peers play a more important role
than common peers. To achieve good performance and high
stability, a super-peer should have more computing power and a
higher network bandwidth than the common peers. With more
peers joining the subspaces, it is possible that some common peers
may exhibit a better performance in CPU circles and network speed
than the current super-peer. We assume that every peer in FAN
is altruistic. The super-peer periodically checks all peers in the
subspace to see if there is any common peer havingmore powerful
computing and networking performance. If found, the powerful
common peer will replace the super-peer to manage the subspace.

According to the related analysis [27], the redundant super-
peers are needed for a realistic P2P system. Therefore, each sub-
space in FAN has a redundant backup super-peer watching the
super-peer and synchronizing its routing information. When the
current super-peer leaves, the backup one will replace it. The si-
multaneous leave of super-peer and backup super-peerwill be dis-
cussed in Section 3.5. Every peer in FAN belongs to a subspace and
maintains a routing table which stores the peer identifier, peer co-
ordinates, and the subspace information described by the lower
and upper distance borderlines. Table 1 shows the routing table in-
formation in the super-peer S1 and the common peer P1 in Fig. 1(b).
The super-peer stores the information of all peers in its subspace,
e.g. the first three rows in Table 1(a), and all super-peers in its ad-
jacent subspaces, e.g. the last two rows in Table 1(a). At the same
time, a common peer only stores the information of peers in its
subspace, as shown in Table 1(b).

3.2. Resource search in FAN

In FAN, the shared resources and the peers are mapped into
subspaces. Therefore, retrieving resources and searching peers in
FAN is equivalent to finding the subspaces.

The super-peers in FAN take charge of managing the subspaces
and processing the received search requests.While peer P searches
resource R, P first computes R’s coordinates and retrieves R locally.
If R is found, the search is completed. Otherwise, P forwards the
query to its super-peer S (if P itself is a super-peer, this step will
be skipped). When S receives the search request, it asks the nodes
in its subspace whether they have R. If the subspace contains R, the
querywill be satisfied. Otherwise, S forwards the querymessage to
the super-peer of an adjacent subspace closer to R until the query

Author's personal copy

410 R. Li et al. / J. Parallel Distrib. Comput. 71 (2011) 407–423

Table 1
FAN routing table.

Peer identifier Peer coordinates Subspace range

(a) Routing table in the super-peer S1

B1 (0.5, 3) (5, 10)

P1 (2.5, 1.2) (5, 10)
P2 (2.7, 1) (5,10)
S0 (1, 1.5) (3, 5)
S2 (2, 3) (10, 18)

(b) Routing table in the common peer P1

S1 (2, 2) (5, 10)
B1 (0.5, 3) (5, 10)
P2 (2.7, 1) (5, 10)

message reaches the subspace containing R. Thus, the FAN routing
strategy always transfers the query message to a super-peer closer
to the target. Algorithm1describes how to search resources in FAN.

Algorithm 1. Resource search in FAN.

Input: p, query source peer; r , target resource.
Routing (p, r)
1: p uses the hash function to map r into a node n;
2: if (n is in p’s subspace) then
3: if (r is in P ’s local resource list) then
4: return r;
5: else
6: return null;
7: end if
8: else
9: if (p is a common peer) then
10: p delivers the query to its super-peer;
11: else if (p is a super-peer)
12: pdelivers the query request to the nearest super-peer;
13: end if
14: end if
15: end if

We suppose that a subspace contains up to k peers. Then the
number of subspaces in FAN isO(N/k), whichwill be demonstrated
by the simulations in Section 5. According to the resource search
process described in Algorithm 1, the routingmessages can only be
relayed from one subspace to its immediate neighbors. Therefore,
the routing efficiency of the basic search algorithm of FAN is
O(N/k), which is not so satisfactory. Like Chord, the key to
optimizing FAN is the selection of long distance links in addition to
the immediately adjacent subspaces. We introduce the extended
adjacent subspace to improve the resource search efficiency in
FAN.

3.3. The improved FAN network architecture

In the improved FAN overlay, a super-peer stores not only
the immediate neighbor super-peers but also the super-peers
in the subspaces at intervals of 2j layers, which are defined as
the extended adjacent subspaces. Fig. 2 illustrates an improved
FAN overlay structure. In Fig. 2, subspaces A0 and A2 are two
immediate neighbor subspaces of A1, and A3 is one extended
adjacent subspace of A0. In the improved architecture, a super-peer
forwards the querymessage to the super-peerwhose subspace has
the shortest distance to the target instead of transferring it to its
immediate neighbor subspace one by one. Fig. 3 gives a simple
example of resource routing in an improved 2-dimensional FAN.

Fig. 2. The improved FAN structure.

Suppose that a query source peer and the target resource are at
the intervals of M layer subspaces and every FAN subspace covers
an equal distance range. By the links of the extended adjacent sub-
spaces, the distance between the source peer and the target peer
can be halved during a querymessage forwarding. Furthermore,M
follows the uniform distribution O(N/k). Therefore, a query mes-
sage can reach its target inO(log(N/k)) hops. By employing the ex-
tended adjacent subspaces, the efficiency of FAN’s resource search
has been improved from O(N/k) to O(log(N/k)).

However, this approach will introduce the additional cost of
maintaining the extended adjacent subspaces. The extended adja-
cent subspace in FAN possesses an important property, the transi-
tivity property. This will facilitate updating the information of the
extended adjacent subspaces for super-peers.

Property 1 (Transitivity). If a subspace B2 is an extended adjacent
subspace of the subspace B1 at the interval of 2j (j > 1) layers, there
must exist a subspace B between B1 and B2 with B being both B1’s and
B2’s extended adjacent subspace. We call this property the transitivity
of the extended adjacent subspace.

Proof. The transitivity property is equivalent to the proposition
that for any integer j bigger than 1, theremust exist amathematical
decomposition of 2j

= 2m
+ 2n. For any integer j bigger than 1, we

can express 2j as 2j
= 2k+1

= 2k
+ 2k. �

Therefore, the transitivity property of extended adjacent subspaces
is proved.

The peers in FAN, including super-peers and common peers,
will periodically explore all the peers in their routing tables to
update routing information. For the transitivity property of the
extended adjacent subspaces, a super-peer only needs to know
the immediate neighbor subspace information and periodically
explores the known extended adjacent subspaces. This way, it can
retrieve and update the information of all its extended subspaces.

By introducing the extended adjacent subspaces, a peer who
receives a resource search requestwill first retrieve its local routing
table. If any subspace A whose distance to the target node Q is
0, the target node is placed in the subspace A. Then the search
request will be delivered to A’s super-peer directly. Otherwise, the
search request will be delivered to the nearest subspace to Q until
it reaches the super-peer whose subspace covers Q .

In FAN, the super-peer stores the extended adjacent subspace
information to reduce the load of the common peers. Since the
super-peer stores more extended adjacent subspace information
that enables it to quickly deliver the search requests to improve

Author's personal copy

R. Li et al. / J. Parallel Distrib. Comput. 71 (2011) 407–423 411

Fig. 3. An example of routing in a 2-dimensional FAN.

FAN search efficiency, the overhead should be controlled appro-
priately. In Section 5, an experiment has been carried out to
verify whether the extended adjacent subspace information will
overburden the super-peers.

3.4. Peer joining

When a peer P attempts to join in FAN, P firstly selects a node in
the mapping space randomly and connects to a peer in FAN as the
bootstrap. Afterwards, P routes to the subspace A which covers P ,
and attempts to join the subspace A. If the current number of peers
in A does not reach k, P registers at A’s super-peer to complete
the joining. Otherwise, we adjust the subspace A by moving some
peers of A to its immediate neighbor subspace rather than splitting
it immediately since the FAN search efficiency is relative to the
number of subspaces. In such situation, P first registers atA’s super-
peer S. Then S checks whether the number of peers in the two
immediate neighbor subspaces A1 and A2 has reached k. If both
subspaces A1 and A2 are full, we split the subspace A into two new
subspaces with an equal number of peers. Otherwise, in order to
decrease the number of FAN subspaces, we adjust the border of
subspace A to make its immediate neighbor subspace, which has
fewer peers, cover part of the peers originally in subspace A. The
peer joining process in FAN is given in Algorithm 2. In Section 5,
we have carried out an experiment to evaluate the effectiveness of
the subspace management approach.

In FAN,we use the subspace adjustmentmethod to decrease the
number of subspaces. However, the super-peermay be transferred
during the subspace adjustment operation. As shown in Fig. 4, we
assume that a subspace can contain up to 4 peers.When a newpeer
joins subspace A, A adjusts the borderline with its immediately
adjacent subspace B. After the adjustment, the former super-peer
of A joins the new subspace B’. We call the transferred super-peer
an outdated super-peer.

When the super-peer transfers in a peer joining process, the
resource search requests will still be delivered to it before the new
subspace information reaches all the extended adjacent subspaces.
Therefore, the outdated super-peer does not discard the routing
information immediately to achieve the stability of FAN resource
search. The new selected super-peer (S1’) gets the routing table
information from the outdated super-peer (O1). Then S1’ sends an
update message to all peers listed in its routing table to inform
them of the change of super-peer in subspace A. While S1’ gets
acknowledgements from all informed peers, it will send amessage

to the outdated super-peer O1. Then O1 could discard the outdated
routing information in its routing table. When O1 gets a search
request before it discards the outdated routing information, it can
simply deliver the request to the new super-peer S1’ and S1’ will
process the search instead.

Algorithm 2. Peer joining in FAN.

Input: p, the peer that attempts to join FAN.
PeerJoin (p)
1: p connects to a peer as bootstrap;
2: p finds subspace A covering it by routing algorithm in
Algorithm 1;
2: if (peer amount in A < k) then
3: p registers at the super-peer and creates the routing table
to complete joining process;
4: else if (peer amount in both immediately adjacent subspaces
reaches k) then
5: Split A into two subspaces and reconstruct the routing
links for these two subspaces using Algorithm 4;
6: p joins one split subspace to complete joining process;
7: else
8: Adjust the border of A with its immediately adjacent
subspace;
9: p joins one adjusted subspace to complete the joining
process;
10: end if
11: end if

The messages generated during the joining process are com-
puted in four cases as follows.

(a) When the number of peers in a subspace is less than k, the new
joining peer needs to register at all peers in the subspace and
construct its routing table to complete the joining. In this case,
the joining process generates O(k) messages.

(b) When a joining process requires the subspace adjustment but
no super-peer transferring, some common peers will change
subspaces. We assume that the peers in a subspace follow the
uniform distribution from 1 to k. Therefore, the mathemati-
cal expectation of the peer with a changing subspace is ex-
pressed in Eq. (3). Meanwhile, two adjusted subspaces should
transmit the new subspace information to their O(log(N/k))
extended adjacent subspaces. In this case, it generates O(k/4+

2 log(N/k)) messages in total.

E(peer) =

k−1−
i=1

k + 1 −

k + 1 + i
2

(k − 1)

=
1
4

k2 + k − 2

k − 1

=

k
4

+
1
2
. (3)

(c) If a super-peer transfers during the subspace adjustment,
O(k/4) peers will change their subspaces. The new super-peer
needs to get the routing information from the former super-
peer. The two super-peers need to issue the new subspace in-
formation to O(log(N/k)) extended adjacent subspaces. In this
case, it generatesO(k/4+2 log(N/k))messages in total aswell.

(d) If both of the two immediate neighbor subspaces are full, the
full subspace will be split into two new subspaces with equal
number of peers. The new subspaces need to inform2 log(N/k)
extended subspaces with the new routing information. In this
case, the joining process generates O(2 log(N/k)) messages.

By analyzing the above cases (a)–(d), we can find that the cost
of a peer’s joining process in FAN is O(log(N/k)/k). The expected
number of messages in a joining process is expressed in Eq. (4).

Author's personal copy

412 R. Li et al. / J. Parallel Distrib. Comput. 71 (2011) 407–423

(a) Before subspace adjustment. (b) After subspace adjustment.

Fig. 4. Super-peer changes when adjusting subspaces.

E(cost)

=

(k − 1) × k +

1 −

1
k2

 k
4 + 2 log

N
k

+

1
k2
2 log

N
k

k

= k +
2
k
log

N
k

−

1
4k2

−
3
4

≈ k +
2
k
log

N
k

−

3
4
. (4)

3.5. Peer departing

When a peer leaves FAN, the associated routing information
should be updated on time to ensure the integrity of FAN’s
structure. When a common peer attempts to leave FAN, it only
needs to notify the peers in its subspace to complete the leaving
process. In this case, it generates O(k) messages. When a super-
peer wants to leave, the backup super-peer will replace it if the
leaving super-peer is not the last peer in the subspace. Themessage
generated in this case is also O(k). However, if the leaving super-
peer is the last peer in the subspace, the immediately adjacent
subspace with fewer peers will take over this empty subspace and
O(log(N/k))messages will be generated. Therefore, it is found that
the peer leaving process in FAN produces O(log(N/k)/k) messages
which are expressed in Eq. (5).

E(cost) =
(k − 1) × 1 + 2 log(N/k)

k
≈ 1 +

2
k
log

N
k

. (5)

Algorithm 3 describes the peer leaving process in FAN. For the
stability of FAN, any node’s departure should not break the link
of the extended adjacent subspace. However, the simultaneous
departure of the super-peer and backup super-peer in a subspace
will distort the extended subspace links. To maintain the stability
of the FAN network and repair the extended subspace links in
time after a simultaneous exit of both the super-peer and the
backup super-peer, each common peer stores the information of
all other peers in the same subspace and the super-peers in the
immediately adjacent subspaces, as shown in Table 2. Comparing
Table 2 with Table 1(b), P1 stores additional routing information,
including the super-peers in adjacent subspaces, such as the last
two rows in Table 2. When a common peer detects that the super-
peer and the backup super-peer are both offline in their periodical
exploration, the common peer will notify other peers in the same
subspace to choose one as the new super-peer, which has more
computing power and network bandwidth. The new super-peer
contacts the immediately adjacent subspaces to get its adjacent

Table 2
The improved routing table in a common peer, including information on peers in its
subspace and super-peers in its adjacent subspaces.

Peer identifier Peer coordinates Subspace range

S1 (2, 2) (5, 10)
B1 (0.5, 3) (5, 10)
P2 (2.7, 1) (5, 10)
S0 (1, 1.5) (3, 5)
S2 (2, 3) (10, 18)

subspace information. This is because the neighbor subspace of
a subspace S’s extended adjacent subspace is both the extended
adjacent subspace of an S’s neighbor subspace. FAN subspaces can
reconstruct the extended subspace links easily while the super-
peer and the backup super-peer depart synchronously. Algorithm
4 describes the process of how to recover the extended subspace
link in this situation.

3.6. Range query in FAN

In a multi-dimensional space, a range query denotes a multi-
dimensional region and returns all resources falling in this region.
In this section, we present a range query algorithm over FAN.

FAN overlay is built based on peer distance. To achieve the effi-
ciency and flexibility for a multi-dimensional range query, we em-
ploy the resource distance and resource attribute slope to address
this issue. As shown in Fig. 5(a), a 2-dimensional range query de-
notes a rectangular region covering several FAN subspaces, such
as subspaces A2, A3, and A4 in Fig. 5(a). For a range query, it has
a lower peer distance node (P1) and an upper peer distance node
(P2). We call the distance of these two peers as the lower dis-
tance line and upper distance line, respectively. Furthermore, for
a multi-attribute FAN overlay, we select two attributes randomly
to use their slopes in organizing the resources in a subspace. Then
we use the attribute slope to describe a range query. Similarly, it
has a lower slope line and an upper slope line, just as P3 and P4
in Fig. 5(a). Thus, all resources satisfying a range query are located
among the lower distance line, the upper distance line, lower slope
line and upper slope line. We call this region searching region for
a range query. Other dimensional range queries are similar to the
2-dimensional example. However, not all resources in this search-
ing region satisfy the range query. In the following example, we
will introduce a searching tree index for each FAN subspace to fil-
ter the resources in the searching region.

Author's personal copy

R. Li et al. / J. Parallel Distrib. Comput. 71 (2011) 407–423 413

b

da

c

(a) Range query in 2-dimensional FAN. (b) Searching tree
index of A3 .

Fig. 5. FAN range query.

Algorithm 3. Peer leaving in FAN.

Input: p, the peer that attempts to leave FAN
PeerLeave (p)
1: if (p is a common peer) then
2: p notices peers in the subspace or other peers detect p has
left;
3: peers delete the leaving peer information;
4: return;
5: else if (p is a super-peer) then
6: if (backup super-peer b is online) then
7: p notices b or b detects super-peer has left;
8: b notices peers in the subspace and other super-peers in
the extended adjacent subspaces to replace the super-peer and
choose a new backup one;
9: else if (backup super-peer b is simultaneously offline)
then
10: if (p is the last one in the subspace) then
11: an immediately adjacent subspace takes over the
empty subspace and update the routing information;
12: else
13: reconstruct the routing link using Algorithm 4;
14: end if
15: end if
16: end if
17: end if
18: return;
19: end if

Algorithm 4. Recovering the extended subspace link when
the super-peer and the backup super-peer leave the FAN
simultaneously.

Input: p, the common peer detecting the offline of super-peer
and backup super-peer
RecoverLink (p)
1: p notices other peers in its subspace;
2: the notified common peers elect a powerful peer p’ as the
new super-peer;
3: p’ contacts the super-peers in its immediately adjacent
subspaces to get their extended adjacent subspaces;
4: p’ uses the immediately adjacent subspaces of these extended
adjacent subspaces to reconstruct the routing link;

Algorithm 5. Range query in FAN.

Input: R, a range query;
RangeQuery(R)
1: route the query to an unsearched subspace A covered by R
using Algorithm 1;
2: retrieve resources satisfying R in A using Algorithm 6;
3:while (the searching region of R is not completely covered by
the searched subspaces) do
4: transmit R to A’s neighbor subspace B whose distance
range is between the lower line and the upper line of R;
5: retrieve resources satisfying R in B using Algorithm 6;
6: end while
7: return resources;

Algorithm 6. Subspace range query using searching tree index.

Input: R, a range query; node, root node of subspace searching
tree index;
subSpaceRangeQuery(R, node)
1: if (node.key ≥ R.lower slope) then
2: subSpaceRangeQuery(R, node.leftchild);
3: end if
4: if (node.key ≤ R.upper slope) then
5: subSpaceRangeQuery(R, node.rightchild);
6: end if
7: if (node.key ≥ R.lower slope and node.key ≤ R.upper slope)
then
8: return node’s resources;
9: end if

In a 2-dimensional FAN overlay, the searching region is de-
scribed by the two attributes, as shown in Fig. 5(a). Each subspace
has a searching tree index based on resource attribute slope, as
shown in Fig. 5(b). The searching tree index is a balanced search
tree in which a node denotes a resource and the key is the attribute
slope. For each node in the subspace searching tree index, its left
sub-tree consists of resources whose key is smaller than the node
and its right sub-tree contains resources whose key is larger than
the node. The searching tree index is maintained at super-peer in
each subspace. There are many methods to maintain a balanced

Author's personal copy

414 R. Li et al. / J. Parallel Distrib. Comput. 71 (2011) 407–423

search tree. Therefore, in this paper, we do not discuss how to
maintain the searching tree index.

For a range query R, the initial node first routes it to a subspace
A covered by R. Then the super-peer of A retrieves resources in
the subspace using searching tree index based on R’s slope range.
Furthermore, if A’s neighbor subspaces are also covered by R, Awill
forward the searching request to them to continue searching until
the searching region of R is completely covered by the searched
subspaces. The FAN range query algorithm is shown in Algorithm
5. For a range query R covering s subspaces, we suppose that each
subspace contains t resources. Since the searching tree index is
a balanced search tree, the searching cost of a range query in a
subspace is O(log(t)) and the whole range query cost is O(s •

log(t)).

4. Adaptive replication algorithm for FAN

4.1. Popular resource replication and load balance

In a structured P2P network, each peer indexes some shared
resources by the DHT function. The motivation of this resource
management method is to balance the load among the peers and
to improve the efficiency of the resource search. However, the
distribution of resources and user accesses in a P2P network are
usually unbalanced. Some peers who host the popular resources
become hot nodes in the network. These hot nodes process most
of the search requests in the network, while many other nodes
process only a few search requests. As a consequence, the queues
of search requests at the hot nodes are often full. Many query
messages have to wait in the query queue for a long time at
the hot nodes. In this situation, the search hops are less, yet the
query delay is increased greatly. Hence, the hot nodes become
bottlenecks for processing the search requests. To address this
issue, we propose an adaptive replication algorithm over FAN for
the popular resources to relieve the load of the hot nodes.

To decrease the query delay, FAN stores the popular resources
closer to the requester by creating replicas of the popular resources
along the search paths of hot resources. To replicate the most
popular resources on the hot accessing path, a peer needs to
analyze the popularity of its local resources, as well as the hot
accessing path. In FAN, all query messages spread along the links
of the extended adjacent subspaces. Therefore, a peer can easily
discover the popularity of the shared resources and the hot search
paths by analyzing the search records. Based on the structure of
FAN, the super-peer of each subspace takes charge of analyzing
the history of the search requests. A super-peer maintains a query
message table to record the number of queries for each resource
and the average query hops for each resource, as well as the last
node the queries travel through before they arrive at the latest time
interval.

A sample query message table is shown in Table 3. The query
message table is sorted by the count of queries, which demon-
strates the popularity of resources. Furthermore, each item is
sorted by the number of queries from the last hop nodes. From the
query message table shown in Table 3, we can conclude that the
resource r3 is the most popular, since in the last time interval the
node has received themost (i.e. 120) queries for this resource. Fur-
thermore, we can find that the hot accessing path for each shared
resource; for example, the nodes n1, n2, and n0 are the hottest ac-
cessing paths for the resources r1, r2, and r3, respectively. If a re-
source needs to be replicated, we should create the replicas on the
hottest accessing path.

By analyzing the recent access records in the query message
table, a super-peer can easily discover the popular resources
indexed locally and the hot accessing path. Then the super-peer
selects the popular resource to replicate on the hot accessing path.

Table 3
A sample query message table at a node.

Resources (number
of queries)

Last node traveling through Average hops

r3(120) n0(50) n1(30) n2(20) n3(20) 3.3
r2(90) n2(35) n1(30) n0(20) n3(5) 2.8
r1(50) n1(20) n0(15) n2(10) n3(5) 4.7

Fig. 6. Super-peer state transition graph.

We propose an adaptive replication approach to address this issue
in this section.

To reduce the query delay in FAN, we employ a flow control
method for the super-peer to restrict the length of the query
message queue. Each super-peer has an FIFO (i.e. first in first out)
queue to store the received query messages. When a node’s query
queue is half full, the node enters flow control mode. When the
length of the querymessage queue is less than one quarter full, the
node will turn back to its ordinary mode. The state transition for a
super-peer is shown in Fig. 6.

When a super-peer S in flow control mode receives a query
q, it calls the popular resource replication algorithm described in
Algorithm 7 to process it. If q’s forwarding count has reached a
threshold max_fwd, we conclude that q has passed a long travel.
Therefore,we give q a high priority, and evaluatewhether q’s target
resources should be replicated. If the target resource r of the long
traveling query q is a top-k popular local resource or r ’s average
hops are bigger than a threshold max_hops, S creates the new
replica via the function new_replica in Algorithm 8. Otherwise, S
chooses the least loaded node n from r ’s virtual replica network
(VRN) which is made up of the nodes that hold the replicas of the
resource r .Wewill define the virtual replica network in Section 4.2.
If n is also in flow control mode, n rejects receiving the new
query. Then S inserts q into the local query queue and calls the
function new_replica to replicate the resource r . Furthermore, a
node periodically evaluates the recent received queries. If it finds
that any resource replicas are little used, it drops them and leaves
their VRNs.

Algorithm 8 describes the method for creating a new replica
of a popular resource. Since the FAN queries are routed along the
links of the extended adjacent subspaces, the replication algorithm
chooses the hottest path the queries have traveled through to
create the replica. Therefore, many queries can be satisfied on the
halfway to the original target. Furthermore, we create the VRN for
the popular resources in which busy nodes will forward the query
to the nodewith the least load. As a consequence, a requester has a
high probability of getting the desired resources in a shorter delay
than before. We have developed the simulation experiments to
evaluate the FAN query delay in Section 5.

4.2. Virtual replica network

The VRN of a resource r is a virtual network made up of the
nodes which host the replica of r . As described above, load balance

Author's personal copy

R. Li et al. / J. Parallel Distrib. Comput. 71 (2011) 407–423 415

Algorithm 7. Adaptive replication.

Input: q, query message; r, q’s target resource
Replication(q)
1: if (q’s forwarding count has reached max_fwd) then
2: if (r is top-k popular resource locally or r ’s average hops are
bigger than max_hops) then
3: create new replica via function new_replica();
4: return;
5: end if
6: end if
7: finding the least loaded node n from VRN;
8: if (n is in flow control model) then
9: insert q into the query queue;
10: create new replica via function new_replica();
11: else
12: q’s forwarding count++;
13: forward q to n;
14: return;
15: end if

Algorithm 8. Creating new replica.

new_replica()
1. find the node n /∈ VRN from query message table with the
maximum query message;
2. if found then
3. create a new replica at node n;
4. n joins the VRN;
5. else
6. randomly select a node n’ at the average hops from FAN;
7. create a new replica at node n’;
8. n’ joins the VRN;
9. end if

in FAN is achieved by forwarding the queries from the heavily
loaded nodes to the lightly loaded nodes in the VRN. Hence, a node
needs to know the load information of other nodes in the VRN. The
peer periodically checks the length of the query message queue.

If the proportion of the load change reaches a proportion
threshold load_change, it notifies the other nodes in the VRN of the
load information.We assume that the size of the VRN for a resource
r is v and the proportion threshold of the load change for a node n is
pn. In a complete graph, the expected total load updating message
in a checking cycle is shown in Eq. (6). We can find that when the
size of the VRN is large, the cost of the load information sharing is
considerably high.

E(cost) =

−
n∈VRN

pn · (v − 1). (6)

Small-world [14,17] is an important theory and an interesting
phenomena in information retrieval. It reveals that two nodes in a
power-lawdistribution network are likely to be connected through
a short sequence of intermediate nodes [1]. Based on this theory,
we create the power-law links to address the issue of efficiently
informing the load change in the VRN.

As proved in [10], the hierarchical networks can be used
to model the small-world phenomena. Therefore, to efficiently
broadcast the load information in a VRN, we employ an inheritor
tree topology instead of the complete graph to organize the VRN,
as shown in Fig. 7. In a resource’s replica inheritor tree, the original
resource node is the root of the tree. Furthermore, any node’s
parent is the one that creates a new replica on it. For example, node
A creates a new replica on node B, and then node B is a child node of
A in the inheritor tree. To keep the stability of the replica inheritor

Fig. 7. Replica inheritor tree of a popular resource.

tree, it should inform its parent and child nodeswhen any non-root
node leaves the VRN. It is also recommended that each node in the
VRN periodically pings its neighbors to update the VRN list.

We divide the replica inheritor tree into several levels based
on the relationship of replication. Each node belongs to a level as
Fig. 7 shows. We define a node’s level in the replica inheritor tree
as follows. First, the level of the original resource node is level 0.
Second, if the level of the parent node of a non-root node n is j,
the level of n is j+ 1. To transfer the load information efficiently, a
node creates power-law links to other nodes in the VRN. Based on
the replica inheritor tree level, a peer a transfers its load updating
messages to another node b by the probability P(a|b) in Eq. (7),
where A and C are two constant parameters (0 < C < 1, A > 1)
and la and lb are node a’s and node b’s levels, respectively.

P(a|b) = C × A−1−|la−lb|. (7)
Using the layered replica inheritor tree, the expected total

load updating message in a checking cycle is shown in Eq. (8),
where pn is the proportion threshold of the load change. By using
the replica inheritor tree and the power-law links, we greatly
reduce the updating messages in the VRN over the complete
figure construction. Furthermore, the load information can still be
efficiently shared in the nodes of a VRN.

E(cost) =

−
n∈VRN

−
m∈VRN,m≠n

(pn × C × A−1−|ln−lm|). (8)

5. Performance evaluation

5.1. Simulation setup

This section presents the performance evaluation of the FAN
network through simulations using PeerSim [31], a P2P simulation
framework. All of the experiments are carried out on aWindows PC
which has an Intel Pentium 2.8 GHz dual-core CPU and 1 GB main
memory.

In the FAN experiments, a peer is described by d-dimensional
attributes. Each dimensional attribute is an integer which follows
the uniform distribution from 0 to M . Before measuring the
statistics, we randomly inject a mixture of operations (peer join,
departure and query) into FAN. The proportion of peer join and
departure operations is kept roughly equal. Each peer averagely
issues 100 queries while online. The FAN routing efficiency is
evaluated by measuring the average routing hops in Sections 5.4
and 5.5. We have developed the simulations in Sections 5.2 and
5.3 to illuminate the feasibility and efficiency of FAN subspace
management. Furthermore, the simulation in Section 5.6 has been
carried out to analyze the process at the super-peers to illustrate
the feasibility of the FAN protocol. In the end, we improve the
simulations to evaluate the performance of the FAN replication
algorithm by measuring the query delay in Section 5.7. Additional
parameters in the simulations are shown in Table 4. In this section,
we implemented Chord, Mercury and FAN protocols over PeerSim,
while the experimental data of CAN comes from Ratnasamy
et al. [18].

Author's personal copy

416 R. Li et al. / J. Parallel Distrib. Comput. 71 (2011) 407–423

(a) d = 2. (b) d = 3.

(c) d = 5. (d) d = 7.

Fig. 8. Maximal number of peers with the same distance in FAN.

Table 4
Additional parameters in the simulations.

Parameter descriptions Values

N The network size of FAN 256, 1024, 4096, 16 K, 64 K
d Mapping space dimensions 2, 3, 5, 7
S Super-peers in a subspace 1
k The capability of a subspace 4, 8, 12, 16, 20, 24
M The range of each dimension value 500, 1000, 2000
w The size of query queue 30
m Resource amount 100, 1000, 10,000, 100,000

5.2. Maximal number of peers with the same distance

The peer distance is the foundation of subspace partitioning
and resource routing in FAN. However, in a d-dimensional
Cartesian space, some different peers having different coordi-
nates may have the same peer distance. For example, the peers
P1(1, 0, 0, 0, 1), P2(0, 0, 1, 0, 1), and P3(0, 1, 1, 0, 0) have the
same distance. Furthermore, according to the subspace manage-
ment algorithm, the peers in a FAN that have the same distance
cannot be placed into different subspaces. Therefore, to keep the
consistency of the FAN subspace management, the maximal num-
ber of peerswith the samedistance cannot exceed the subspace ca-
pability (i.e. k). We carried out the experiments to evaluate it with
various N, d, and M values. In the simulations, every dimensional
resource attribute follows the uniform distribution from 0 toM .

The numerical results in Fig. 8 show that, inmost situations, the
maximal number of peers with the same distance is smaller than
8, i.e. it can be well supported by a subspace. The only exception is
when the dimension of resource attributes is small (e.g. d = 2) and
the total number of peers is very large (more than 64K). Under such
circumstances, we should choose an appropriate M value (bigger
than 1000) to reduce the maximal number of peers with the same
distance. Therefore, we can conclude that the subspace division

strategy in a FAN is feasible and themaximal number of peers with
the same distance will not overburden the subspace capability.

5.3. Average number of subspaces in FAN

As discussed in Section 3, FAN routing efficiency isO(log(N/k)),
and the number of messages for peer joining and leaving in a
FAN are both O(log(N/k)/k). Furthermore, both the FAN routing
efficiency and themaintenance cost are related to the total number
of subspaces. The following analyses are based on the assumption
that the total number of subspaces is O(N/k). Therefore, whether
the FAN subspace management strategy can efficiently slow the
increase of the subspace is crucial for the scalability and availability
of FAN. In this simulation, we measured the statistics of average
number of subspaces with various N, d, k and M values.

The numerical results in Fig. 9 show that the average number
of subspaces is approximately equal to the optimal value (N/k).
By analyzing this simulation experiment, we have found that the
average number of subspaces has little relation to the d (the
dimensions of the resource attributes) andM values, but is mainly
related to the k and N values. Therefore, we can draw a conclusion
that the FAN subspace management strategy can efficiently keep
the number of subspaces as O(N/k). The following experiments
and analyses of the FAN resource search and maintenance cost are
based on the assumption that the number of subspaces is O(N/k).

5.4. Routing efficiency of the single-dimensional FAN

FANproposed in this paper is anunderlying P2P routing overlay,
and the routing efficiency is the most important criterion for an
overlay design. FAN uses the extended adjacent subspace links
similar to Chord to improve its routing efficiency. Though FAN is
a routing algorithm designed to perform efficient resource search

Author's personal copy

R. Li et al. / J. Parallel Distrib. Comput. 71 (2011) 407–423 417

(a) k = 4, M = 1000. (b) k = 4, M = 2000.

(c) k = 12, M = 1000. (d) k = 12, M = 2000.

(e) k = 20, M = 1000. (f) k = 20, M = 2000.

Fig. 9. The average number of subspaces in FAN.

over multi-dimensional attributes, it can also support single-
dimensional attribute search. Furthermore, the routing efficiency
of a single-dimensional FAN represents the efficiency of the routing
message spreading in the links of the extended adjacent subspaces.
To evaluate the performance of low-dimensional FAN and the
efficiency of message spreading in the links of the extended
adjacent subspaces, we designed a simulation experiment to
compare the routing efficiency of single-dimensional FAN and
Chord.

As the numerical results show in Fig. 10, the single-dimensional
FAN can achieve a logarithmic routing efficiency like Chord. As
for the smaller k value, e.g. k = 1, 2, FAN generates a little
bit more hops than Chord. The reason is possibly as follows. The
Chord builds a ring topology, and FAN can only transmit routing
message in one direction along the extended adjacent subspace
links. Therefore, FAN routing efficiency is a little lower than Chord.
Nevertheless, for larger k values, FAN shows better performance

than Chord. Overall, it is nearly the same as Chord for single-
dimensional attribute search. Thus, we can say that FAN is a
scalable efficient routing algorithm supporting a single attribute.
The routing messages can efficiently spread in the structure of the
extended adjacent subspace links.

5.5. Routing efficiency of multi-dimensional FAN

As the main idea described above, FAN is an underlying P2P
overlay supporting multi-dimensional resource attributes as CAN.
In Section 3, we have theoretically analyzed that the FAN routing
efficiency is O(log(N/k)). In this section, we carry out the simula-
tion experiments to evaluate the average routing hops in a multi-
dimensional FAN with various N, k, and d values.

The theoretical FAN routing efficiency is O(log(N/k)) that has
great relation with the k value and has little relation with the
d value. Therefore, we first carry out simulation experiments to

Author's personal copy

418 R. Li et al. / J. Parallel Distrib. Comput. 71 (2011) 407–423

(a) k = 1. (b) k = 2.

(c) k = 4. (d) k = 8.

Fig. 10. Routing efficiency comparison of single-dimensional FAN and Chord.

find the relationship between the routing efficiency of FAN and k
values. In the experiments, we figure out the average routing hops
in FANwith various d, k and N values. As shown in Fig. 11, the FAN
routing efficiency gets better with an increasing k value, and FAN
works well in the large network size (N = 64 K). Furthermore, we
also find from the numerical results that the average routing hops
have a logarithmic relationshipwithN/k, which illustrates that our
analysis about the FAN routing efficiency is reasonable.

Since FAN can support multi-dimensional attributes, we expect
FAN to keep a high routing efficiency over a high attribute dimen-
sion. As shown in Fig. 11, the routing efficiency of FAN has little
change with various d values. This is because the FAN routing al-
gorithm is based on peer’s distance, which has little relation with
attribute dimension. The peer’s distance is defined as the second
moment of the peer to the origin of coordinates, and it contracts
multiple attributes into one dimension. Thus, FAN can work well
with a large attribute dimension.

CAN and Mercury are both P2P routing frameworks supporting
resource search over multi-dimensional attributes. We compare
FAN with CAN and Mercury in the same network circumstances.
Since CAN uses the greedy forwarding to deliver the routing
messages, multiple peers in a zone will be overloaded with the
continuous increase in the number of messages. We compare FAN
and CAN routing efficiency with k = 1, 2, 3, 4 as Ratnasamy
et al. [18] suggested. Since FAN employs a super-peer to manage
the subspace, we also implement a super-peer over Mercury in the
simulation experiments. Furthermore, we have carried out more
experiments to investigate howN, k and d values influence the FAN
routing efficiency.

In the second simulation, we compare the routing efficiency of
FAN, CAN and Mercury with the same capability k in a subspace.
As demonstrated above, FAN has little relation to the resource
attribute dimensions. However, the routing efficiency of CAN and

Mercury have great relationswith the attribute dimensions, whose
routing efficiency is O(dn1/d) and O(log2 n/k), respectively. To
simplify the simulation experiments, we compare 3-dimensional
FAN, 3-dimensional Mercury, and various d-dimensional CAN. The
results in Fig. 12 show that FAN gets a better routing efficiency
than CAN and Mercury when their subspaces or zones contain the
samemaximal number (k) of peers. Furthermore, CANandMercury
cannot support toomanypeers in a subspace or zone. Nevertheless,
in the experimental results, we find that FAN can support a large
k value and achieve a better performance with k growing, which
adapts to the actual applications better. Through the experimental
results, we can also find that the advantage of FAN routing expands
morewith increasing network size, and that FANworkswell under
a huge network size.

Through the simulation experiments in this section, we can
draw the conclusion that FAN is an efficient P2P overlay supporting
multi-dimensional attributes with O(log(N/k)) routing efficiency.

5.6. FAN range query efficiency

FAN also provides an efficient multi-dimensional range query.
So, in this section, we design simulation experiments to evalu-
ate FAN range query efficiency. In the experiments, we put m =

100–100,000 resources into the network in which every dimen-
sional attribute is an integer following a uniform distribution form
(0, 1000). Each FAN subspace containsm/(N/k) resources at most.
We randomly choose a range query region in themapping space to
compare the FAN range query efficiency with VBI-tree [12], Mer-
cury [3], BATON [11], and Squid [19]. Fig. 13 shows the routingmes-
sages with various dimension values.

As the experimental results show in Fig. 13, FAN achieves a
better range query efficiencywhile the resource amount increases.

Author's personal copy

R. Li et al. / J. Parallel Distrib. Comput. 71 (2011) 407–423 419

(a) k = 4. (b) k = 8.

(c) k = 12. (d) k = 16.

Fig. 11. FAN routing efficiency with various d and k values.

(a) k = 1. (b) k = 2.

(c) k = 3. (d) k = 4.

Fig. 12. Routing efficiency comparison of multi-dimensional FAN, CAN and Mercury.

Author's personal copy

420 R. Li et al. / J. Parallel Distrib. Comput. 71 (2011) 407–423

(a) d = 2. (b) d = 3.

(c) d = 5. (d) d = 7.

Fig. 13. Range query comparison of multi-dimensional FAN, Mercury, VBI-Tree, BATON and Squid.

It also has little effect from the attribute dimensions while the
counterparts are evenworse with the higher attribute dimensions.
As we know, FAN employs resource distance and attribute slope
to support range queries. It is obvious that resource distance and
attribute slopes are not influenced by the attribute dimension
value; that is, FAN scales well with high resource dimensions.

5.7. Routing messages at super-peers in FAN

The links of the extended adjacent subspaces achieve fast
resource search in FAN and also make the super-peers process
more routing information. Therefore, we should take into account
whether the routing processing will overburden the super-peers
and influence FAN stability.

We carry out experiments to evaluate themessage amount pro-
cessed at super-peers in FAN with various N, k and d values. In the
experiments, we let every peer randomly issue a query message
once in a time slot (we use one minute in the experiments). We
evaluate the average routing message amount at all super-peers in
the period of the time slot.

The results in Fig. 14 show that the routing messages processed
at super-peers get larger with increasing k value. The results
also show that the routing messages processed at super-peers
have a logarithmic relationship with the total number of peers N .
Furthermore, the average amount of routing messages at super-
peers is acceptable (less than 30), even though the total number
of peers in FAN is more than 64 K. Hence, processing the routing
messages will not overburden the FAN super-peers. Considering
the heterogeneous capacities of nodes, this work takes advantage
of the heterogeneity feature to achieve better performance.

5.8. Query delay in FAN

The simulations in Sections 5.4 and 5.5 have demonstrated
the FAN routing efficiency by evaluating the average routing
hops. Furthermore, the query delay also has a great effect on the
routing efficiency of a network topology. FANemploys the adaptive
popular resource replication to relieve the hot nodes and decrease
the query delay. Hence, we carried out the simulation experiments
to evaluate the contributions of the adaptive replication on the
query delay. We compare the FAN average query delay in two
cases: with the adaptive replication and without the adaptive
replication.

In the simulations, we make each node keep a query queue
whose size is 30. When the query queue at the experimental node
in FAN with the replication algorithm has reached half full, the
nodes enter flow control mode to balance the load. However, the
query queue at the nodes in FAN without adaptive replication is
considerably long. In both cases, a node processes the received
queries in the FIFOmode. To simulate the imbalance of the resource
distribution and access, we assume that the processing time for
each query is 10 ms, and both the resource distribution and access
follow the power-law distribution of exponent 3.0. The other
experimental parameters are load_change = 0.1, A = 2 and C =

0.5 in Eq. (7). All the simulations ignore the network transmission
delay.

We design the simulations to evaluate the FAN query delay
under various network loads. The experimental results are shown
in Figs. 15 and 16. FAN can work well by keeping a low query
delay under a light network load whether it employs the adaptive
replication or not (see Fig. 15). However, the adaptive replication
is a great benefit to the query delay of FAN with a huge network

Author's personal copy

R. Li et al. / J. Parallel Distrib. Comput. 71 (2011) 407–423 421

(a) d = 2. (b) d = 3.

(c) d = 5. (d) d = 7.

Fig. 14. The routing messages at super-peers in FAN.

(a) k = 8, N = 4 K. (b) k = 16, N = 4 K.

(c) k = 8, N = 64 K. (d) k = 16, N = 64 K.

Fig. 15. Query delay experiments over the light network load (each node issues only one query in a second).

Author's personal copy

422 R. Li et al. / J. Parallel Distrib. Comput. 71 (2011) 407–423

(a) k = 8, N = 4 K. (b) k = 16, N = 4 K.

(c) k = 8, N = 64 K. (d) k = 16, N = 64 K.

Fig. 16. Query delay experiments over the heavy network load (each node issues 10 queries in a second).

load (see Fig. 16). Without the load balancing approach, the query
queue at each node increases sharply when the number of queries
rises rapidly. The query has to wait a long time at the FIFO query
queues of the hot nodes. As a consequence, the query delay reaches
an unacceptable level. However, if we use the adaptive replication
algorithm to balance the load of hot nodes, most of the queries are
satisfied on a lower number of hops by efficiently creating replicas
for popular resources on the hot accessing path. Thus, the adaptive
replication algorithm can efficiently alleviate the query delay of
FAN.

6. Conclusion

Most of the existing work on P2P networks does not sup-
port content search over multiple resource attributes. To address
this issue, this paper proposes the FAN network as an underly-
ing P2P overlay supporting efficient resource search over multi-
dimensional attributes. As the analysis and experimental results
show, FAN has advantages in routing efficiency and maintenance
cost over the current search algorithms. Through the experiments,
we demonstrate that FAN is suitable even in a network environ-
ment with fast peer joining and leaving, very large network size,
and high dimension of resource attributes. This paper also presents
a range query algorithm over FAN based on resource distance
and attribute slope. It can achieve an efficient and scalable range
query, especially when the resource amount increases and the at-
tribute dimension grows higher. Furthermore, this paper presents
an adaptive replication algorithm over FAN through the use of a
virtual replica network (VRN). It can significantly reduce the query-
ing delay for a FAN under a heavy network load by creating repli-
cas of the popular resources and forwarding the queries to the
lightly loaded nodes. For future work, the optimization of FAN
towards reducing the cost based on various parameters will be

further facilitated. Furthermore, a P2P resource sharing system
supporting multi-attribute search based on FAN can be imple-
mented and tested over PlanetLab to evaluate the performance of
the algorithms in real applications.

Acknowledgments

This work is supported in part by National Natural Science
Foundation of China under Grants 60873225, 60773191, and
70771043, National High Technology Research and Development
Program of China under Grant 2007AA01Z403, Natural Science
Foundation of Hubei Province under Grant 2009CDB298, Wuhan
Youth Science and Technology Chenguang Program under Grant
200950431171, Open Foundation of State Key Laboratory of Soft-
ware Engineering under Grant SKLSE20080718, Innovation Fund
of Huazhong University of Science and Technology under Grants
2010MS068 andQ2009021, Fundamental Research Fund ofWuhan
University under Grant 6082024 and US National Science Foun-
dation Grants CNS-0834592, CNS-0832109 and CNS-0953909. The
authors would like to thank the anonymous reviewers for their
valuable comments.

References

[1] R. Albert, H. Jeong, A.-L. Barabási, Diameter of the world wide web, Nature 401
(1999) 130–131.

[2] M.A. Arefin, M.Y.S. Uddin, I. Gupta, et al., Q -tree: a multi-attribute based
range query solution for tele-immersive framework, in: Proc. of the 29th
International Conference on Distributed Computing Systems, ICDCS, 2009, pp.
299–307.

[3] A.R. Bharambe, M. Agrawal, S. Seshan, Mercury: supporting scalable multi-
attribute range queries, in: Proc. of the 2004 ACMSIGCOMMConference, 2004,
pp. 353–366.

[4] I. Bhattacharya, S.R. Kashyap, S. Parthasarathy, Similarity searching in peer-
to-peer databases, in: Proc. of the 25th IEEE International Conference on
Distributed Computing Systems, ICDCS, 2005, pp. 329–338.

Author's personal copy

R. Li et al. / J. Parallel Distrib. Comput. 71 (2011) 407–423 423

[5] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, et al., A case study in building
layered DHT applications, in: Proc. of the 2005 ACM SIGCOMM Conference,
2005, pp. 97–108.

[6] A. Crainiceanu, P. Linga, A.Machanavajjhala, P-ring: an efficient and robust P2P
range index structure, in: Proc. of the 2007 ACM SIGMOD Conference, 2007,
pp. 223–234.

[7] M. Demirbas, H. Ferhatosmanoglu, Peer-to-peer spatial queries in sensor
networks, in: Proc. of the 3rd IEEE International Conference on Peer-to-Peer
Computing, P2P, 2003, pp. 32–39.

[8] P. Ganesan, M. Bawa, H. Garcia-Molina, Online balancing of range-partitioned
data with applications to peer-to-peer systems, in: Proc. of the 30th
International Conference on Very Large Data Bases, VLDB, 2004, pp. 444–455.

[9] J. Gao, P. Steenkiste, An adaptive protocol for efficient support of range queries
in DHT-based systems, in: Proc. of the International Conference on Network
Protocols, ICNP, 2004, pp. 239–250.

[10] J. Gray, P. Helland, P. O’Neil, et al., The dangers of replication and a solution, in:
Proc. of the 1996 ACM SIGMOD Conference, 1996, pp. 173–182.

[11] H.V. Jagadish, B.C. Ooi, Q.H. Vu, BATON: a balanced tree structure for peer-to-
peer networks, in: Proc. of the 31st International Conference on Very Large
Data Bases, VLDB, 2005, pp. 661–672.

[12] H.V. Jagadish, B.C. Ooi, Q.H. Vu, et al., VBI-tree: a peer-to-peer framework
for supporting multi-dimensional indexing schemas, in: Proc. of the 22nd
International Conference on Data Engineering, ICDE, 2006, p. 34.

[13] D.R. Karger, E. Lehman, F. Leighton, et al., Consistent hashing and randomtrees:
distributed cashing protocols for relieving hot spots on the world wide web,
in: Proc. of the 29th Annual ACM Symposium Theory of Computing, 1997,
pp. 654–663.

[14] J. Kleinberg, Small-world phenomena and the dynamics of information,
in: Advanced in Neural Information Processing Systems (NIPS), vol. 14, The
MIT Press, 2001, pp. 431–438.

[15] B. Liu, W.-C. Lee, D.L. Lee, Supporting complex multi-dimensional queries in
P2P systems, in: Proc. of the 25th IEEE International Conference on Distributed
Computing Systems, ICDCS, 2005, pp. 155–164.

[16] T. Locher, S. Schmid, R. Wattenhofer, eQuus: a provably robust and locality-
aware peer-to-peer system, in: Proc. of the 6th IEEE International Conference
on Peer-to-Peer Computing (P2P), Cambridge, United Kingdom, 2006,
pp. 3–11.

[17] S. Milgram, The small world problem, Psychology Today 2 (1967) 60–67.
[18] S. Ratnasamy, P. Francis, M. Handley, et al., A scalable content-addressable

network, in: Proc. of the 2001 ACM SIGCOMM Conference, 2001, pp. 161–172.
[19] C. Schmidt, M. Parashara, Squid: enabling search in DHT-based systems,

Journal of Parallel and Distributed Computing 68 (7) (2008) 962–975.
[20] H. Shen, C.-Z. Xu, Locality-aware and churn-resilient load balancing algorithms

in structured peer-to-peer networks, IEEE Transactions on Parallel and
Distributed Systems 18 (6) (2007) 849–862.

[21] Y.F. Shu, B.C. Ooi, K.L. Tan, et al., Supporting multi-dimensional range queries
in peer-to-peer systems, in: Proc. of the Fifth IEEE International Conference on
Peer-to-Peer Computing, P2P, 2005, pp. 173–180.

[22] W. Song, R. Li, Z. Lu, et al., FAN: a flabellate overlay network supporting
scalable multi-dimensional attributes, in: Proc. of the IEEE 22nd International
Conference on Advanced Information Networking and Applications, AINA,
Okinawa, Japan, 2008, pp. 1005–1012.

[23] I. Stoica, R. Morris, D. Karger, et al., Chord: a scalable peer-to-peer lookup
service for internet applications, in: Proc. of the 2001 ACM SIGCOMM
Conference, 2001, pp. 149–160.

[24] C. Tang, Z. Xu, M. Mahalingam, pSearch: information retrieval in structured
overlays, ACM SIGCOMM Computer Communications Review 33 (1) (2003)
89–94.

[25] Y. Tang, J. Xu, S. Zhou, et al., m-light: indexing multi-dimensional data over
DHTs, in: Proc. of the 29th International Conference on Distributed Computing
Systems, ICDCS, 2009, pp. 191–198.

[26] C. Wang, B.A. Alqaralleh, B.B. Zhou, et al., Self-organizing content distribution
in a data indexed DHT network, in: Proc. of the 6th International Conference
on Peer-to-Peer Computing, P2P, 2006, pp. 241–248.

[27] B. Yang, H. Garcia-Molina, Design a super-peer network, in: Proc. of the 19th
International Conference on Data Engineering, ICDE, 2003, pp. 49–60.

[28] B.Y. Zhao, L. Huang, J. Stribling, et al., Tapestry: a resilient global-scale overlay
for service deployment, IEEE Journal on Selected Areas in Communications 22
(1) (2004) 41–52.

[29] C. Zheng, G. Shen, S. Li, et al., Distributed segment tree: support of range query
and cover query over DHT, in: Proc. of 5th InternationalWorkshop on Peer-to-
Peer Systems, IPTPS, 2006.

[30] Y. Zhu, Y. Hu, Towards efficient load balancing in structured P2P systems, in:
Proc. of the 18th International Parallel andDistributed Processing Symposium,
IPDPS, 2004, p. 20.

[31] PeerSim. http://sourceforge.net/projects/PeerSim.

Ruixuan Li received the B.S., M.S. and Ph.D. in Computer
Science from Huazhong University of Science and Tech-
nology, China in 1997, 2000 and 2004, respectively. He is
currently an Associate Professor in the School of Computer
Science and Technology at Huazhong University of Science
and Technology and a Visiting Researcher in Department
of Electrical and Computer Engineering at University of
Toronto. His research interests include peer-to-peer com-
puting, distributed datamanagement, and distributed sys-
tem security. He is a member of IEEE and ACM.

Wei Song received the B.S. degree in Mechanical Science
and Engineering fromHuazhong University of Science and
Technology, China in 2001. He is currently a Ph.D. candi-
date in the School of Computer Science and Technology at
Huazhong University of Science and Technology. His re-
search interests include peer-to-peer network, distributed
system, and distributed system security.

Haiying Shen received theB.S. degree in Computer Science
and Engineering from Tongji University, China in 2000,
and the M.S. and Ph.D. degrees in Computer Engineer-
ing from Wayne State University in 2004 and 2006, re-
spectively. She is currently an Assistant Professor in the
Holcombe Department of Electrical and Computer En-
gineering at Clemson University. Her research interests
include distributed and parallel computer systems and
computer networks, with an emphasis on peer-to-peer
and content delivery networks, wireless networks, re-
source management in cluster and grid computing, and

data searching. She is a member of IEEE and ACM.

Weijun Xiao received the B.S. and M.S. degrees in Com-
puter Science from Huazhong University of Science and
Technology, China in 1995 and 1998, respectively, and the
Ph.D. degree in Computer Engineering from University of
Rhode Island in 2009. He is currently a postdoctoral asso-
ciate in the Department of Electrical and Computer Engi-
neering at University of Minnesota. His research interests
include computer architecture, networked storage system,
embedded system, and performance evaluation. He is a
member of IEEE and IEEE Computer Society.

Zhengding Lu received the B.S. degree in Mathematics
from Wuhan University, China, in 1967, and the M.S. de-
gree in Computer Science and Engineering from Chinese
Academy of Sciences in 1982. He is currently a full Pro-
fessor in the School of Computer Science and Technol-
ogy at Huazhong University of Science and Technology,
China. His research interests include distributed comput-
ing, database systems, information security, and perfor-
mance optimization. He is a member of IEEE and IEEE
Computer Society, and the Director of China Computer
Federation.

