
Locality-Preserving Clustering and Discovery of
Resources in Wide-Area Distributed

Computational Grids
Haiying Shen*, Member, IEEE, Kai Hwang, Fellow, IEEE

F

Abstract

In large-scale computational Grids, discovery of
heterogeneous resources as a working group is crucial
to achieving scalable performance. This paper presents a
resource management scheme including a hierarchical cycloid
overlay architecture, resource clustering and discovery
algorithms for wide-area distributed Grid systems. We
establish program/data locality by clustering resources based
on their physical proximity and functional matching with user
applications. We further develop dynamism-resilient resource
management algorithm, cluster-token forwarding algorithm
and deadline-driven resource management algorithms. The
advantage of the proposed scheme lies in low overhead,
fast and dynamism-resilient multi-resource discovery. The
paper presents the scheme, new performance metrics, and
experimental simulation results. This scheme compares
favorably with other resource discovery methods in static
and dynamic Grid applications. In particular, it supports
efficient resource clustering, reduces communications cost,
and enhances resource discovery success rate in promoting
large-scale distributed supercomputing applications.

Keywords: Grid computing, resource discovery, DHT overlays,
program/data locality, clustering techniques, and scalability.

1 Introduction
The popularity of the Internet as well as the availability of
powerful computers and high-speed network technologies have
led to what is popularly known as Grid computing. Grid
computing leverages a high-degree of resource sharing in a
large-scale distributed network environment. It enables the
sharing, selection, and aggregation of a wide variety of ge-
ographically distributed resources including supercomputers,
storage systems, data sources, and specialized devices, and
thus benefits a variety of applications such as collaborative
engineering, data exploration, high-throughput computing, and
distributed supercomputing.

Heterogeneous Grid resources owned by different organiza-
tions spread throughout the Internet or wide-area networks. To
discover useful resources for a given application, most existing

• * Corresponding Author. Email: shenh@clemson.edu.

• H. Shen is with the Department of Electrical and Computer Engineering,
Clemson University, Clemson, SC, 29634. K. Hwang is with the
Department of Electrical Engineering and Computer Science, University
of Southern California, Los Angeles, CA 90089.

Grids apply centralized or hierarchical control [1–3]. However,
these Grid resource management packages have limitations
in supporting large-scale dynamic Grid applications with a
varying demand of resources.

Overlay networks based on distributed hash tables (DHTs)
have been suggested to manage large-scale Grid resources [4].
DHT overlay networks [5–8] map files to the nodes in a net-
work based on a consistent hashing function [9]. Most of the
DHT overlays require O(log n) hops per lookup request with
O(log n) neighbors per node, where n is the network size. A
computing resource is always described by a resource type (i.e.
functionality) such as CPU and memory, and resource attribute
indicating the quantity and special application requirement. To
use a DHT overlay for resource discovery in a Grid system, all
Grid nodes are organized into a DHT overlay. The descriptors
of available resources are regarded as files and are distributed
among the nodes. Resource queries are regarded as file lookups
and are routed to the nodes having the descriptors of the
required resources. Therefore, DHT overlays map the resource
providers and consumers in Grids in a distributed manner.

In a wide-area Grid system, resource sharing and commu-
nication among physically close nodes enhance application
efficiency. In addition, the problem of increasing complexity
in using heterogeneous resources needs to be solved. Different
resources, such as CPU and memory, are always jointly
requested and used. Resource clustering based on functional
matching with the demands of user application facilitates a
user’s resource discovery. We use program/data locality to
represent the phenomenon in which resources are proactively
clustered so that a node can always locate resources that (1)
are physically close to itself, and (2) satisfy required multiple
functionalities (e.g., CPU and Memory) in its neighborhood
on the overlay. Therefore, after a node locates the CPU
resource, it can easily find the memory resource in the nodes
nearby, so that it does not need to search each of its required
resources individually in the system-wide scope. It is desirable
to develop a resource management scheme that is able to
preserve the program/data locality.

However, the adoption of DHT overlays in most current
resource management schemes [10–19] cannot preserve pro-
gram/data locality. First, direct DHT construction on a Grid
system breaks the physical proximity relationship of nodes in
the underlying IP-level topology. That is, two nodes which
are close in the DHT overlay are not necessarily close nodes
in the underlying IP-level topology. Second, a node cannot
locate its required resources with multiple functionalities in
its neighborhood on the overlay. In current schemes, if a node
needs m resources, it must send out m lookup messages, each

2

of which traverses O(log n) hops in the system-wide scope.
We desire to have a Grid resource management scheme

that is program/data locality-preserving (locality-preserving
in short), and also highly scalable and dynamism-resilient.
To meet this demand, this paper extends from previous
work [8, 20, 17] on a locality-preserving resource management
scheme in Grid systems. The proposed scheme includes a
new hierarchical cycloid overlay (HCO) architecture, resource
clustering and discovery algorithms for efficient and scalable
resource discovery. We call this scheme HCO. It establishes
program/data locality by clustering resources based on their
physical proximity and functional matching with user applica-
tions. Thus, HCO enables a node to not only jointly and easily
find its required multiple resources in nearby nodes, but also
find resources physically close to itself. We further develop
dynamism-resilient resource management algorithm, cluster-
token forwarding algorithm and deadline-driven resource man-
agement algorithms for HCO. The advantage of the HCO
scheme lies in its low-overhead, fast and dynamism-resilient
multi-resource discovery. The main contribution of this work
is summarized in blow:
• Program/data locality-preserving resource clustering and

discovery. HCO collects physically close resources into
a cluster and connects the clusters based on their phys-
ical distances. It further groups the resources within a
cluster based on resource functionalities. Thus, a node
can always find physically close resources with required
functionalities in its cluster or nearby clusters, leading to
low-overhead and fast resource discovery.

• Cluster-token forwarding algorithm. The algorithm takes
advantage of HCO’s property of program/data locality-
preserving to combine request messages together in re-
source clustering and discovery without compromising
the resource discovery efficiency, leading to low overhead
resource discovery.

• Deadline-driven resource management algorithm. The al-
gorithm considers different priorities of resource requests
in resource allocation and message forwarding, leading to
on-time response for resource discovery.

• Comprehensive simulations validate the analytical results
and confirm the advanced performance of the HCO
scheme in comparison with previous resource discovery
methods, and show the effectiveness of the cluster-token
forwarding algorithm and deadline-driven resource man-
agement algorithm.

Within the authors’ knowledge, the HCO scheme is the first
work that preserves the program/data locality in Grid resource
management for high scalability and efficiency. The rest of
this paper is structured as follows. Section 2 presents a concise
review of representative resource management approaches for
Grids. Section 3 specifies the HCO architecture and appli-
cations. Section 4 presents the locality-preserving properties
of HCO, the resource discovery and clustering algorithms,
the algorithm to deal with dynamism, and the randomized
probing and cluster-token forwarding algorithms. Section 5
reports the simulation experimental results in both static and
dynamic network environments. The final section concludes
with a summary of contributions and a discussion on further
research work.

2 Related Work
To support multi-resource queries, Mercury [10] uses multiple
DHT overlays. It uses one DHT for each resource, and
processes multi-resource queries in parallel in corresponding

DHT overlays. However, depending on multiple DHT overlays
leads to high overhead for DHT maintenance. One group of
approaches [11, 12, 14, 18, 19] organize all Grid resources into
one DHT overlay, and assign all descriptors of one resource to
one node. Multi-Attribute Addressable Network (MAAN) [11]
extends Chord to support multi-resource queries. MAAN maps
attribute values to the Chord identifier space via uniform lo-
cality preserving hashing. It uses an iterative or single attribute
dominated query routing algorithm to resolve multi-resource
based queries. To facilitate efficient range queries, Andrzejak
and Xu proposed a CAN-based approach for grid information
services [14]. SWORD [12] relies on one DHT to locate a
set of machines matching user-specified constraints on both
static and dynamic node characteristics. Cai and Hwang [18]
proposed a Grid monitoring architecture that builds distributed
aggregation trees (DAT) on a structured P2P network. Most
of the single DHT-based approaches assign one node to be
responsible for all descriptors of one resource, leading to an
imbalanced distribution of workload. Also, if one of the nodes
fails in dynamism, many descriptors will be lost at a time.

One DHT with n nodes needs a certain overhead, say
o, for its structure maintenance. m DHTs formed by the n
nodes lead to mo total overhead for structure maintenance. By
using a single DHT, HCO generates much lower maintenance
overhead than the methods based on multiple DHTs. HCO is
more dynamism-resilient than the methods based on a single
DHT by distributing resource descriptors of one resource
among a number of nodes. More importantly, few of the
current approaches can achieve the program/data locality to
facilitate low-overhead and quick resource discovery. HCO is
novel in that it establishes program/data locality, which enables
users to discover their required physically close resources from
their nearby nodes on the DHT overlay. The design of HCO
facilitates the development of cluster-token forwarding algo-
rithms to further improve efficiency. These features contribute
to the high scalability and efficiency characteristics of HCO
in Grid resource management.

The resource management and information services in P2P
networks share similarity with resource management services
in Grids in terms of data collection and search. One group
relies on tree structure. SOMO [16] performs resource man-
agement in DHT networks by embedding a tree structure into a
DHT structure. Ferry [21] is an architecture for content-based
publish/subscribe services. It also exploits embedded trees in
the underlying DHT to collect and classify data for subsequent
data discovery service. In the tree structure, information is
gathered from the bottom and propagates towards the root, and
disseminated by trickling downwards. However, tree structure
is not resilient to churn.

Some approaches [13, 17] focus on weaving all attributes
of a resource into one or a certain number of IDs for resource
clustering and discovery in a DHT overlay. Squid [22] uses
a dimensionality reducing indexing scheme based on space
filling curves to map the multi-dimensional information space
to physical peers while preserving lexical locality. However,
dimension reduction may generate false positives in informa-
tion searching.

Hierarchical Bloom filter Arrays (HBA) [23] is an efficient
and distributed scheme that maps filenames to metadata servers
for file mapping and lookup. In the advertisement-based P2P
search algorithm (ASAP) [24], nodes advertise their contents.
After receiving a request, a node locates the destination
nodes by looking up its local advertisement repository. In
the Differentiated Search algorithm [25], nodes with high

3

query answering capabilities have higher priority to be queried,
which leads to the reduction of search traffic by reducing
queried nodes. Zhang and Hu [26] proposed partial indexing
algorithm to assist data search. Li et al. proposed semantic
small world (SSW) [27] to facilitate highly efficient semantic-
based searches in P2P systems. The PASH [28] protocol
can choose proper search methods to reduce query traffic
cost and response time by dynamically estimating the content
popularity. In order to enhance the successful content retrieval
rate and decrease the costs, Pagani et al. [29] proposed a
distributed infrastructure, in which peers are organized to
mirror the semantic relations among contents.

3 Hierarchical Cycloid Overlay Network
HCO is built by extending the cycloid overlay [8]. We
first describe cycloid followed by a description of the HCO
architecture. Cycloid is a lookup efficient overlay network
generalized from the cube-connected cycles (CCC) [30]. A
d-dimensional cycloid is built with at most n=d · 2d nodes.
Like CCC, a cycloid has a constant node degree equals to
its dimension d. The upper part of Figure 1 shows a 11-
dimensional cycloid. In general, it takes at most O(d) steps
to lookup a file. The cycloid ID of a node or an object is
represented by a pair of indices (ids, idl) (ids∈[0, d − 1]
and idl∈[0, 2d − 1]) (s and l means small and large cycle
respectively), where idl is a cubical index representing the
cluster that a node or an object locates and ids is a cyclic
index representing its position within a cluster. The nodes with
the same idl are ordered by their ids on a small cycle called a
cluster. All clusters are ordered by their idl on a large cycle.
The node with the largest ids in a cluster is called the primary
node of the cluster.

Cycloid DHT layer

(x 50)
(x, 2047)

(x 1800)
e: (5, 50)

(x, 50)

b: (5, 200)

(x,1000)

(x, 1200)

(x, 500)

a: (3, 200)
c: (8, 200)
d: (10, 200)

(x,1800)

Grid layer

(x, 800)
(, 000) (x, 500)

……
Fig. 1. A HCO architecture built on Grid resource clusters.
A 11-dimensional cycloid overlay is shown to manage at
most 2048 clusters (only 6 are shown). Nodes at different
cycles in the cycloid manage different resource clusters in
order to preserve program/data locality in distributed Grid
computing (cluster mapping shown by dashed lines).

The distance between two IDs (ds1 , dl1) and (ds2 , dl2),
denoted by |ID1−ID2|, is calculated by

((ids1 − ids2)%d, (idl1 − idl2)%2d) = (∆ids,∆idl). (1)
The distance is firstly measured by ∆idl (i.e., distance between
clusters) and secondly ∆ids (i.e., distance between nodes in
one cluster). The logical distance between node i and node j
in an overlay equals |IDi − IDj |. For example, in Figure 1,
the distances from node a=(3,200) to b=(5,200), d=(8,200) and
e=(5,50) are (2,0), (5,0) and (2,150), respectively. Therefore,
a=(3,200) is closer to b=(5,200) and d=(8,200) than e=(5,50)
judging by ∆idl. From the figure, we can see node b and d
are in the same cluster as a, while node e is in a different
cluster. Also, a=(3,200) is closer to b=(5,200) than d=(8,200)

TABLE 1
Notations.

Notation Meaning
(ids, idl) the ID of a node or object. ids: cyclic index, idl:cubical index
Hi consistent hash value of node i’s IP address
Hi Hilbert number of node i indicating node proximity
IDi=(Hi,Hi) node i’s ID
Hr consistent hash value of resource r
IDr=(Hr,Hi) resource ID for resource r in node i
Dr resource descriptor for resource reports and resource requests

(1) Proximity‐close
nodes are in oneur

e clustersnodes in a cluster

Cycloid ID: (ids , idl)
nodes are in one
cluster

(2) Directories of

H
CO

ar
ch
ite

ct
u

g

node node proximity

HCO node ID: (Hi , Hi)
(2) Directories of
proximity‐close
resources are in
one cluster
(3) Rc

cl
us
te
ri
ng

qu
er
yi
ng

resource
requester/provider

proximity (3) Requesters
receive proximity‐
close resource

Re
sc /

Resource ID: (Hr , Hi)

resource proximity

Fig. 2. IDs in HCO architecture and resource clustering
and querying.
judging by ∆ids. From the figure, we can see that b is closer
to a than d in the same cluster. Cycloid assigns an object to
the node whose ID is closest to its ID. It provides two main
functions: Insert(ID,object) stores an object to a node
responsible for the ID and Lookup(ID) retrieves the object
through DHT-based searching. Each node maintains a routing
table recording its neighbors in the overlay network for object
lookups. Like all other DHTs, when a node joins in cycloid,
it generates its cycloid ID and relies on a bootstrap node to
find its neighbors and connect to them. Please refer to [8] for
more details of cycloid.

We present below the architecture and processing layers of
HCO, which is a DHT-based hierarchy for locality-preserving
Grid resource clustering and discovery. Figure 1 shows an
example of the HCO architecture. In the figure, the resource
nodes are shown at the bottom Grid layer. Various nodes
are grouped into different clusters based on their physical
proximity. All resource discovery operations are conducted in
the overlay layer in a distributed manner. One major challenge
in resource clustering is to keep the logical proximity and
physical proximity of resource nodes consistent. A landmark
clustering is adopted to generate proximity information [31,
32]. We assume that m landmark nodes are randomly scattered
in the network. Each node measures its physical distances to
the landmark nodes. A vector of distances < d1, d2, ..., dm >
is used to perform clustering. Two physically close nodes have
similar vectors. We use space-filling Hilbert curve [32, 33] to
map each m-dimensional landmark vectors to a real number.
The number is called the Hilbert number of a node denoted by
H. Nodes with closer H are physically closer to each other.

We choose the Hilbert curve based dimension reduction
method because it outperforms the other dimension reduction
methods under most circumstances [34], and it has been
widely used in many areas such as data search, resource
discovery and data retrieval [15, 35–37].

The HCO architecture builds a topology-aware cycloid
architecture on a Grid. Specifically, each node i has an ID
(Hi,Hi), where Hi is the consistent hash value of its IP
address and Hi is its Hilbert number. When node i joins in
HCO, it first generates its ID. Using the cycloid node joining
algorithm, the node finds its place in the cycloid overlay
and connects to its neighbors. Recall that for a cycloid ID

4

(ids, idl), ids indicates node positions within a cluster and
idl differentiates clusters. By mapping (Hi,Hi) to (ids, idl)
as shown in Figure 2, we see that physically close nodes which
have the same H will be in the same cluster, and those having
similar Hilbert number are in nearby clusters. Within a cluster,
nodes are connected in the order of their Hi.

To build each node’s routing table, HCO uses the proximity-
neighbor selection technique [38]. That is, to choose a node for
its routing table entry, a node first identifies all candidates that
can become its neighbor in the entry based on the DHT policy.
From these candidates, it selects the physically nearest node.
As a result, the HCO architecture is constructed, in which the
logical proximity abstraction derived from overlay matches the
physical proximity information in reality.

Due to the dimension reduction, it is possible that a node is
clustered with other nodes that are physically far away from
itself or a node’s closer node is clustered with other nodes. To
deal with this problem, each node can check the correctness
of the node clustering according to its neighbors’ IP addresses
and Round Trip Time (RTT) [39]. If a node’s IP address does
not match its neighbors’ IP addresses and its RTTs with the
neighbors are exceptionally longer than those with nodes in
the neighboring clusters, the node transfers to its neighboring
cluster. This process will finally lead the node to its right
cluster. Due to uneven distribution of nodes in physical space,
nodes may not be distributed in balance in the DHT ID space
in the topology-aware cycloid. The work in [8] shows that
the imbalance of node distribution in ID space does not affect
the location efficiency in cycloid. Hence, it will not adversely
affect the efficiency of resource discovery in HCO.

Grid Applications

Distributed computing

Collaborative engineering

Data mining Data center

High-throughput computing

HCO Resource Management
HCO architecture in Figure 1

Controlled Application Interface (API)

Grid Resources (Dynamic Clusters)
Network Layer

G d esou ces (y c C us e s)

Fig. 3. Processing layers of using the HCO network for
Grid resource discovery.

We show the processing layers of the HCO infrastructure
in Figure 3. HCO enables scalable, efficient and robust re-
source discovery in large-scale distributed Grid applications.
Examples of Grid applications include collaborative engi-
neering, high-throughput computing, distributed modelling,
data-mining, and data center systems. Applications apply the
HCO resource discovery services using API calls. When a
node reports its available resources to the system, it uses the
Insert(ID,object) function. When a node needs a set
of resources, it uses the Lookup(ID) function, which returns
the locations of requested resources.

4 Locality-Preserving Grid Resource Manage-
ment

We propose the locality-preserving resource clustering and dis-
covery algorithms based on the HCO architecture. The idea is
to map physically close functional resources to logically close
nodes in order to satisfy specific application demands. Taking
advantage of its hierarchical cluster structure, HCO uses the
Insert(ID,object) function to group the descriptors of

physically close nodes into the same cluster. Also, the logical
distance between a node and a cluster on the HCO reflects
the physical distance between the node and the resources
whose descriptors are in the cluster. This facilitates a node to
locate physically close resources by probing its nearby nodes
in increasing proximity. Within a cluster, resource descriptors
are further grouped according to resource functionality (i.e.,
resource type). This supports a node to discover resource based
on its various functionality demands. Successful clustering
leads to fast resource discovery for various Grid applications.
HCO uses the Lookup(ID) function to discover multiple
resources. Thus, HCO achieves program/data locality by sup-
porting proximity-aware and multi-resource discovery. HCO
also has strategies to deal with dynamism. The resource
discovery efficiency is further enhanced by the cluster-token
forwarding algorithm. Table 1 shows a summary of notations
used in this paper.

4.1 Locality-Preserving Resource Clustering

An effective resource discovery algorithm locates resources
across a wide area based on a list of predefined attributes. A
node reports its available resources or requests for resources
using a resource descriptor Dr, consisting of 4-tuple:

Resource Descriptor Dr =< RF, ID,RA, IP >,

where RF , ID and RA are the resource functionality, identi-
fier and resource attribute. IP refers to the IP address of the
resource owner or requester. For clarity, all node indices are
omitted in the descriptors.

In a DHT overlay, the objects with the same ID are
stored in the same node. Based on this object assignment
policy, HCO computes the consistent hash value Hr of a
resource r’s resource functionality, and uses IDr=(Hr,Hi)
to represent the ID of resource r in node i. Each node applies
Insert(IDr,Dr) to periodically store the descriptors of
its available resources in a node, which is called a directory
node. The Insert(IDr,Dr) function stores Dr to the node
whose ID is closest to IDr = (Hr,Hi). As shown in Figure 2,
by mapping resource ID to HCO node ID, the directories of
proximity-close resources are collected in one cluster, and the
descriptors of the proximity-close resources with the same
functionality are stored in the same directory node. Different
nodes in a cluster are responsible for resources with different
functionalities. Furthermore, resources in the directories stored
in nearby clusters are located in physically close nodes.

We use a directory node’s resource to represent the resource
r whose Dr is stored in the directory node. The logical
distances between node i and a number of directory nodes
represent the physical distances between node i and the
directory nodes’ resources. Therefore, if a node has resource
options in a number of directory nodes, it should choose the
resource in the logically closest directory node in the overlay.
Theorem 4.1 shows this feature of HCO.

Theorem 4.1: Assuming that node Hilbert number H can
accurately reflects node proximity, if nodes j and k are
directory nodes of the a resource requested by node i, and
IDi 6 IDj < IDk or IDi > IDj > IDk, then directory
node j’s resources are physically closer to node i than direc-
tory node k’s resources.

Proof: With the assumption, if nodes j and k are directory
nodes of one resource functionality, nodes j and k must be
in different clusters. In HCO, the logical proximity abstrac-
tion derived from overlay matches the physical proximity
information in reality. Therefore, if IDi 6 IDj < IDk or

5

IDi > IDj > IDk, node j is physically closer to node i than
node k. A node reports its resource descriptors to a node in its
cluster, so directory node j’s resources are physically closer
to node i than directory node k’s resources.

Resource attributes (RA) are always expressed by strings
or numbers [40]. For example, a query can be: “OS=Unix
and 800MHz≤CPU≤1000MHz and 512GB≤Memory≤2GB.”
The RA for the OS is a string that has a limited number
of expressions, while the RA for CPU and Memory are
numbers. Number-based RA have continuous numerical
values. Thus, it is important for a resource discovery scheme
to deal with range queries for resources in a RA range. Since
the descriptors of one resource functionality in a cluster are
gathered in one node, the node orders all the descriptors
based on the numerical values of the resources. Assume
a node keeps a directory with l entries. Then, it stores a
descriptor with numerical value v to the (v%l)th directory
entry. When the node receives a resource range query with
value ≥ x, it searches the descriptors in the entries with index
≥ (x%l). If the query range is ≤ x, the node searches the
descriptors in the entries with index ≤ (x%l). If the query
range is x1 ≤ x ≤ x2, the node searches the descriptors in
the entries with index between (x1%l) and (x2%l). The node
then returns the matching descriptors to the requester.

If a resource has a large number of string RA, a direc-
tory node keeps a list of unified strings for the RA. For
instance, “Mem” and “memory” are unified to “Memory”.
For a resource descriptor, the node maps the resource RA in
the unified list, calculates the consistent hash value H of the
unified string, and stores the descriptor in the (H%l)th entry
in its directory. Later on, when the node receives a string-based
query, it maps the string to the unified list and calculates the
consistent hash value of the string, say h. The consistent hash
function produces the same hash values for the same strings.
The node then searches the descriptors in the hth entry and
returns the satisfying descriptors to the requester.

In the ideal case, the number of resource functionalities n1

equals the number of nodes in a cluster n2 and each node in
the cluster is responsible for the directories of one resource
functionality. When n1 > n2, a node in the cluster may store
directories of more than one resource functionality. In this
case, such a node maintains one directory for each resource
functionality for ease of search. When n1 < n2, some nodes
in the cluster do not act as directory nodes. In this case, a
directory node can move part of its directories to non-directory
nodes and keeps indexes to those nodes. Thus, it can move part
of its load to other nodes for load balancing.

The load balancing algorithm in [20] can be further adopted
to achieve more balanced descriptor distribution between the
directory nodes. Since this is not the focus of this paper, we
do not present the details of the load balancing algorithm.

4.2 Locality-Preserving Resource Discovery
When node i queries for multiple resources, it sends a
request Lookup(Hr,Hi) for each resource r. Each request is
forwarded to its directory node in node i’s cluster. As shown in
Figure 2, the request will arrive at the node whose ID (Hj ,Hj)
is closest to (Hr,Hi). Recall that Insert(IDr,Dr)
function stores Dr to the node whose ID is closest to
IDr = (Hr,Hi). Also, Hi represents the physical proximity
of a resource requester or provider. Therefore, the requester
can discover the resources within close proximity to itself.

If the directory node has no requested descriptor, it probes
nodes in nearby clusters. Theorem 4.1 indicates that the

resources of directory nodes in closer clusters are physically
closer to the requester. Hence, a node should probe its logically
close neighbors in order to locate physically close resources.

We present the successor and predecessor clusters of node
j’s cluster as sucCluster(j) and preCluster(j), respectively.
First, a node probes the directory nodes in these clusters
simultaneously. Then, it probes the directory nodes in
sucCluster(sucCluster(j)) and preCluster(preCluster(j)). This
process is repeated until the desired resource descriptors are
found. However, such sequential probing is not robust enough
to handle dynamism where nodes continually join and leave
the system.

We develop the proximity-aware randomized probing algo-
rithm (PRP) based on the algorithm in [20] to resolve the
problem. In the PRP algorithm, a node first applies sequential
probing. If no response is received during a predefined time
period, the node randomly chooses two nodes in an increasing
range of proximity and repeats the probing process. Since
resource descriptors are allocated to different nodes in a cluster
based on resource functionality, the probed nodes should be
the directory nodes of the requested resource.

In the resource clustering algorithm, the
Insert(IDr,Dr) function stores Dr to the node
whose ID is closest to IDr = (Hr,Hi). Recall in cycloid
ID (ids, idl), idl differentiates clusters and ids differentiates
nodes in a cluster. Hence, Hi determines the cluster and Hr

determines the node in the cluster where Dr should be stored.
Recall a node’s ID is (Hi,Hi). Thus, in each cluster, the
directory node of one resource functionality has the cyclic
ID Hi closest to Hr. Therefore, for directory node with ID
(Hi,Hi) (i.e., probing node) of one resource functionality
r in a cluster, the directory node of r in another cluster
(i.e., probed node) must have the cyclic ID closest to Hi in
that cluster. Consequently, the probing node i can reach the
directory nodes of the requested resource by targeting an ID
composed of its ids = Hi and a randomized idl chosen in an
increasing proximity.

The HCO scheme can also be applied to two-level hierar-
chical DHTs [41, 42] and other hierarchical overlays such as
dBCube [43] and Kcube [44–46], where clusters are connected
by a DHT structure based on de Bruijn graph or Kautz
digraph. HCO is also applicable to variants of Chord [5] and
Pastry [6], i.e., a hierarchical DHT based on Chord or Pastry.
Accordingly, in these hierarchical structures, each cluster in
the lower-layer is responsible for storing resource directories
of physically close nodes. Nodes in a cluster are responsible
for directories of different resources. A node generates its ID
including its Hilbert number Hi using the same way in HCO.
Similar to HCO, for a node with ID (Hi,Hi), Hi determines
which cluster it locates and Hi determines the node’s location
in the cluster. The directory of resource with ID (Hr,Hi) is
stored in a node in the same way as HCO. For a message for
storing resource directories and discovering resources, it first
is forwarded to the cluster with ID Hi through the routing in
the upper-layer, and then is forwarded to the directory node
through the lower-layer routing within a cluster. The design
of HCO needs to be tailored to the specific designs of other
systems. Due to the page limit, we do not discuss more details
here.

4.3 An Example of the HCO Algorithms

Figure 4 shows an example of using HCO for locality-
preserving resource clustering and discovery. Based on the
ID determination policy in HCO, nodes <a, b, c, d> generate

6

(x 50)
(x, 2047)

(x 1800)

Cycloid DHT layer

(x, 50)

b: (5, 200)

(x,1000)

(x, 1200)

(x 500)

a: (3, 200)

c: (8, 200)

d: (10, 200)

(x,1800)
Memory

Disk
CPU

Bandwidth

(x, 800)
(x,1000) (x, 500)

P2P Grid layer

bfi j a
c d

be
g h

fi
k l

j

Fig. 4. Example use of the HCO network for global-scale
Grid resource clustering and discovery. Grid resource
clusters: < a, b, c, d >, < e, f, g, h > and < i, j, k, l > are
created and managed by overlay nodes at three cycles in
the cycloid hierarchy. Only partial connecting edges of the
HCO overlay are shown.
their IDs=(x,200) (x denotes an arbitrary number), nodes
<e, f, g, h> generate their IDs=(x,800) and nodes <i, j, k, l>
generate their IDs=(x,1000). Thus, each of the physically
close node groups <a, b, c, d>, <e, f, g, h> and <i, j, k, l>
constitutes a cluster as indicated by the arrows in the fig-
ure. Within each cluster, all nodes generate resource IDr

for different resources and store the resource descriptors by
Insert(IDr,Dr). Consequently, the resource descriptors
of all nodes in the cluster are distributed among the nodes
based on resource functionality. Assume H(Memory)=3,
H(Disk)=5, H(CPU)=8 and H(Bandwidth)=10. In the cluster
of <a, b, c, d>, all nodes generate IDs for their memory
resource IDr=(3, 200), disk resource IDr=(5, 200), CPU re-
source IDr=(8, 200) and bandwidth resource IDr=(10, 200).
By the Insert(IDr,Dr) function, the nodes store their
memory descriptors in node a, disk descriptors in node b,
CPU descriptors in node c, and bandwidth descriptors in node
d. Such locality-preserving overlay architecture construction
and resource clustering facilitate nodes to discover various
resources that are physically close to themselves.
———————————————————————————-
Algorithm 1: Pseudo-code for node i’s operations in HCO.
———————————————————————————-

//clustering resource descriptors in local cluster
Generates consistent hash value of its resources: (Hr1 , ..., Hrm)
Generates (IDr1 , ..., IDrm), IDrm̃=(Hrm̃ ,Hi), (1 6 m̃ 6 m)
Applies DHT function Insert(IDrm̃,Drm̃), (1 6 m̃ 6 m)

//requesting resource
Generates consistent hash value of the resource: (Hr1 , ..., Hrm)
Generates (IDr1 , ..., IDrm), IDrm̃=(Hrm̃ ,Hi), (1 6 m̃ 6 m)
Applies DHT function lookup(IDrm̃,Drm̃)
to get the Dr= < RF, ID,RA, IP >
Asks resources from resource owners

//processing resource request
Checks its directory for requested resources
while has not found the matching Dr do

Applies the PRP algorithm to search from neighboring
directory nodes of the requested resource

Returns the Dr
———————————————————————————-

The requests for memory and disk resources from nodes
< a, b, c, d > are also forwarded to nodes a and b, respec-
tively. Specifically, when a node in a cluster needs mem-
ory and disk resources, it first generates the IDs for the
memory resource IDr=(3, 200) and for the disk resource
IDr=(5, 200) and then uses Lookup(3,200) for memory
and Lookup(5,200) for disk space. Using the DHT routing

algorithm, the requests are forwarded to nodes a and b,
respectively. These nodes check their own directories for the
descriptors of the requested resource. If they cannot find
the descriptors, they probe nodes in other clusters using the
PRP algorithm. For example, node b (5,200) probes nodes by
targeting (5,199) and (5,201). If it does not receive a reply
within a predefined time period, it randomly generates two
cubical indices within 100 proximity range. Suppose the two
randomized numbers are 150 and 250, the node probes nodes
by targeting (5,150) and (5,250). If the requested resource is
still not found, the node increases the proximity range and
repeats the same process until it finds the requested resource.
Algorithm 1 shows the pseudo-code of resource clustering and
discovery performed by a node in the HCO network.

4.4 Dynamism-Resilient Resource Management

In addition to exploiting the physical proximity of the net-
work nodes to minimize operation cost, an effective resource
management scheme should also work for Grids in a dynamic
environment. HCO uses the cycloid self-organization mecha-
nism to cope with these problems. Specifically, nodes transfer
descriptors when joining or leaving the system.

When node i joins in the system, it reports its resources via
Insert((Hr,Hi),Dr), and receives the descriptors in its
responsible ID region from its neighbors. When a node departs
from the system, it transfers descriptors to its neighbors. For
example, if node (2, 200) joins the system in Figure 4, then the
descriptors in the range (0, 200) and (2, 200) are transferred
from node (3, 200) to node (2, 200). If node (3, 200) leaves,
it transfers its descriptors to node (10, 200) or (5, 200) based
on the ID closeness. If node (3, 200) is the only node in its
cluster, it transfers its descriptors to its closest node in its
closest cluster.

HCO resorts to periodical resource reporting to avoid useful
descriptors from being lost in the clustering and discovery
process. If a directory node has failed, its resource descriptors
are lost. In this case, the resource requests will arrive at the
node that is the new directory node of the resource. Since the
directory node does not have resource descriptors satisfying
the requests, it keeps the requests in its request queue. In the
next periodical resource reporting, the lost resource descriptors
will be reported to the new directory node. Then, the queued
requests can be resolved. For example, in Figure 4, if node a
fails, all of its resource descriptors are lost. Also, the requests
for the memory resource are forwarded to node b based on
the DHT routing algorithm. In the next resource reporting
period, by the Insert() function, the memory descriptors
are forwarded to the new directory node of memory, node
b. To prevent the descriptor space from being flooded with
outdated descriptors, the directory nodes discard outdated
resource descriptors periodically. Consequently, instead of
relying on specific nodes for resource descriptors, HCO always
stores a resource descriptor in a directory node, and the
Lookup(Hr,Hi) requests can always be forwarded to the
node.

4.5 Cluster-Token Forwarding Algorithm

We introduce a cluster-token forwarding algorithm to further
enhance the efficiency of the HCO scheme. Like most multi-
resource management approaches, HCO uses m lookups
for a query of m resources. Based on the cycloid routing
algorithm, all lookup messages first are routed within a
cluster sequentially. Thus, rather than using m lookups, a
node can combine the m lookups into one lookup message

7

to be sequentially routed within a cluster. Moreover, since
a node with m available resources needs m Insert()
messages for resource clustering which are routed in the
same manner as the Lookup() messages, the two kinds of
messages can be integrated. Furthermore, since the messages
of all nodes in a cluster are routed in the same manner, and
the nodes need to report their available resources periodically,
the messages for resource clustering and discovery of all the
nodes can be combined.

Based on this observation, the cluster-token forwarding
algorithm accumulates the messages of available resources and
resource requests of all nodes in one cluster. In a nutshell, the
primary node in each cluster periodically generates a token
which circulates along its cluster. Each node receiving the
token inserts the resource descriptors of its available resources
and resource requests into the token, absorbs the descriptors
of available resource and resolves the resource requests in the
token that are in its responsibility.

For example, if primary node i needs multiple resources
represented by r1, r2, ..., rm1, and it has available resources
represented by δr1, δr2, ..., δrm2, it generates the IDs of the
resources IDr1 , ..., IDrm1 and IDδr1 , ..., IDδrm2 , in which

IDrm̃ = (Hrm̃ ,Hi)(1 6 m̃ 6 m1 +m2).
The resource descriptors are ordered by Hr in the form of

< D1, D2, · · · , Dm1+m2 > .

Next, node i sends the token to its successor j.
Based on the HCO resource clustering algorithm, a node is

the directory node of the resources whose Hr satisfies
IDpre.cyc 6 Hr 6 IDsuc.cyc,

where IDpre.cyc and IDsuc.cyc represent the cyclic index of
the node’s predecessor and successor, respectively. Therefore,
in order to avoid unnecessary checking, node j only needs
to check the Dr in the token satisfying this condition. For
those Dr of requests, if node j has resource descriptors of
the required resources, it sends the resource descriptors to the
requesters, and removes the Dr from the token. For those Dr

of available resources, node j absorbs the Dr. Afterwards, it
inserts its own Dr of available resources and requests into the
token, and forwards the token to its successor. This process is
repeated until the primary node receives the token back, which
means that the token has completed one circulation.

At this time, the token has no Dr of available resources
and the Dr left are for unsolved resource requests. The
primary node then uses PRP to forward the token to another
cluster, where this process is repeated until the token is empty,
i.e., all requested resources are discovered. Consequently, in
the algorithm, only one message is generated periodically.
Combining a number of messages into a single message for
forwarding within a cluster and between clusters significantly
reduces cost.

Algorithm 2 shows the pseudo-code for the cluster-token
forwarding algorithm in HCO. This algorithm is suitable to the
situation when many messages travel most of the nodes in the
cluster. For the resource discovery operation, it is possible that
only a few nodes in a cluster request resources with few func-
tionalities in resource discovery. In this case, circulating the
combined requests may generate more overhead. For example,
if there is only one node sending out a resource request with
one functionality, then forwarding its request directly to the
destination directory node costs less than circulating it using
the algorithm. However, since every node in a cluster needs
to report its available resources periodically, combining all
resource reporting messages and resource requests can reduce

the total cost for both resource reporting and querying.

———————————————————————————-
Algorithm 2: Pseudo-code for cluster-token forwarding algorithm.
———————————————————————————-

//executed by primary node i periodically
Generates a token
if it has a request for multi-resources or available resources then {

Generates the ID of the resources:(Hr,Hi)
Inserts each Dr into the token in the ascending order of Hr }

Sends the token to suc(i)
//after primary node i receives a token
if receives a token then

Forwards the token to a node in another cluster using PRP

// node i receives a token < D1, D2, · · · , Dm1+m2 >
// node i handles its responsible Dr in the token
Finds the Dr group D
={∀ Dr =< RF, ID, RA, IP > |(IDpre.cyc 6 Hr 6 IDsuc.cyc)}
for each Dr ∈ D do

if Dr is for requested resource then {
// handles Dr of resource requests
Checks its directory for r
if it has the requested resource r then {

Replies the requester with IP
Removes the Dr from the token }}

else { // handles Dr of available resources
Transfers Dr from the token to its directory
Removes the Dr from the token }

//adds its Dr into the token
if has a multi-resource request or has available resources then {

Generates the ID of the resources: (Hr,Hi)
Inserts Dr to the token in the ascending order of Hr }

Sends the token to suc(i)
———————————————————————————-

Theorem 4.2: In a d-dimensional HCO network, the
cluster-token forwarding algorithm can always reduce the
number of contacted nodes for a resource query with
m (m ≥ 2) resources.

Proof: A query for one resource needs d contacted nodes
in the requester’s cluster. It needs d nodes for message for-
warding in one probing [8] in the average case. Therefore, for
a resource query with m resource, m(d+d·2d) contacted nodes
are needed without the cluster-token forwarding algorithm.
With the algorithm, d contacted nodes are needed for a token
circulation, d·2d contacted nodes for message routing, and d·2d
contacted nodes for token circulation in all clusters. Thus, the
total number of contacted nodes needed is d+ d · 2d + d · 2d.
Therefore, as long as m > d+d·2d+d·2d

d+d·2d = 1 + d·2d
d+d·2d , the

contacted nodes without the algorithm is more than that with
the algorithm.

4.6 Deadline-driven Resource Management

Since some Grid systems used for complex scientific ap-
plications are time critical and must comply to strict QoS
rules, significant challenges still remain to support distributed
applications that easily suffer from latencies. They require
discovering desired resources in a timely fashion for resource
requesters. To address this problem, HCO uses deadline-driven
resource allocation and message forwarding algorithms in a
distributed manner to ensure that the requested resources are
provided in time. We use deadline to denote the time instant
that a resource is needed by a requester. The basic idea of
the algorithms is to (1) process urgent requests immediately
without waiting for the next periodical resource allocation,
(2) process resource requests in the ascending order of their

8

deadlines, and (3) forward messages in routing in the ascend-
ing order of their deadlines in order to make sure that requests
arrive their destinations in time.

In addition to the current available resources, HCO requires
each node to also report its available resources in future
time slots. On the other hand, resource requesters can ask
for resources they need instantly, and they can also reserve
resources for a specific future time slot.

Each directory node has a pair of sorted available resource
list (ARL) and requested resource list (RRL) for resources
whose IDs are located in its responsible region. An ARL
is used to store the descriptors of available resources and
their available time instants, and a RRL is used to store
the descriptors of requested resources and their deadlines, as
shown in Table 2. We let T to denote the resource available
time or deadline. To distinguish resource requests and reports
for available resources, we use Dr=< RF, ID,RA, IP> to
represent the former and use Dδr=<RF, ID, δRA, IP> to
represent the latter. The resource information of an available
resource and a requested resource is represented in the form of
<Dδr, T> and <Dr, T>, respectively. Both ARL and RRL
are sorted in ascending order of the time T . For the same
T , they are ordered in the manner introduced in Section 4.1
for range querying. Resource allocation is executed between
a pair of ARL and RRL to allocate available resources to
resource requesters in a top-down fashion. More precisely,
each directory node runs Algorithm 3.
———————————————————————————-
Algorithm 3: Pseudo-code for resource allocation performed by a
directory node.
———————————————————————————-
Sort ARL and RRL in ascending order of the time T
for each item j <Drj , Tj> in RRL do

for each item i <Dδri , Ti> in ARL do
if Ti ≤ Tj then{

if RA is a value && δRA ≥ RA ||
RA is a string && H(δRA) = H(RA) then{
Inform IPj of the resource provider Dδri
Remove <Drj , Tj> from RRL
if RA is a value && (δRA−RA > 0) then{

Replace δRA in Dδri with (δRA−RA)
Move <Dδri , Ti> to the right position in the directory}

else
Remove <Dδri , Ti> from ARL}

}
———————————————————————————-

The resource providers and requesters periodically report
their resource directories to directory nodes, which allocate
available resources to requesters periodically. If a directory
node cannot find a resource with available time slot earlier than
a resource request’s deadline in the resource allocation, this
means there are no available resources in the system that can
meet the deadline. Then, the directory node sends a negative
response to the requester. To handle urgent resource requests,
we define a parameterized threshold E for T to determine if a
request is urgent or not. For an urgent request, a directory node
immediately handles it without waiting for its next periodic
resource allocation. The directory node then replies to the
resource requester immediately about the resource locations.

In addition to reserving resources beforehand in order to
guarantee the resource availability, it is important to ensure
that the resource management operation itself is performed
efficiently. Specifically, the messages for resource requests and
for resource location notification should arrive at their des-
tinations without delay. Deadline-driven message forwarding

TABLE 2
Sorted available and requested resource lists.

Directory of resource information in a node
Available resource list Requested resource list
< Dδr1 , T1 > < Dr1 , T1 >

.
< Dδrm , Tm > < Drn , Tn >

algorithm is used for this purpose. In the algorithm, a resource
request is forwarded with deadline information. When a node
receives multiple messages, it forwards the messages based
on their deadlines. A message with earlier deadline has higher
priority to be forwarded.

5 Performance Evaluation
We designed and implemented a simulator for evaluation of
the HCO scheme. We compared the performance of HCO
with MAAN [11], Mercury [10], and SWORD [12]. To be
comparable, we used Chord for attribute hub in Mercury and
SWORD. The experimental results show advantages in using
HCO over the competing overlays for the same purpose.

The works in [47, 48] use bounded Pareto distribution for
node capacity. Also, the size distribution of process CPU
and memory requirements fits a bounded Pareto quite accu-
rately [49–53]. In addition, the empirical observations by [52]
show that process lifetime distributions in Unix systems can
be approached with a Bounded Pareto distribution. Therefore,
we used the Bounded Pareto distribution function to generate
the resource amount owned and requested by a node. This
distribution reflects the real world where there are available
resources that vary by different orders of magnitude.

The number of nodes in the system was set to 4096. We
assumed that there are 11 types of resources. The dimension
of the cycloid simulated was set to 11. In each experiment,
we first let each node report its available resources, and
then randomly chose nodes to generate 1000 requests. The
number of resources in a request or the number of available
resources per node was varied from 1 to 5 with step size of
1, unless otherwise specified. The values of the settings are
randomly chosen from a reasonable range. Different values
will not change the relative performance differences between
the methods. We use HCO/o to represent HCO without the
cluster-token forwarding algorithm.

We randomly chose 15 landmarks with a constraint that the
distance between each pair of landmarks is at least 4 hops.
The setting values are our empirical values for appropriate
node clustering. More landmarks lead to more accurate nodes
clustering but higher overhead, and vice versa [31, 32]. We
used transit-stub topologies generated by GT-ITM [54]: “ts5k-
large” and “ts5k-small” with approximately 5000 nodes each.
“ts5k-large” is used to represent a Grid consisting of nodes
from several big stub domains, while “ts5k-small” represents
a Grid consisting of nodes scattered throughout the entire
Internet and only few nodes from the same edge network
join the overlay. We evaluate the effectiveness of the resource
management approaches using the following metrics:
(1) Cumulative distribution function (CDF) of the percentage

of discovered resources. This reflects the effectiveness
of a resource discovery algorithm to discover requested
resources physically close to requesters.

(2) Physical/logical communication cost. The communica-
tion cost is directly related with message size and routing
path length (logical/physical). We use the product of these
two factors to represent the communication cost. It is
assumed that the size of a resource request message or

9

response message is 1 unit.
(3) Overlay maintenance cost. To maintain the overlay, each

node periodically executes stabilization by probing its
neighbors to ensure that they are alive. We use the total
number of probing messages of all nodes in one stabi-
lization operation to demonstrate the overlay maintenance
cost. This metric represents the overhead to maintain the
DHT resource management architecture.

(4) Directory size. This affects balanced distribution of work-
loads caused by resource descriptor maintenance and
resource request processing in resource management.

(5) Resource request success rate. This is the percent of
resource requests that reach their directory nodes success-
fully. This metric represents the capability of a resource
management scheme to deal with dynamism.

(6) Number of probed nodes. Because of the node and
resource dynamism, a request may arrive at a node with
no descriptor of the requested resource. Then, its nearby
nodes are probed for the resource. This metric is defined
as the number of the probed nodes. It reflects the impact
of dynamism on the efficiency of a resource management
scheme.

(7) Number of overdue request responses. This is the number
of responses received after the request deadlines by the
requesters. This metric shows the effectiveness of the pro-
posed deadline-driven resource management algorithm in
enhancing the speed of resource discovery.

5.1 Locality-preserving Resource Discovery

This section shows the effectiveness of HCO in locality-
preserving resource management, in which resources physi-
cally close to requesters are discovered. In this experiment,
we randomly generated 5000 resource requests, and recorded
the distance between the resource provider and requester of
each request. Figure 5(a) and (b) show the CDF of the
percentage of allocated resources against the physical hop
distance in “ts5k-large” and “ts5k-small”, respectively. We can
see that in “ts5k-large,” HCO is able to locate 97% of total
resource requested within 11 hops, while others locate only
about 15% within 10 hops. Almost all resources are located
within 15 hops from requesters in HCO, while 19 hops in
other resource management methods. The results show that
HCO can locate most resources within short distances from
requesters, but others locate most resource in long distances.
From Figure 5(b), we have the same observations, although
the performance difference between approaches is not so
significant. The results confirm the unique locality-preserving
feature of HCO to enable users to locate physically close
resources. Communication cost also plays an important role
in resource management efficiency.

5.2 Cost in Resource Management

This section shows the low cost of HCO in resource manage-
ment. In HCO, nodes only need to communicate with their
physically close nodes for resource clustering and discovery.
Also, nodes only need to perform cluster-wide communication
for resource clustering and discovery rather than system-wide
communication as in other schemes. We tested the physical
and logical communication cost in “ts5k-large” and “ts5k-
small”. As the results in “ts5k-small” are similar to those in
“ts5k-large”, we do not include the results due to space limit.

Figure 6(a) and (b) plot the physical communication cost
for resource discovery and clustering versus the number of re-
sources in a query, respectively. In order to separate the cost for

resource discovery and clustering, we used the cluster-token
forwarding algorithm to combine the resource requests and
reporting messages, respectively. Actually, these two kinds of
messages should be combined together in message circulation.
In the experiment, searching stops once a requested resource is
discovered. From these figures, we can see that the cost of each
scheme increases with the number of resources in a query. The
cost of MANN grows dramatically faster than others, while
HCO and HCO/o only have a marginal increase. Recall that
MAAN needs two messages for each resource discovery and
resource reporting, one is for resource type and the other for
resource attribute. This generates much higher communication
cost. The results illustrate that HCO and HCO/o incur much
lower physical communication cost than others by arranging
nodes to contact their physically close nodes. A requester can
resolve most of its resource requests within its cluster, and it
only needs to contact physically close nodes for the resource,
resulting in much lower cost. SWORD and Mercury do not
consider the proximity in the resource management process,
so they generate much higher cost than HCO and HCO/o.
The results also show that HCO/o leads to higher cost than
HCO when the number of resources in one request is larger
than 1 in the resource discovery phase and in all cases in the
resource clustering phase. This implies that the cluster-token
forwarding algorithm is effective in reducing communication
cost by combing a number of messages into one in routing. It
is intriguing to see that the cost of HCO is higher than HCO/o
when the number of resources in each request equals to 1 in
the resource discovery phase, but the cost of HCO is lower
than HCO/o in this case in the resource clustering phase. This
is due to the reason that when there are only a few requests
in resource discovery, HCO/o directly route the requests to
their destination, while HCO still circulates a token along an
entire cluster hop by hop, generating more visited nodes than
HCO/o. In the resource clustering phase, each node in a cluster
needs to report its available resources, then the cluster-token
forwarding algorithm shows its advantage by combining the
messages from all nodes in a cluster together in routing.

In a resource discovery method, the number of hops required
to forward a message is determined by the time complexity
(i.e., lookup path length) of its underlying overlay. The time
complexity of cycloid is O(d) [8] while that of Chord is
O(log n) [5], where n is the number of nodes in the system.
Figure 7(a) and (b) plot the logical communication cost versus
the number of resources in a query for resource discovery
and clustering, respectively. We can observe that MAAN
renders tremendously higher logical communication cost than
SWORD and HCO. MAAN needs two lookups for each
request, so it produces twice the number of visited nodes.
HCO incurs less cost than Mercury and SWORD. In Mercury
and SWORD, request forwarding is performed on a system-
wide scope involving all nodes in the system. The average
lookup path length is log n/2 = 6 in Chord. In contrast,
due to HCO’s locality-preserving feature, a node can locate
resources in its cluster with smaller scope. Since the maximum
number of nodes in a cluster in HCO is 11, the average
maximum lookup path length is log d/2 = 5.5. Therefore,
HCO generates shorter request path length. A request with m
resources needs m lookups, which amplifies the difference of
lookup cost between Mercury/SWORD and HCO. With the
cluster-token forwarding algorithm, HCO integrates messages
within a cluster into one message, leading to less visited
nodes and a lower communication cost. We can also see that
the cost of HCO is higher than HCO/o when the number

10

90
100

of

%
)

70
80
90

100
nt

ag
e

of

rc
es

 (
%

)

40
50
60
70
80
90

100
e

pe
rc

en
ta

ge
 o

f
d

re
so

ur
ce

s
(%

)

20
30
40
50
60
70
80
90

100
F

 o
f t

he
 p

er
ce

nt
ag

e
of

ov

er
ed

 r
es

ou
rc

es
 (

%
)

SWORD
Mercury

0
10
20
30
40
50
60
70
80
90

100
C

D
F

 o
f t

he
 p

er
ce

nt
ag

e
of

di

sc
ov

er
ed

 r
es

ou
rc

es
 (

%
)

SWORD
Mercury
MAAN
HCO

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20

C
D

F
 o

f t
he

 p
er

ce
nt

ag
e

of

di
sc

ov
er

ed
 r

es
ou

rc
es

 (
%

)

Physical distance by hops

SWORD
Mercury
MAAN
HCO

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20

C
D

F
 o

f t
he

 p
er

ce
nt

ag
e

of

di
sc

ov
er

ed
 r

es
ou

rc
es

 (
%

)

Physical distance by hops

SWORD
Mercury
MAAN
HCO

(a) “ts5k-large”

100

70
80
90

100

n
ta

g
e

 o
f

ce
s

(%
)

40
50
60
70
80
90

100

e
 p

e
rc

e
n

ta
g

e
 o

f
d

 r
e

so
u

rc
e

s
(%

)

SWORD

20
30
40
50
60
70
80
90

100

F
 o

f
th

e
 p

e
rc

e
n

ta
g

e
 o

f
co

ve
re

d
 r

e
so

u
rc

e
s

(%
)

SWORD
Mercury
MAAN

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20

C
D

F
 o

f
th

e
 p

e
rc

e
n

ta
g

e
 o

f
d

is
co

ve
re

d
 r

e
so

u
rc

e
s

(%
)

SWORD
Mercury
MAAN
HCO

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20

C
D

F
 o

f
th

e
 p

e
rc

e
n

ta
g

e
 o

f
d

is
co

ve
re

d
 r

e
so

u
rc

e
s

(%
)

Physical distance by hops

SWORD
Mercury
MAAN
HCO

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20

C
D

F
 o

f
th

e
 p

e
rc

e
n

ta
g

e
 o

f
d

is
co

ve
re

d
 r

e
so

u
rc

e
s

(%
)

Physical distance by hops

SWORD
Mercury
MAAN
HCO

(b) “ts5k-small”

Fig. 5. Locality-preserving resource discovery.

100

10000

1000000

1 2 3 4 5

Resources in each request

P
hy

si
ca

l c
om

m
un

ic
at

io
n

co
st

 fo
r

re
so

ur
ce

 d
is

co
ve

ry

SWORD
Mercury
MAAN
HCO
HCO/o

(a) Resource discovery

100

10000

1000000

100000000

1 2 3 4 5

Resources in each node

P
hy

si
ca

l c
om

m
un

ic
at

io
n

co
st

 fo
r

re
so

ur
ce

 c
lu

st
er

in
g

SWORD
Mercury
MAAN
HCO
HCO/o

(b) Resource clustering

Fig. 6. Physical communication cost.

1000

10000

100000

1 2 3 4 5

Resources in each request

Lo
gi

ca
l c

om
m

un
ic

at
io

n
co

st
 fo

r
re

so
ur

ce
 d

is
co

ve
ry

SWORD
Mercury
MAAN
HCO
HCO/o

(a) Resource discovery

1000

10000

100000

1000000

1 2 3 4 5

Resources in each node

Lo
gi

ca
l c

om
m

un
ic

at
io

n
co

st
 fo

r
re

so
ur

ce
 c

lu
st

er
in

g
SWORD
Mercury
MAAN
HCO
HCO/o

(b) Resource clustering

Fig. 7. Logical communication cost.

2000000
SWORD
Mercury

1600000

2000000

on
 c

os
t

SWORD
Mercury
MAAN
HCO
HCO/o

1200000

1600000

2000000

m
un

ic
at

io
n

co
st

SWORD
Mercury
MAAN
HCO
HCO/o

800000

1200000

1600000

2000000

co
m

m
un

ic
at

io
n

co
st

SWORD
Mercury
MAAN
HCO
HCO/o

400000

800000

1200000

1600000

2000000

hy
si

ca
l c

om
m

un
ic

at
io

n
co

st

SWORD
Mercury
MAAN
HCO
HCO/o

0

400000

800000

1200000

1600000

2000000

1000 1500 2000 2500 3000

P
hy

si
ca

l c
om

m
un

ic
at

io
n

co
st

The number of resource requests

SWORD
Mercury
MAAN
HCO
HCO/o

0

400000

800000

1200000

1600000

2000000

1000 1500 2000 2500 3000

P
hy

si
ca

l c
om

m
un

ic
at

io
n

co
st

The number of resource requests

SWORD
Mercury
MAAN
HCO
HCO/o

(a) Physical communication cost

200000
SWORD
Mercury

160000

200000

on
 c

os
t

SWORD
Mercury
MAAN
HCO
HCO/o

120000

160000

200000

un
ic

at
io

n
co

st

SWORD
Mercury
MAAN
HCO
HCO/o

80000

120000

160000

200000

co
m

m
un

ic
at

io
n

co
st

SWORD
Mercury
MAAN
HCO
HCO/o

40000

80000

120000

160000

200000

og
ic

al
 c

om
m

un
ic

at
io

n
co

st

SWORD
Mercury
MAAN
HCO
HCO/o

0

40000

80000

120000

160000

200000

1000 1500 2000 2500 3000

Lo
gi

ca
l c

om
m

un
ic

at
io

n
co

st

The number of resource requests

SWORD
Mercury
MAAN
HCO
HCO/o

0

40000

80000

120000

160000

200000

1000 1500 2000 2500 3000

Lo
gi

ca
l c

om
m

un
ic

at
io

n
co

st

The number of resource requests

SWORD
Mercury
MAAN
HCO
HCO/o

(b) Logical communication cost

Fig. 8. Communication cost for resource discovery.

1
2
3
4
5
6
7

d
 d
e
v
ia
ti
o
n
 o
f
n
o
d
e

is
ta
n
c
e
s
 i
n
 a
 c
lu
st
e
r

Ts5k‐large

5 landmarks 15 landmarks 25 landmarks

‐1
0
1
2
3
4
5
6
7

0 20 40 60 80 100S
ta
n
d
a
rd
 d
e
v
ia
ti
o
n
 o
f
n
o
d
e

p
h
y
s
ic
a
l
d
is
ta
n
c
e
s
in
 a
 c
lu
st
e
r

Cluster index

Ts5k‐large

5 landmarks 15 landmarks 25 landmarks

(a) “ts5k-large”

12

e

e
r

Ts5k‐small

5 landmarks 15 landmarks 25 landmarks

8

10

12

o
f
n
o
d
e

a
 c
lu
st
e
r

Ts5k‐small

5 landmarks 15 landmarks 25 landmarks

4

6

8

10

12

v
ia
ti
o
n
 o
f
n
o
d
e

n
c
e
s
 i
n
 a
 c
lu
st
e
r

Ts5k‐small

5 landmarks 15 landmarks 25 landmarks

0

2

4

6

8

10

12

d
a
rd
 d
e
v
ia
ti
o
n
 o
f
n
o
d
e

c
a
l
d
is
ta
n
c
e
s
 i
n
 a
 c
lu
st
e
r

Ts5k‐small

5 landmarks 15 landmarks 25 landmarks

‐2

0

2

4

6

8

10

12

0 100 200 300 400 500

S
ta
n
d
a
rd
 d
e
v
ia
ti
o
n
 o
f
n
o
d
e

p
h
y
s
ic
a
l
d
is
ta
n
c
e
s
 i
n
 a
 c
lu
st
e
r

Cluster index

Ts5k‐small

5 landmarks 15 landmarks 25 landmarks

‐2

0

2

4

6

8

10

12

0 100 200 300 400 500

S
ta
n
d
a
rd
 d
e
v
ia
ti
o
n
 o
f
n
o
d
e

p
h
y
s
ic
a
l
d
is
ta
n
c
e
s
 i
n
 a
 c
lu
st
e
r

Cluster index

Ts5k‐small

5 landmarks 15 landmarks 25 landmarks

‐2

0

2

4

6

8

10

12

0 100 200 300 400 500

S
ta
n
d
a
rd
 d
e
v
ia
ti
o
n
 o
f
n
o
d
e

p
h
y
s
ic
a
l
d
is
ta
n
c
e
s
 i
n
 a
 c
lu
st
e
r

Cluster index

Ts5k‐small

5 landmarks 15 landmarks 25 landmarks

(b) “ts5k-small”

Fig. 9. Effectiveness of landmark clustering.

of resources in each request is 1 and 2 due to the same
reason as Figure 6(a). In Figure 7(b), HCO has lower cost
than HCO/o in all cases since all nodes in a cluster need
to report available resources and combining their messages
saves the cost. These experimental results are consistent with
Theorem 4.2, and confirm the effectiveness of the cluster-token
forwarding algorithm.

Figure 8(a) demonstrates the total physical communication
cost versus the number of resource requests. In this
experiment, each request has five resources and the messages
for resource requesting and reporting are combined together.
The figure shows that MAAN generates the highest
physical communication cost. Mercury and SWORD produce
approximately the same cost. HCO and HCO/o produce
significantly lower cost than others, with HCO producing the
least cost. The results are consistent with Figure 6(a) due to the
same reasons. MAAN generates many more messages for the
same number of resource requests since it needs two messages
for one query. MAAN, Mercury and SWORD produce higher
communication cost than HCO due to two reasons. First, they
search resources in a system-wide scope while HCO searches
resources in a cluster. Second, they do not take node proximity
into account, thus nodes may communicate with nodes that
are physically far away, while HCO considers proximity. In
HCO and HCO/o, nodes communicate with physically close
nodes for resource discovery, leading to much less physical
communication cost. Also, by employing the cluster-token
forwarding algorithm that combines both resource reporting
and requesting messages together in message transmissions,

HCO reduces the logical communication cost of HCO/o.
In order to see the effect of the number of messages and

the searching scope on the physical communication cost, we
measured the total logical communication cost and plot the
results in Figure 8(b) versus the number of resource requests.
The figure shows that MAAN generates the highest logical
communication cost. Mercury and SWORD produce approxi-
mately the same cost. HCO and HCO/o produce significantly
lower cost than others, with HCO producing the least cost. The
results are consistent with Figure 7(a) due to the same reasons
except the proximity-consideration. Comparing Figure 8(b)
with Figure 8(a), we find that HCO and HCO/o reduce more
physical communication cost of other schemes than the logical
communication cost. This is because HCO and HCO/o further
consider proximity while other schemes do not consider it.

5.3 Overhead in Grid Resource Management
The resource descriptors need to be maintained in directory
nodes. Resource descriptors of available resources are dis-
tributed among nodes for resource discovery. Figure 10(a)
plots the total number of stored resource descriptors in the
system versus the number of descriptors of available resources.
The number of descriptors of available resources was varied
from 4096 × c (c ∈ [1, 5]). We can observe that MAAN
generates twice the number of stored resource descriptors
of other resource management schemes, and other schemes
produce the same number of stored resource descriptors.
For one resource descriptor of one available resource, HCO,
SWORD and Mercury store one resource descriptor in the
system. HCO stores resource descriptors based on resource
attributes and resource owners’ physical locations. SWORD
stores resource descriptors based on resource attributes. Mer-
cury keeps multiple DHTs and stores resource descriptors to
the corresponding DHT based on resource values. MAAN
stores two copies of resource descriptor in the system for each
resource descriptor based on resource attributes and values.
Consequently, it doubles the stored resource descriptors of
other schemes. Therefore, MAAN needs much more cost for
resource descriptor maintenance than other schemes.

Figure 9 (a) and (b) show the standard deviation of node
physical distances in each cluster in “ts5k-large” and “ts5k-

11

50000
e

HCO
SWORD

40000

50000
es

ou
rc

e
HCO
SWORD
Mercury
MAAN

30000

40000

50000
st

or
ed

 r
es

ou
rc

e
cr

ip
to

rs
HCO
SWORD
Mercury
MAAN

20000

30000

40000

50000
er

 o
f s

to
re

d
re

so
ur

ce

de
sc

rip
to

rs
HCO
SWORD
Mercury
MAAN

10000

20000

30000

40000

50000
N

um
be

r
of

 s
to

re
d

re
so

ur
ce

de

sc
rip

to
rs

HCO
SWORD
Mercury
MAAN

0

10000

20000

30000

40000

50000

1 2 3 4 5

N
um

be
r

of
 s

to
re

d
re

so
ur

ce

de
sc

rip
to

rs

The number of resource descriptors (x4096)

HCO
SWORD
Mercury
MAAN

0

10000

20000

30000

40000

50000

1 2 3 4 5

N
um

be
r

of
 s

to
re

d
re

so
ur

ce

de
sc

rip
to

rs

The number of resource descriptors (x4096)

HCO
SWORD
Mercury
MAAN

(a) Total num of resource descriptors

1

10

100

1000

10000

1 2 3 4 5

D
ire

ct
or

y
si

ze
 o

f a
 d

ire
ct

or
y

 n
od

e

The number of resource descriptors (x4096)

HCO SWORD
Mercury MAAN
HCO (ts5k-large) HCO (ts5k-small)

(b) Directory size

Fig. 10. Resource descriptor maintenance cost.

Mercury SWORD MAAN LORM
128 77 7 7 7
256 88 8 8
512 99 9 9

1024 110 10 10
2048 121 11 11
4096 132 12 124096 132 12 12

LORM Hercules
24 7 1424 7 14
64 7 14

160 7 14
384 7 14
896 7 14

2048 7 14
4096 7

400000

500000

600000

n
ce

 c
o
st

40000
50000
60000

n
te

n
a
n
ce

t

Mercury SWORD MAAN HCO
128 540672 49152 49152 28672
256 88 8 8
512 99 9 9

1024 110 10 10
2048 121 11 11
4096 132 12 12 7100000

200000

300000

400000

500000

600000

ve
rl
a
y

m
a
in

te
n
a
n
ce

 c
o
st

0
10000
20000
30000
40000
50000
60000

SWORD MAAN HCO

O
ve

rl
a
y

m
a
in

te
n
a
n
ce

co

st

4096 132 12 12 7

0

100000

200000

300000

400000

500000

600000

Mercury SWORD MAAN HCO

O
ve

rl
a
y

m
a
in

te
n
a
n
ce

 c
o
st

0
10000
20000
30000
40000
50000
60000

SWORD MAAN HCO

O
ve

rl
a
y

m
a
in

te
n
a
n
ce

co

st

Fig. 11. Overlay mainte-
nance cost.

1

1.2

e
s

0.6

0.8

1

1.2

 o
f
n
o
d
e
s

0 2

0.4

0.6

0.8

1

1.2

p
e
rc
e
n
t
o
f
n
o
d
e
s

HCO (ts5k‐large)

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25C
D
F
 o
f
p
e
rc
e
n
t
o
f
n
o
d
e
s

HCO (ts5k‐large)

HCO (ts5k‐small)
0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25C
D
F
 o
f
p
e
rc
e
n
t
o
f
n
o
d
e
s

Physical distance between two neighbor nodes in a
cluster

HCO (ts5k‐large)

HCO (ts5k‐small)
0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25C
D
F
 o
f
p
e
rc
e
n
t
o
f
n
o
d
e
s

Physical distance between two neighbor nodes in a
cluster

HCO (ts5k‐large)

HCO (ts5k‐small)
0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25C
D
F
 o
f
p
e
rc
e
n
t
o
f
n
o
d
e
s

Physical distance between two neighbor nodes in a
cluster

HCO (ts5k‐large)

HCO (ts5k‐small)

Fig. 12. Effectiveness of
node clustering.

small”, respectively. Here, a cluster means a group of nodes
with the same Hilbert number. Suppose a cluster has m
nodes, its standard deviation of node distances is calculated
by

√∑m
i=1(Di −D)2/m, where D is the physical distance

between a pair of nodes and D is the average of D. In both
figures, we see that 5 landmarks lead to high deviation values
for most clusters. 25 landmarks and 15 landmarks generate
many clusters with 0 and low deviation values. Also, 25
landmarks produce more clusters with lower deviations than
15 landmarks. The experiment results confirm that more land-
marks generate more accurate node clustering, and vice versa.

Directory size is a metric of the balanced distribution of
load. It is desirable to distribute the resource information
among nodes evenly so that the information maintenance over-
head, as well as the load for processing resource requests, can
be distributed among nodes in order to avoid bottlenecks. We
considered 1 to 5 resource descriptors for available resources
per node, and measured the median, 1st and 99.9th percentiles
of directory sizes of directory nodes.

Figure 10(b) plots the measured results versus the
total number of resource descriptors. In the figure, HCO
represents the HCO when nodes are evenly distributed in
the geographical area. “HCO (ts5k-large)” and “HCO (ts5k-
small)” respectively represent the HCO in the “ts5k-large”
and “ts5k-small” topologies where nodes are not evenly
distributed. In “ts5k-large”, there are 90 clusters and the
maximum, middle and minimum number of nodes in a cluster
is 331, 6 and 1, respectively. In “ts5k-small”, there are 470
clusters and the maximum, middle and minimum number of
nodes in a cluster is 256, 3 and 1, respectively.

Three observations can be made from the figure. First, the
median size of SWORD is much higher than others. SWORD
clusters descriptors into 11 nodes responsible for the 11
resource types. Thus, each of the 11 nodes has large directory
size while other nodes do not have workload, leading to serious
load imbalance. This is confirmed by the experiment results
showing that all other nodes have no descriptors. Second,
MAAN exhibits significantly larger variance than others, and
its 99.9 percentile is similar to SWORD’s. MAAN stores a de-
scriptor twice based on resource type and attribute respectively.
Thus, like SWORD, MAAN assigns a much higher workload
to the 11 nodes. Because the hash values of resource attributes
are widely spread along the DHT ID space, the descriptors are
also distributed among other nodes. As a result, some nodes
have much fewer descriptors and the 11 nodes have much more
descriptors, resulting in load imbalance. Third, Mercury and
HCO produce much smaller median directory sizes and lower
variance. Mercury uses a DHT for each resource, and classifies
resource descriptors based on attribute in each DHT, which
helps to distribute resource descriptors in balance. By taking
advantage of the hierarchical structure of cycloid, HCO pools

the descriptors in a cluster and allocates the descriptors to the
cluster nodes based on resource type. We also see that “HCO
(ts5k-large)” and “HCO (ts5k-small)” produce higher median,
1st and 99.9th percentile values than HCO. It is because
in these two topologies, nodes are not evenly distributed in
the geographical area. Thus, some clusters have much more
nodes than others, leading to unbalanced resource directory
distribution. We find that their 99.9th percentile values are
still significantly lower than SWORD and MAAN. Therefore,
Mercury and HCO can achieve a more balanced distribution
of workload.

Figure 11 plots the overlay maintenance cost in different
resource management schemes. The results show that Mercury
generates a significantly higher maintenance cost than others.
This implies that each node in Mercury maintains more
neighbors than others. Recall that Mercury has multiple DHT
overlays with each DHT overlay responsible for one resource.
Therefore, a node has a routing table for each DHT, and has
out-degree equals to the routing table size multiplied by the
number of DHT overlays. Thus, each node needs to probe
many more neighbors to maintain its outlinks in Mercury
than others. The figure inside Figure 11 shows the overlay
maintenance cost of MAAN, SWORD and HCO. We can see
that HCO leads to much less overlay maintenance cost than
MAAN and SWORD. This is because MAAN and SWORD
are built on Chord with log n out-degree per node. HCO
is built on cycloid with constant 7 out-degree. The results
imply that HCO has a higher scalability with lower overlay
maintenance cost than other resource management schemes.

5.4 Effectiveness of Node Clustering
Figure 12 shows the CDF of the percent of nodes versus the
physical distance by hops between two neighbor nodes in a
cluster in “ts5k-large” and “ts5k-small.” In both topologies,
the distance between two nodes ranges from 0-22 physical
hops. We see that in “ts5k-large” where nodes are from several
big sub domains, 83% neighbor nodes are within 2 physical
hop distance, and only 1.5% neighbor nodes are beyond 10
hops. In “ts5k-small” where nodes are scattered throughout the
network, 92% neighbor nodes are in 10 hops, and 7% neighbor
nodes are beyond 10 hops. The results show that using the
landmarks and Hilbert curve to calculate node proximity can
cluster physically close nodes with high accuracy. Hence,
HCO generates lower overhead than other resource discovery
methods, since physically close node communicate each other
in overlay maintenance and resource querying.

5.5 Performance in a Dynamic Environment
In this experiment, we ran each trial of the simulation for
20T simulated seconds, where T is a parameterized resource
clustering period, which was set to 60 seconds. We ranged the
node arrival/departure time rate from 0.1 to 0.5 with 0.1 step

12

160000r SWORD

120000

140000

160000
n
 c

o
st

 f
o
r

e
ry

SWORD
MAAN
Mercury

80000

100000

120000

140000

160000
u
n
ic

a
tio

n
 c

o
st

 f
o
r

e
 d

is
co

ve
ry

SWORD
MAAN
Mercury
HCO
HCO/o

40000

60000

80000

100000

120000

140000

160000
l c

o
m

m
u
n
ic

a
tio

n
 c

o
st

 f
o
r

e
so

u
rc

e
 d

is
co

ve
ry

SWORD
MAAN
Mercury
HCO
HCO/o

0

20000

40000

60000

80000

100000

120000

140000

160000
L
o
g
ic

a
l c

o
m

m
u
n
ic

a
tio

n
 c

o
st

 f
o
r

re
so

u
rc

e
 d

is
co

ve
ry

SWORD
MAAN
Mercury
HCO
HCO/o

0

20000

40000

60000

80000

100000

120000

140000

160000

0.1 0.2 0.3 0.4 0.5

L
o
g
ic

a
l c

o
m

m
u
n
ic

a
tio

n
 c

o
st

 f
o
r

re
so

u
rc

e
 d

is
co

ve
ry

Node interarrival/interdeparture rate

SWORD
MAAN
Mercury
HCO
HCO/o

0

20000

40000

60000

80000

100000

120000

140000

160000

0.1 0.2 0.3 0.4 0.5

L
o
g
ic

a
l c

o
m

m
u
n
ic

a
tio

n
 c

o
st

 f
o
r

re
so

u
rc

e
 d

is
co

ve
ry

Node interarrival/interdeparture rate

SWORD
MAAN
Mercury
HCO
HCO/o

(a) Resource request cost (d=11)

1.2
HCO/o

1

1.2

ta
g
e
 o
f

)

HCO/o
Mercury

MAAN

0.6

0.8

1

1.2

 p
e
rc
e
n
ta
g
e
 o
f

sa
g
e
s
(%

)

SWORD

Mercury

HCO/o

HCO

SWORD

Mercury
MAAN

0.4

0.6

0.8

1

1.2

F
 o
f
th
e
 p
e
rc
e
n
ta
g
e
 o
f

m
e
ss
a
g
e
s
(%

)

SWORD

Mercury

MAAN

HCO

HCO/o

HCO

SWORD

Mercury
MAAN

0

0.2

0.4

0.6

0.8

1

1.2

C
D
F
 o
f
th
e
 p
e
rc
e
n
ta
g
e
 o
f

m
e
ss
a
g
e
s
(%

)

SWORD

Mercury

MAAN

HCO

HCO/o

HCO/o

HCO

SWORD

Mercury
MAAN

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40

C
D
F
 o
f
th
e
 p
e
rc
e
n
ta
g
e
 o
f

m
e
ss
a
g
e
s
(%

)

Logical distance by hops

SWORD

Mercury

MAAN

HCO

HCO/o

HCO/o

HCO

SWORD

Mercury
MAAN

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40

C
D
F
 o
f
th
e
 p
e
rc
e
n
ta
g
e
 o
f

m
e
ss
a
g
e
s
(%

)

Logical distance by hops

SWORD

Mercury

MAAN

HCO

HCO/o

HCO/o

HCO

SWORD

Mercury
MAAN

(b) Percentage of messages vs. logical
distances (d=11)

160000r SWORD

120000

140000

160000

n
 c

o
st

 f
o
r

e
ry

SWORD
MAAN
Mercury

80000

100000

120000

140000

160000

u
n
ic

a
tio

n
 c

o
st

 f
o
r

e
 d

is
co

ve
ry

SWORD
MAAN
Mercury
HCO
HCO/o

40000

60000

80000

100000

120000

140000

160000

l c
o
m

m
u
n
ic

a
tio

n
 c

o
st

 f
o
r

e
so

u
rc

e
 d

is
co

ve
ry

SWORD
MAAN
Mercury
HCO
HCO/o

0

20000

40000

60000

80000

100000

120000

140000

160000

L
o
g
ic

a
l c

o
m

m
u
n
ic

a
tio

n
 c

o
st

 f
o
r

re
so

u
rc

e
 d

is
co

ve
ry

SWORD
MAAN
Mercury
HCO
HCO/o

0

20000

40000

60000

80000

100000

120000

140000

160000

0.1 0.2 0.3 0.4 0.5

L
o
g
ic

a
l c

o
m

m
u
n
ic

a
tio

n
 c

o
st

 f
o
r

re
so

u
rc

e
 d

is
co

ve
ry

Node interarrival/interdeparture rate

SWORD
MAAN
Mercury
HCO
HCO/o

0

20000

40000

60000

80000

100000

120000

140000

160000

0.1 0.2 0.3 0.4 0.5

L
o
g
ic

a
l c

o
m

m
u
n
ic

a
tio

n
 c

o
st

 f
o
r

re
so

u
rc

e
 d

is
co

ve
ry

Node interarrival/interdeparture rate

SWORD
MAAN
Mercury
HCO
HCO/o

(c) Resource request cost (d=9)

1.2
HCO/o

1

1.2

ta
g
e
 o
f

)

HCO/o
MAAN

0.6

0.8

1

1.2

 p
e
rc
e
n
ta
g
e
 o
f

sa
g
e
s
(%

)

SWORD

Mercury

HCO/o

HCO

SWORD
Mercury

MAAN

0.4

0.6

0.8

1

1.2

F
 o
f
th
e
 p
e
rc
e
n
ta
g
e
 o
f

m
e
ss
a
g
e
s
(%

)

SWORD

Mercury

MAAN

HCO

HCO/o

HCO

SWORD
Mercury

MAAN

0

0.2

0.4

0.6

0.8

1

1.2

C
D
F
 o
f
th
e
 p
e
rc
e
n
ta
g
e
 o
f

m
e
ss
a
g
e
s
(%

)

SWORD

Mercury

MAAN

HCO

HCO/o

HCO/o

HCO

SWORD
Mercury

MAAN

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40

C
D
F
 o
f
th
e
 p
e
rc
e
n
ta
g
e
 o
f

m
e
ss
a
g
e
s
(%

)

Logical distance by hops

SWORD

Mercury

MAAN

HCO

HCO/o

HCO/o

HCO

SWORD
Mercury

MAAN

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40

C
D
F
 o
f
th
e
 p
e
rc
e
n
ta
g
e
 o
f

m
e
ss
a
g
e
s
(%

)

Logical distance by hops

SWORD

Mercury

MAAN

HCO

HCO/o

HCO/o

HCO

SWORD
Mercury

MAAN

(d) Percentage of messages vs. logical
distances (d=9)

Fig. 13. Efficiency of resource management schemes in dynamism.

size, and generated 5000 resource requests randomly. For in-
stance, there was one node join and one node departure/failure
every 2.5 seconds at rate of 0.4. The resource join/departure
rate was modelled by a Poisson process with a rate of 0.4 as
in [8]; the resource type in requests is randomly distributed.

In this experiment, the nodes are randomly distributed. In
DHTs, a node has a leaf set recording its predecessor(s) and
successor(s). When a node departs from the system gracefully,
it notifies the nodes in its leaf set. Since DHTs is churn-
resilient with their stabilization mechanism. In order to test the
churn-resilience of the schemes, the stabilization was turned
off in the experiment. Figure 13(a) shows the logical com-
munication cost of each scheme when the cycloid dimension
d = 11. The cost is for both successful and unsuccessful
resource requests. We observe that the cost of each scheme
follows MAAN>SWORD≈Mercury>HCO/o≈HCO. In HCO
and HCO/o, a node’s request is forwarded to the directory
node of the resource in the same cluster. In graceful node
departures, the structure of each cluster is always maintained.
Since the system has 4096 nodes and around 211 = 2048
clusters, the number of nodes in each cluster is small. Thus, a
request always travels only a few nodes in one cluster before
arriving at the directory node, leading to low cost. Since the
routing path is not affected by the node joins and departures,
the cost of HCO and HCO/o remain nearly constant.

In contract, in MAAN, SWORD and Mercury, a request
needs to travel in a system-wide scope through node routing
table. Because the routing tables are not updated in node join
and departures, a request needs to travel more hops than in
a static environment. Fast node departures and joins lead to
more outdated neighbors in node routing tables and hence
longer path lengths. Thus, MAAN, SWORD and Mercury
produce higher logical communication cost than HCO. Also,
as the node interarrival/interdepature rate increases, their costs
increase. MAAN has much higher cost than others because it
sends two messages for one resource request.

We also see that HCO/o and HCO generate approximately
the same cost. HCO combines the requests in a cluster into
one message. When there are few nodes in a cluster (around
4096/2048=2), the message combination cannot reduce the
cost. For example, in a cluster with two nodes, the circulation
of a message takes two hops, while a message only takes one
hop to arrive at the other node. At a result, HCO cannot reduce
the cost of HCO/o.

Table 3 illustrates the number of request routing failures.
It shows that the number of failures of MAAN, SWORD
and Mercury increases as the node interarrival/interdeparture
rate increases. When a node cannot find a neighbor to route
a request, a routing failure occurs. Faster node joins and
departures make more nodes in the routing tables outdated,
leading to more routing failures. Since the leaf sets of nodes

TABLE 3
The number of request routing failures.

Rate MAAN SWORD Mercury HCO HCO/o
0.1 0 0 7 0 0
0.2 53 11 15 0 0
0.3 98 43 57 0 0
0.4 157 152 152 0 0
0.5 261 176 208 0 0

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5
Node interarrival/interdeparture rate

R
es

ou
rc

e
re

qu
st

 s
uc

ce
ss

 r
at

e

SWORD
MAAN
Mercury
HCO

(a) Request success rate

800

600

700

800

o
d
e
s
 f
o
r

s
ts

400

500

600

700

800

ro
b
e
d
 n

o
d
e
s
 f
o
r

e
 r

e
q
u
e
s
ts

200

300

400

500

600

700

800

b
e
r

o
f
p
ro

b
e
d
 n

o
d
e
s
 f
o
r

re
s
o
u
rc

e
 r

e
q
u
e
s
ts

SWORD
MAAN

0

100

200

300

400

500

600

700

800

N
u
m

b
e
r

o
f
p
ro

b
e
d
 n

o
d
e
s
 f
o
r

re
s
o
u
rc

e
 r

e
q
u
e
s
ts

SWORD
MAAN
Mercury
HCO

0

100

200

300

400

500

600

700

800

0.1 0.2 0.3 0.4 0.5

N
u
m

b
e
r

o
f
p
ro

b
e
d
 n

o
d
e
s
 f
o
r

re
s
o
u
rc

e
 r

e
q
u
e
s
ts

Node interarrival/interdeparture rate

SWORD
MAAN
Mercury
HCO

0

100

200

300

400

500

600

700

800

0.1 0.2 0.3 0.4 0.5

N
u
m

b
e
r

o
f
p
ro

b
e
d
 n

o
d
e
s
 f
o
r

re
s
o
u
rc

e
 r

e
q
u
e
s
ts

Node interarrival/interdeparture rate

SWORD
MAAN
Mercury
HCO

(b) The num. of probed nodes

Fig. 14. Effectiveness of resource management schemes
in dynamism.
are always updated and the routing in HCO is within a cluster
most of the time, leading to 0 failures in both HCO and
HCO/o.

To further investigate the effect of node dynamism on
the logical communication cost, we depict the CDF of the
percentage of messages versus the logical distances traveled
by the messages in Figure 13(b). The figure shows that most
messages travel short logical distances in HCO and HCO/o,
but travel long logical distances in other schemes. Specifically,
99% of messages travel 2 hops in HCO/o, travel 5 hops
in HCO, travel 22 hops in SWORD, 21 hops in Mercury,
and 26 hops in MAAN. The results confirm the dynamism-
resilience of HCO and HCO/o due to their smaller-scope
searching within clusters. This saves the routing cost and
mitigate the adverse influence of dynamism on routing as
shown in Figure 13(a). On the contrary, in MAAN, SWORD
and Mercury, requests must be forwarded through routing
tables which cannot be updated without stabilization, leading
to longer routing path lengths. Messages in HCO/o travel
longer distances than HCO on average due to the same reason
as explained in Figure 13(a).

We set cycloid dimension d = 9 and repeat the same
experiments in order to see the effect of node density in
a cluster on the logical communication cost. With d = 9
and hence around 26 = 512 clusters, the number of nodes
in a cluster is 4096/512=8 on average. Figure 13(c) shows
the logical communication cost of each scheme. Comparing
Figure 13(c) to Figure 13(a), we find that the costs of MAAN,
SWORD and Mercury keep nearly the same. This is because
their costs are mainly affected by the long path lengths
in system-wise routing. We notice that the cost of HCO/o
increases from around 3000 when d= 11 to around 9000 when
d= 9, while that of HCO increases from around 4200 to 5000.

13

To analyze the reason, we drew Figure 13(d).
The figure shows that more percentages of requests travel

longer distance in HCO/o and HCO. Specifically, 93% of
messages travel 3 hops and 100% of messages travel 4 hops in
HCO/o, 27% of messages travel 7 hops and 100% of messages
travel 9 hops in HCO. This is because when the number of
nodes in a cluster is 8 on average, a request travels 4 hops
before arriving at a destination in the cluster, and travels 8
hops for a cluster circulation on average. Also, we see there
is no request that is forwarded within 4 hops in HCO. This
implies that the number of nodes in a cluster is at least 5
hops. In HCO/o, each request needs to travel 0 − 4 hops.
HCO/o combines the requests in one cluster into one message
and each message travels 5 − 9 hops. Thus, HCO reduces
the logical communication cost by reducing the number of
messages in routing. In a cluster with three nodes, a message
needs to circulate 3 hops in HCO, and the total number of hops
traveled by all requests in HCO/o is also 3. When the number
of nodes in a cluster is larger than 3, the number of traveling
hops in HCO is less than that in HCO/o. This demonstrates that
the cluster-token forwarding algorithm is effective in reducing
cost with a high node density (>3) in a cluster.

Figure 14(a) plots the resource request success rates against
node arrival/departure rate. Because the performance of HCO
and HCO/o are similar, we use HCO to represent both. The
success rate decreases monotonically in all resource manage-
ment schemes. MAAN and SWORD incur lower success rates
than HCO and Mercury. Because of node and resource dy-
namism, some requests may not be forwarded to the directory
node having the requested resources. More requests fail to
arrive at their destinations when the node arrival/departure rate
increases, leading to a decrease in the success rate. HCO and
Mercury distribute resource descriptors among all nodes in
the system, while MAAN and SWORD mainly depend on 11
nodes as shown in Figure 11(c). Relying on a small number
of directory nodes increases the possibility of a request failure
because only one node departure in the directory nodes will
result in the loss of a large number of resource descriptors,
resulting in sharp drop-off of the success rate. By amortizing
the failure risk among a large number of directory nodes, HCO
and Mercury lead to higher success rates.

The efficiency performance in dynamism is also reflected
in the number of probed nodes for resource requests. When
a request arrives at its destination, if the destination does
not have the descriptors of the requested resource, then its
nearby nodes are probed for the requested resource. This is
because the destination may be a newly joined node that has
not received its responsible descriptors from other nodes, or it
may be a departing node that has transferred its descriptors to
its nearby nodes but other nodes have not updated their leaf
sets for its departure. Also, in HCO, other clusters need to be
probed when a request cannot be satisfied in the requester’s
cluster. Figure 14(d) shows the number of probed nodes for
requests of each resource management scheme. Because the
performance of HCO and HCO/o are similar, we use HCO
to represent both. We can see that the numbers are almost
constant in different dynamism degrees since node leaf sets
are always updated. SWORD and Mercury probe fewer nodes
than HCO. This is expected because HCO has an extra probing
phase to probe nodes for resources. MAAN has to probe
more nodes than others due to its two lookups per query.
These experimental results verify the superior performance of
Mercury and HCO, compared with MAAN and SWORD in
handling network dynamism.

700
HCO

500

600

700

o
u
rc

e

e
s

HCO
Deadline-driven HCO

300

400

500

600

700

d
u
e
 r

e
s
o
u
rc

e

e
s
p
o
n
s
e
s

HCO
Deadline-driven HCO

200

300

400

500

600

700

o
f
o
v
e
rd

u
e
 r

e
s
o
u
rc

e

q
u
e
s
t
re

s
p
o
n
s
e
s

HCO
Deadline-driven HCO

0

100

200

300

400

500

600

700

N
u
m

 o
f
o
v
e
rd

u
e
 r

e
s
o
u
rc

e

re
q
u
e
s
t
re

s
p
o
n
s
e
s

HCO
Deadline-driven HCO

0

100

200

300

400

500

600

700

3000 5000 7000 9000 11000 13000

N
u
m

 o
f
o
v
e
rd

u
e
 r

e
s
o
u
rc

e

re
q
u
e
s
t
re

s
p
o
n
s
e
s

Total resource requests

HCO
Deadline-driven HCO

0

100

200

300

400

500

600

700

3000 5000 7000 9000 11000 13000

N
u
m

 o
f
o
v
e
rd

u
e
 r

e
s
o
u
rc

e

re
q
u
e
s
t
re

s
p
o
n
s
e
s

Total resource requests

HCO
Deadline-driven HCO

(a) Overdue responses without churn

3500
HCO

2500

3000

3500

o
u
rc

e

e
s

HCO
Deadline-driven HCO

1500

2000

2500

3000

3500

d
u
e
 r

e
s
o
u
rc

e

e
s
p
o
n
s
e
s

HCO
Deadline-driven HCO

1000

1500

2000

2500

3000

3500

o
f
o
v
e
rd

u
e
 r

e
s
o
u
rc

e

q
u

e
s
t
re

s
p

o
n

s
e

s

HCO
Deadline-driven HCO

0

500

1000

1500

2000

2500

3000

3500

N
u
m

 o
f
o
v
e
rd

u
e
 r

e
s
o
u
rc

e

re
q
u
e
s
t
re

s
p
o
n
s
e
s

HCO
Deadline-driven HCO

0

500

1000

1500

2000

2500

3000

3500

0.1 0.2 0.3 0.4 0.5

N
u
m

 o
f
o
v
e
rd

u
e
 r

e
s
o
u
rc

e

re
q
u
e
s
t
re

s
p
o
n
s
e
s

Node interarrival/interdeparture rate

HCO
Deadline-driven HCO

0

500

1000

1500

2000

2500

3000

3500

0.1 0.2 0.3 0.4 0.5

N
u
m

 o
f
o
v
e
rd

u
e
 r

e
s
o
u
rc

e

re
q
u
e
s
t
re

s
p
o
n
s
e
s

Node interarrival/interdeparture rate

HCO
Deadline-driven HCO

(b) Overdue responses with churn

Fig. 15. Effectiveness of the deadline-driven algorithms.
5.6 Deadline-driven Resource Management
This experiment aims to show the effectiveness of deadline-
driven resource allocation and message forwarding algorithms
in HCO. We call the HCO scheme with the deadline-driven
algorithms Deadline-driven HCO. In the experiment, the avail-
able time of an available resource and the deadline of a node’s
resource request were randomly generated in the range of
[0,1000] time units, and we set the deadline threshold for
urgent requests to 10 time units. Different parameter settings
will not change the relative performance differences between
HCO and Deadline-driven HCO. An overdue response occurs
when a resource requester receives a response of an allocated
resource after the deadline.

Figure 15(a) illustrates the number of overdue request re-
sponses in HCO and Deadline-driven HCO versus the number
of requests. The results show that HCO has many more over-
due responses than Deadline-driven HCO, which demonstrates
the effectiveness of the deadline-driven resource allocation and
message forwarding algorithms. In Deadline-driven HCO, a
directory node processes urgent requests immediately without
waiting for the next periodical resource allocation. Also, a
directory node first handles requests with earlier deadlines
when mapping the requested resources in RRL to the available
resources in ARL. In addition, message forwarders in routing
for requests and notifications give higher priorities to requests
with earlier deadlines. As a result, the requests with earlier
deadlines can be resolved earlier. Without the deadline-driven
algorithms, HCO is not able to process some requests with
early deadlines in time, leading to more overdue request
responses.

Dynamism in networks poses a challenge to resource man-
agement schemes to process resource requests in time. This is
because frequent node joins and departures lead to a delay in
message routing. We assume that one hop forwarding in rout-
ing generates a latency of 1 time unit. Figure 15(b) plots the
number of overdue request responses in HCO and Deadline-
driven HCO versus the node interarrival/interdeparture rate.
The figure shows that the number of overdue request responses
increases as the node interarrival/interdeparture rate increases.
A message needs longer time to arrive at its destination in an
environment with higher node dynamism. Consequently, more
requests cannot arrive at the directory nodes and more noti-
fications cannot arrive at the resource requesters in time. We
can also see that Deadline-driven HCO reduces the overdue
request responses in HCO. This means that the deadline-driven
algorithms are effective in decreasing the number of overdue
request responses in node dynamism.

6 Conclusions
Rapid development of Grids demands a scalable and efficient
resource management scheme to sustain distributed perfor-
mance in a dynamic wide-area environment. The major con-
tributions of this work are summarized below: (a) This paper

14

presents a HCO by extending the cycloid DHT overlay. The
HCO pools physically close resources together in logically-
close clusters. (b) We have developed locality-preserving algo-
rithms to enable users to dynamically discover physically close
resources with required functionalities in their neighborhood.
Most previous schemes fail to preserve the locality and require
users to discover resources on a system-wide scope. (c) The
HCO scheme uses a single large DHT overlay with low
overhead. It achieves a balanced workload distribution and
resilience to resource failure. Most previous schemes use
multiple DHT-based overlays causing high overhead or one
DHT overlay causing a workload imbalance. Both of those
are more suitable for static Grid configurations with limited
applications. (d) The cluster-token forwarding and deadline-
driven resource management algorithms enhance system ef-
ficiency. Both analytical and simulation results demonstrate
the superior performance of HCO in Grid reconfiguration for
large-scale and dynamic applications.

The proposed framework is still under intensive system
and middleware development. For further research, we will
continue our efforts in the following aspects: (1) Prototyping
of the proposed HCO network for Grid resource management.
(2) Developing benchmark programs to test the efficiency
and validate the claimed advantages. (3) Applying virtual
machine techniques [4] to extend the HCO model to secure and
safeguard Grid applications. (4) Integrating P2P and Grid tech-
nologies with machine virtualization techniques for global-
scale Internet applications. These four areas post wide open
problems that are crucial to promote large-scale distributed
computing in the future.

Acknowledgements
This research was supported in part by U.S. NSF grants
OCI-1064230, CNS-1049947, CNS-1025652, CNS-1025649,
and CNS-0917056, Microsoft Research Faculty Fellowship
8300751, Sandia National Laboratories grant 10002282, and
China’s 973 Basic Research Grant 2011CB302505. Kai
Hwang wants to thank the support of his academic visits
of Tsinghua University by Intellectual Ventures, Inc. since
2010. An early version of this work [55] was presented in
the Proceedings of ICDCS’09.

References
[1] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke. Condor-G:

a computation management agent for multiinstitutional grids. In Proc.
HPDC, 2001.

[2] I. Foster and C. Kesselman. Globus: a metacomputing infrastructure
toolkit. The International Journal of Supercomputer Applications and
High Performance Computing, 11(2), 1997.

[3] F. Berman et. al. Adaptive computing on the grid using apples. TPDS,
14(4), Apr. 2003.

[4] J. Smith and R. Nair. Virtual Machines,Virtual Machines: Versatile
Platforms for Systems and Processes. Morgan Kaufmann Publisher,
2005.

[5] I. Stoica, R. Morris, and et al. Chord: A scalable peer-to-peer lookup
protocol for Internet applications. IEEE/ACM TON, 11(1):17–32, 2003.

[6] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location and routing for large-scale peer-to-peer systems. In Proc. of
Middleware, 2001.

[7] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. Kubiatowicz. Tapestry: An Infrastructure for Fault-tolerant wide-area
location and routing. J-SAC, 12(1):41–53, 2004.

[8] H. Shen, C. Xu, and G. Chen. Cycloid: A Scalable Constant-Degree
P2P Overlay Network. Performance Evaluation, 63(3):195–216, 2006.

[9] D. Karger and et al. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the World Wide Web. In
Proc. of STOC, pages 654–663, 1997.

[10] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting
scalable multi-attribute range queries. In Proc. of ACM SIGCOMM,
pages 353–366, 2004.

[11] M. Cai, M. Frank, and et al. MAAN: A multi-attribute addressable
network for grid information services. Journal of Grid Computing, 2004.

[12] D. Oppenheimer, J. Albrecht, and et al. Scalable wide-area resource

discovery. Technical Report TR CSD04-1334, EECS Department, Univ.
of California, Berkeley, 2004.

[13] C. Schmidt and M. Parashar. Flexible information discovery in decen-
tralized distributed systems. In Proc. of HPDC, pages 226–235, 2003.

[14] A. Andrzejak and Z. Xu. Scalable, efficient range queries for grid
information services. In Proc. of P2P, 2002.

[15] D. Spence and T. Harris. Xenosearch: Distributed resource discovery in
the XenoServer open platform. In Proc. of HPDC, 2003.

[16] Z. Zhang, S.-M. Shi, and J. Zhu. Somo: Self-organized metadata overlay
for resource management in P2P DHT. In Proc. of IPTPS, 2003.

[17] H. Shen. PIRD: P2P-based Intelligent Resource Discovery in Internet-
based Distributed Systems Corresponding. JPDC, 2008.

[18] M. Cai and K. Hwang. Distributed aggregation algorithms with load-
balancing for scalable grid resource monitoring. In Proc. of IPDPS,
2007.

[19] S. Suri, C. Töth, and Y. Zhou. Uncoordinated load balancing and
congestion games in P2P systems. In Proc. of P2P, 2004.

[20] H. Shen and C. Xu. Locality-aware and churn-resilient load balancing
algorithms in structured peer-to-peer networks. TPDS, 2007.

[21] Y. Zhu and Y. Hu. Ferry: A P2P-Based Architecture for Content-Based
Publish/Subscribe Services. TPDS, pages 672–685, 2007.

[22] C. Schmidt and M. Parashar. Squid: Enabling Search in DHT-based
Systems. JPDC, pages 962–975, 2008.

[23] Y. Zhu, H. Jiang, J. Wang, and F. Xian. HBA: Distributed Metadata
Management for Large Cluster-Based Storage Systems. TPDS, 2008.

[24] J. Wang, P. Gu, and H. Cai. An Advertisement-based Peer-to-Peer Search
Algorithm. JPDC, pages 638–651, 2009.

[25] C. Wang and X. Li. An Effective P2P Search Scheme to Exploit File
Sharing Heterogeneity. TPDS, pages 145–157, 2007.

[26] R. Zhang and Y. C. Hu. Assisted Peer-to-Peer Search with Partial
Indexing. TPDS, pages 1146–1158, 2007.

[27] M. Li, W.-C. Lee, A. Sivasubramaniam, and . Zhao. SSW: A Small-
World-Based Overlay for Peer-to-Peer Search. TPDS, 2008.

[28] X. Shi, J. Han, Y. Liu, and L. Ni. Popularity Adaptive Search in Hybrid
P2P Systems. JPDC, pages 125–134, 2009.

[29] E. Pagani, G. Rossi, and E. Pertoso. ORION - Ontology-based queRy
routIng in Overlay Networks. JPDC, pages 28–38, 2009.

[30] F. P. Preparata and J. Vuillemin. The cube-connected cycles: A versatile
network for parallel computation. CACM, 24(5):300–309, 1981.

[31] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-
aware overlay construction and server selection. In Proc. of INFOCOM,
2002.

[32] Z. Xu, M. Mahalingam, and M. Karlsson. Turning heterogeneity into
an advantage in overlay routing. In Proc. of INFOCOM, 2003.

[33] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmaier. Space filling
curves and their use in geometric data structure. Theoretical Computer
Science, 181(1):3–15, 1997.

[34] H. V. Jagadish. Linear clustering of objects with multiple attributes. In
Proc. of SIGMOD, 1990.

[35] P. Ganesan, B. Yang, and H. Garcia-molina. One torus to rule them all:
Multi-dimensional queries in p2p systems. In Proc. of WebDB. ACM
Press, 2004.

[36] S. Chenga and T.-L. Wua. Fast indexing method for image retrieval
using k nearest neighbors searches by principal axis analysis. Journal
of Visual Communication and Image Representation, 2006.

[37] L. He, L. Wu, Y. Cai, and Y. Liu. Indexing Structures for Content-
Based Retrieval of Large Image Databases: A Review. Lecture Notes
in Computer Science, 2005.

[38] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Topology-aware
routing in structured peer-to-peer overlay networks. Future Directions
in Distributed Computing, 2002.

[39] P. Salvador and A. Nogueira. Study on geographical distribution and
availability of bittorrent peers sharing video files. In Proc. of ISCE,
2008.

[40] K. Czajkowski and et al. Resource Specification Language (RSL).
Globus, 1998.

[41] P. Ganesan and K. Respectively. Canon in G major: Designing DHTs
with hierarchical structure. In Proc. of ICDCS, pages 263–272, 2004.

[42] S. Zoels, Z. Despotovic, and W. Kellerer. Cost-based analysis of
hierarchical DHT design. In Proc. of P2P, pages 6–8, 2006.

[43] C. Chen and D.P. Agrawal. dBCube: a new class of hierarchical mul-
tiprocessor interconnection networks with area efficient layout. TPDS,
4(12):1332 – 1344, 1993.

[44] D. Guo, J. Wu, H. Chen, and X. Luo. Moore: An extendable peer-
to-peer network based on incomplete kautz digraph with constant
degree. In Proc. of the IEEE International Conference on Computer
Communications (INFOCOM’07), page 821.

[45] D. Guo, H. Chen, Y. Hec, H. Jin, C. Chen, H. Chen, Z. Shu, and
G. Huang. Kcube: A novel architecture for interconnection networks.
Information Processing Letters, 110(18-19):821–825, 2010.

[46] D. Guo, H. Chen, Y. Liu, and X. Li. Bake: A balanced kautz tree
structure for peer-to-peer networks. In Proc. of INFOCOM, 2008.

[47] Q. Li, L. Feng, J. Pei, S.X. Wang, X. Zhou, and Q. Zhu. Advances
in Data and Web ManagementJoint International Conferences. Lecture
Notes in Computer Science, 2009.

[48] H. Shen and C. Xu. Locality-Aware and Churn-Resilient Load Balancing
Algorithms in Structured Peer-to-Peer Networks. TPDS, 2007.

[49] K. Psounisa, P. M. Fernandezb, B. Prabhakarc, and F. Papadopoulosd.
Systems with multiple servers under heavy-tailed workloads. Perfor-
mance Evaluation, 2005.

[50] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. Self-similarity
through high-variability: statistical analysis of ethernet lan traffic at the
source level. IEEE/ACM Trans. Network, 1997.

[51] B. Krishnamurthy and J. Rexford. Web Protocols and Practice (Chapter

15

10). Addison Wesley, 2001.
[52] M. Harchol-Balter and A. Downey. Exploiting process lifetime distri-

butions for dynamic load balancing. TOCS, 1997.
[53] X. Zhang, Y. Qu, and L. Xiao. Improving distributed workload

performance by sharing both CPU and memory resources. In Proc.
of ICDCS, pages 233–241, 2000.

[54] E. Zegura, K. Calvert, and et al. How to model an Internetwork. In
Proc. of INFOCOM, 1996.

[55] H. Shen and K. Hwang. Scalable Grid Resource Discovery with
Locality-Preserving Clustering. In Proc. of the 27th International
Conference on Distributed Computing Systems (ICDCS), 2009.

Haiying Shen received the BS degree in Computer Science and Engineering from Tongji
University, China in 2000, and the MS and Ph.D. degrees in Computer Engineering from
Wayne State University in 2004 and 2006, respectively. She is currently an Assistant
Professor in the Holcombe Department of Electrical and Computer Engineering at
Clemson University. Her research interests include distributed and parallel computer
systems and computer networks, with an emphasis on peer-to-peer and content delivery
networks, mobile computing, wireless sensor networks, and grid and cloud computing.
She was the Program Co-Chair for a number of international conferences and member of
the Program Committees of many leading conferences. She is a Microsoft Faculty Fellow
of 2010 and a member of the IEEE and ACM.

Cheng-Zhong Xu received B.S. and M.S. degrees from Nanjing University in 1986 and
1989, respectively, and a Ph.D. degree in Computer Science from the University of Hong
Kong in 1993. He is currently a Professor in the Department of Electrical and Computer
Engineering of Wayne State University and the Director of Sun’s Center of Excellence in
Open Source Computing and Applications. His research interests are mainly in
distributed and parallel systems, particularly in scalable and secure Internet services,
autonomic cloud management, energy-aware task scheduling in wireless embedded
systems, and high performance cluster and grid computing. He has published more than
160 articles in peer-reviewed journals and conferences in these areas. He is the author of
Scalable and Secure Internet Services and Architecture (Chapman & Hall/CRC Press,
2005) and a co-author of Load Balancing in Parallel Computers: Theory and Practice

Haiying Shen Haiying Shen received the BS
degree in Computer Science and Engineering
from Tongji University, China in 2000, and the
MS and Ph.D. degrees in Computer Engineering
from Wayne State University in 2004 and 2006,
respectively. She is currently an Assistant Pro-
fessor in the Holcombe Department of Electrical
and Computer Engineering at Clemson Univer-
sity. Her research interests include distributed
and parallel computer systems and computer
networks, with an emphasis on peer-to-peer and
content delivery networks, mobile computing,

wireless sensor networks, and grid and cloud computing. She was
the Program Co-Chair for a number of international conferences and
member of the Program Committees of many leading conferences. She
is a Microsoft Faculty Fellow of 2010 and a member of the IEEE and
ACM.

 1

Acknowledgments: This work was supported in part by the China’s 973 Basic Research Grant
2011CB302505. Kai Hwang wants to thank the support of his academic visits of Tsinghua University by
Intellectual Ventures, Inc. since 2010.

BIOGRAPHICAL SKETCHES :

Kai Hwang received the Ph.D. in Electrical Engineering and
Computer Science from the University of California, Berkeley
in 1992. He is presently a Professor of Electrical Engineering
and Computer Science, University of Southern California, Los
Angeles. He directs the Internet and Cloud Computing
Research Laboratory at USC. Prior to joining USC, he has
taught at Purdue University for a decade. He has served as a
visiting chair professors at the University of Minnesota,
University of Hong Kong and National Taiwan University.

 Presently, he also serves as an endowed Visiting Chair
Professor of Tsinghua University, Beijing, China. He has
served as the editor in Chief of the Journal of parallel and
Distributed Computing and Associate Editor of the IEEE
Transactions on Parallel and Distributed Systems. An IEEE
life Fellow, Hwang specializes in computer systems, parallel
processing, Internet security, distributed and cloud computing.
He has published 8 books and over 220 scientific papers in
these areas. Contact him at: kaihwang@usc.edu.

Kai Hwang Kai Hwang received the Ph.D. in
Electrical Engineering and Computer Science
from the University of California, Berkeley in
1992. He is presently a Professor of Electrical
Engineering and Computer Science, University
of Southern California, Los Angeles. He directs
the Internet and Cloud Computing Research
Laboratory at USC. Prior to joining USC, he
has taught at Purdue University for a decade.
He has served as a visiting chair professors at
the University of Minnesota, University of Hong
Kong and National Taiwan University. Presently,

he also serves as an endowed Visiting Chair Professor of Tsinghua
University, Beijing, China. He has served as the editor in Chief of the
Journal of parallel and Distributed Computing and Associate Editor of
the IEEE Transactions on Parallel and Distributed Systems. An IEEE
life Fellow, Hwang specializes in computer systems, parallel processing,
Internet security, distributed and cloud computing. He has published 8
books and over 220 scientific papers in these areas. Contact him at:
kaihwang@usc.edu.

