
A Lightweight and Cooperative Multi-Factor Considered File
Replication Method in Structured P2P Systems

Haiying Shen*, Member, IEEE, Guoxin Liu, Student Member, IEEE

�

Abstract—File replication is widely used in structured P2P systems in
order to avoid hot spots in servers and enhance file availability. The
number of replicas and replication distance affect the file replication cost.
These two elements and the replica update frequency determined in
the file replication stage also affect the cost of subsequent consistency
maintenance. However, most existing file replication protocols focus
on improving file lookup efficiency without considering its cost and its
subsequent influence on consistency maintenance. This paper studies
the problem about how a server chooses files to replicate and where to
replicate files in order to achieve low cost in both file replication and con-
sistency maintenance stages without compromising the effectiveness of
file replication. This paper presents a lightweight and Cooperative multi-
factOr considered file Replication Protocol (CORP) to achieve this goal.
CORP simultaneously takes into account multiple factors including file
popularity, update rate, node available capacity, file load, and node lo-
cality, aiming to minimize the number of replicas, update frequency, and
replication distance. CORP also dynamically adjusts the number of repli-
cas based on ever-changing file popularity and visit pattern. Extensive
experimental results from simulation and PlanetLab real-world testbed
demonstrate the efficiency and effectiveness of CORP in comparison
with other file replication protocols. It dramatically reduces the overhead
of both file replication and consistency maintenance. In addition, it
exhibits high adaptiveness to skewed lookups and yields significant
improvement in reducing overloaded nodes. Specifically, compared to
the other replication protocols, CORP can reduce more than 71% of file
replicas, 84% of overloaded nodes, 94% of consistency maintenance
cost, and 72% of file replication and consistency maintenance latency.

Keywords: Peer-to-peer systems, File replication, Consistency
maintenance, Proximity.

1 INTRODUCTION

Over the past years, peer-to-peer (P2P) file sharing systems [1–
8] have attracted a great deal of attention in research. A
popular (i.e., hot) file in a node can easily exhaust its capacity.
File replication protocols [9–18] that replicate a hot file to
other nodes can avoid such hot spots. Consistency maintenance
that updates replicas when a file is changed is indispensable
to file replication with non-static files. This is evidenced by
numerous previously proposed file consistency maintenance
protocols [17–24] for P2P systems. Consistency maintenance
is needed in P2P systems (i.e., OceanStore [25] and Pub-
lius [26]) that permit users to modify their files. In addition, fu-
ture P2P applications also need consistency support to deliver
frequently-updated contents such as directory service [27],
online auction [28], remote collaboration [29], shared calen-
dar [30, 31], P2P web cache [32], and online games [33].

Replicating files and requiring that the replica nodes of a file
be reliably informed of all updates to the file could be costly
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in a large-scale P2P network. The cost in the file replication
is mainly determined by the number of replicas and repli-
cation distance (i.e., physical network distance) between file
owners and replica nodes. These two elements and the replica
update frequency also affect the cost of subsequent consis-
tency maintenance. Therefore, a file replication method should
proactively consider the three elements in order to reduce not
only its own cost but also consistency maintenance cost.

However, there has been little file replication research
devoted to tackling the dependency issue of consistency main-
tenance. Most previous methods in structured P2P networks
determine the replica node based on node ID [9–12] or
location [13–18]. ID-based methods select replica nodes based
on the relationship between node ID and the file’s ID, and
location-based methods choose replica nodes in a file query
path between a file requester (including the requester) and
a file provider. Both groups of methods focus on where
to replicate files to enhance file availability and avoid hot
spots to improve query efficiency, but neglect the cost of file
replication and its impact on consistency maintenance cost.
This work complements the previous works by studying a
different problem in file replication: how a server chooses files
to replicate and where to replicate files in order to achieve low
cost in both file replication and consistency maintenance stages
without compromising the effectiveness of file replication.

To address this problem, we propose a lightweight and
Cooperative multi-factOr considered file Replication Protocol
(CORP). CORP simultaneously takes into account multiple
factors including file popularity, update rate, node available
capacity, file load, and node locality, aiming to minimize the
number of replicas, update frequency and replication distance.
CORP is characterized by the following features.

• The consideration of node available capacity and file
load. In order to reduce the number of replicas, CORP
replicates higher-load files into nodes with sufficient ca-
pacity for the load. Replicating higher-load files releases
more load off a server, and sufficient-capacity replica
nodes avoid the need of multiple replicas, resulting in
fewer total replicas of the server.

• The consideration of file update frequency. CORP makes
more replicas for infrequently-updated and fewer replicas
for frequently-updated files in order to reduce the cost of
update propagation in consistency maintenance.

• The consideration of file popularity. CORP makes more
replicas for popular files and fewer replicas for unpopular
files to increase replica utilization.

• The consideration of node locality. CORP replicates file
in physically close nodes to reduce cost in both file
replication and consistency maintenance.
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• The adaptiveness of file popularity and visit pattern.
CORP dynamically adjusts the number of replicas to deal
with ever-changing file popularity and visit pattern.

In this paper, we consider a situation in which the visit
and update rates of files do not vary greatly with very high
frequency. Also, a node replicates its files only when it is
overloaded and the main goal of replication is to release
the load of overloaded nodes. There are many techniques
that can be used to increase file availability and file retrieval
efficiency. A lightly-loaded node can also replicate its highly-
popular files to reduce the lookup hops [34]. Replicating a
file or file location hint to certain locations such as frequent
requesters [13, 15], nodes near frequent requesters, or along
query path [9, 10] can enhance file query efficiency. Splitting
a large file into small pieces and replicating parts of the
file [10] can increase the service capacity of a large file rapidly.
CORP can employ these techniques to further improve its
performance. These techniques are orthogonal to our study.

The rest of this paper is structured as follows. Section 2
presents a concise review of representative file replication
approaches for structured P2P networks. Section 3 presents
the CORP file replication protocol. Section 4 and Section 5
present the performance of CORP in static situation as well
as dynamic situation in comparison with representative file
replication protocols. Section 6 concludes this paper.

2 RELATED WORK

Driven by tremendous advances of P2P file sharing systems,
numerous file replication protocols have been proposed. One
group determines replica nodes based on IDs. PAST [9] is a
P2P-based file system for large-scale persistent storage service.
In PAST, each file is replicated on a number of nodes whose
IDs match most closely to the file’s ID. CFS [10] is a P2P read-
only storage system that stores blocks of a file and spreads
blocks evenly over the available servers to prevent large files
from causing unbalanced use of storage. It uses a distributed
hash function to replicate each block on nodes immediately
after the block’s successor on the Chord ring [2] in order to
increase file availability. LessLog [11] constructs a lookup tree
based on node IDs to determine the locations of replica nodes.
HotRoD [12] is a structured P2P based architecture with a
replication scheme, in which a group of successive peers on
a ring is “hot” when at least one of these peers is hot. “Hot”
arcs of peers are replicated and rotated over the ID space.

Another group of replication methods replicate files based
on node location by choosing replica nodes along a file lookup
path between a client and a server (including the clients).
Beehive [13, 34] replicates an object at nodes i hops prior
to the server in the lookup path. It decides a file’s replication
degree based on its popularity in order to achieve constant
lookup performance. Stading et al. [14] proposed Backslash,
a collaborative web mirroring system with file replication and
caching methods for flash crowds. A node periodically injects
files in its local file collection, and also pushes cache to one
hop closer to requester nodes when overloaded. LAR [15]
specifies at what overloaded degree of a server that a file
should be replicated. Overloaded nodes replicate files at the
query initiator and create routing hints on the reverse path.
Overlook [16] places a replica of a file on a node with most
incoming lookup requests for fast replica location. EAD [35]
replicates a file in query forwarding nodes that frequently

forwards queries of the file. CUP [17] and DUP [18] cache
metadata along the lookup path in a structured P2P system.
OceanStore [25] aims to build a global persistent storage
utility. It uses agents to collect and analyze client-access
information for determining the location of replicated nodes.
Its files are replicated on multiple servers for security concern
without restricting the placement of replicas. Rubenstein and
Sahu [36] also discussed the scalability achieved by the fact
that user requests create additional replicas, which improves
system performance. Squirrel [37] is a distributed P2P web
cache to facilitate mutual sharing of web objects among client
nodes. It enables nodes to export their local caches to other
nodes in the corporate network, thus synthesizing a large
shared virtual web cache.

However, few works consider the dependency of replica
consistency maintenance on file replication and try to optimize
consistency maintenance in the file replication stage. Our
previous work [38] addressed this problem by removing under-
utilized replicas to reduce the number of replicas, but did
not take into account the previously mentioned factors in
file replication to optimize consistency maintenance. CORP
is distinguished from Plover [39] by taking into account file
update rate and visit rate to reduce the overhead of consistency
maintenance and increase replica utilization.

There are other works on file replication in structured
P2P networks that are focused on other aspects instead of
replica node location. Zhou et al. [40] proposed an on-line
pointer replication algorithm which yields low worst case
query latency. To reduce the replication cost, Liu et al. [41]
presented a detailed description of a replication strategy based
on file-partition. Lin et al. [42] formulated file replication
problem as an optimization problem, and proposed several
heuristic algorithms. Ni et al. [43] proposed a model to design
file replication schemes for P2P file sharing systems. The
model introduces expected costs for serving user file requests,
which are computed from node up/down statistics. Based on
the model, the authors develop several methods to determine
the sets of nodes to store copies of the files in order to optimize
certain performance metrics.

3 LIGHTWEIGHT AND COOPERATIVE FILE
REPLICATION
3.1 An Overview of CORP

Fig. 1. The goals of CORP and its considering factors.
Figure 1 shows the goal of CORP and the factors it

considers during the file replication to achieve the goal. To
optimally choose source files to replicate (briefly called source
files), CORP considers file popularity and file update rate. An
unpopular file does not necessarily have many replicas since
the replicas would have low probability to be visited, and a
highly-popular file should have more replicas. Different files
have different updates. For instance, files for auction applica-
tions may change frequently while video or mp3 files hardly
change. Frequently-updated files should have fewer replicas in
order to reduce update message propagation overhead.
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To minimize the number of replicas, CORP considers node
available capacity and file load. More replicas lead to higher
overhead for consistency maintenance. By considering node
available capacity and file load, CORP brings three benefits.
First, unlike the previous methods to replicate a file to many
nodes, each of which is responsible for partial visit load,
CORP tries to replicate a file to a single node capable of
handling the file’s visits. Second, when a node chooses files to
replicate, it selects the files with higher load, hence releasing
more load and reducing replicas. Third, CORP avoids over-
loading replica nodes by considering node available capacities.

CORP also considers locality by discovering physically
close nodes to a file’s owner for file replication. Short physical
distance between a file owner and its replica nodes helps to
reduce the overhead for file replication and subsequent con-
sistency maintenance by update propagation. Moreover, it also
helps increase query processing efficiency since a file owner
can forward a file query to its replica node efficiently. We
present the three steps in CORP and their challenges in below.

(1) When an overloaded node chooses source files to repli-
cate in order to release its load due to file visit, how to
consider node capacity and file load to reduce the number
of replicas? How to reduce the number of infrequently-
visited and frequently-updated source files? (Section 3.2)

(2) When overloaded nodes and lightly-loaded nodes pe-
riodically report the information of their source files
and available capacities to repository supernodes, how to
make sure that the information of physically close nodes
is gathered together in a supernode without relying on an
additional structure? (Section 3.4)

(3) When repository nodes arrange file replication between
overloaded nodes and lightly-loaded nodes, how to take
into account the aforementioned multiple factors to min-
imize the number of replicas? (Section 3.5)

3.2 Generating Information for File Replication
As the works in [44–48], we assume that there is only one bot-
tleneck resource for optimization although a node’s capacity
includes its storage space, bandwidth, and CPU. The capacity
metric in practice should be a function of these factors [3, 15].
Most P2P systems like KaZaA and Gnutella allow the nodes
to set the maximum upload and download bandwidth. We
also assume that each node has a capacity it is willing to
contribute to the system, which is in a percentage of the
node’s actual capacity. For simplicity, we represent a node’s
capacity (denoted by C) by the number of bits it can transfer
in responding file queries during a time unit, say one second.
Similarly, a node’s load (denoted by L) is measured by the
number of bits it needs to transfer in response to file queries.

A file’s visit rate can be measured by the number of visits
during a time unit. To truly reflect a file’s popularity by its
visit rate, CORP considers the file’s current and past visit rates,
introduces a weighted average visit rate of a file as below:

Vnew = βVold + (1− β)Vcurrent (0 ≤ β ≤ 1),

where the weight β is a discount factor serving as the fading
mechanism.

Assume node A contains m files labelled as FA[i](i =
1, 2, . . . ,m), then LA is the sum of the load of these files:
LA =

∑m
i=1 LFA[i], where LFA[i] denotes the load of file FA[i]

in node A. The load of a file on a node is determined by the
file’s size and visit rate (i.e., popularity) on the node. That is,

LFA[i] = SFA[i] × VFA[i], where VFA[i] and SFA[i] respectively
denote the visit rate and size of file FA[i] in node A. We
define the update rate of file i in node A, denoted by UFA[i],
as the number of the file’s updates in one second. The update
rate can be determined by the same way as the visit rate.
We assume the update message size is the same for each file.
We leave a more sophisticated strategy considering different
update message sizes as our future work.

Each node A periodically measures VFA[i] and UFA[i] and
maintains the LFA[i], SFA[i], VFA[i], and UFA[i] of each of its
files i. When node A is overloaded, in order to release excess
load ΔLA = LA−CA, it needs to choose a number of source
files to replicate. Later on, when node A receives a file request,
if it is overloaded, it forwards the request to one of the file’s
replica nodes in a round-robin manner, so the load can be
distributed among the replica nodes. We represent the source
files of node A by FA = {FA[1],FA[2], . . . ,FA[m̃]} (F ∈
F, 1 ≤ m̃ ≤ m) and represent their corresponding loads by
{LFA[1], LFA[2], ..., LFA[m̃]}. Thus,

m̃∑

i=1

LFA[i] ≥ ΔLA. (1)

Suppose the number of replicas of file FA[i] is ni. We use
RFA[i],j(0 < j ≤ ni) to denote the jth replica node of file
FA[i], and use D(A,RFA[i],j) to denote the distance between
server A and replica node RFA[i],j .

Recall that the objectives of CORP include:
(1) minimize the number of replicas, i.e.,

∑m̃
i=1 ni;

(2) minimize update rate of replicas; i.e.,
∑m̃

i=1 ni · UFA[i];

(3) maximize the utilization of replicas, i.e.,
∑m̃

i=1(VFA[i]);
(4) minimize the distances between the server and replica

nodes, i.e.,
∑m̃

i=1

∑ni

j=1 D(A,RFA[i],j).
According to Formula (1) and objective (1), we need to

minimize m̃ and ni, and hence choose high-load files for
replication. According to object (2), we need to minimize
UFA[i] and ni. Frequently-updated files should have fewer
replicas in order to reduce consistency maintenance overhead.
According to objective (3), we need to maximize VFA[i] and
minimize ni. Replicating popular files can increase the replica
utilization. Based on this, infrequently-visited files should have
less or no replicas since they will have low probability to be
visited, thus decreasing idle replicas and file consistency main-
tenance overhead. Also, frequently-visited files should have
more replicas in order to improve average lookup efficiency
in the system. In addition, it reduces the overhead of file
replication due to smaller replicating file size because a higher
frequently-visit rate means small size given a certain amount
of load. According to objective (4), we need to minimize ni

and replicate files to physically close nodes.
Consequently, source files constitute a subset of node A’s

resident files, satisfying the following condition.
minimizes m̃; minimizes

∑m̃
i=1 UFA[i]; maximizes

∑m̃
i=1 VFA[i]

subject to (
∑m̃

i=1 LFA[i]) ≤ LA − CA.
(2)

We give the update rate a higher priority than the visit rate
because the update rate directly affects the consistency main-
tenance cost. Accordingly, to choose source files to replicate,
a node orders its files as shown in Figure 2(a). Specifically,
the files are sorted in descending order of their load. The
files with the same load are ordered in ascending order of
their update rates, and the files with the same update rates are
further ordered in descending order of their visit rates.
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(a) Source file se-
lection

(b) Info. clustering (c) Replication ar-
rangement

Fig. 2. Three stages in CORP.

The source file selection process has two steps. The first
step is to choose the initial source files with the highest loads
in order to reduce the number of replicas. The files in F are
selected in a top-down manner until the sum of the load of
the selected source files is no less than the load to release.

The next step reduces the total update rate of the source
files in the selected files FA, thus reducing consistency
maintenance overhead. It also increases the total visit rate
of the source files in FA, thus increasing the utilization of
file replicas and reducing file replication cost. In this step,
the remaining files in F continue to be fetched in the top-
down manner. Assume a fetched file is FA[m̃ + 1]. It is
compared to the files in FA one by one from FA[1] to FA[m̃].
If UFA[m̃+1] < UFA[k] (1 ≤ k ≤ m̃) and the condition∑m̃

i=1 LFA[i] ≥ ΔLA is still satisfied after replacing FA[k]
with FA[m̃+ 1], file FA[k] is swaped with file FA[m̃ + 1].
Otherwise, if UFA[m̃+1] = UFA[k] and VFA[m̃+1] > VFA[k]

(1 ≤ k ≤ m̃), and the condition
∑m̃

i=1 LFA[i] ≥ ΔLA

is still satisfied after replacing FA[k] with FA[m̃+ 1], file
FA[k] is swaped with file FA[m̃+ 1]. Algorithm 1 shows the
pseudocode of source file selection executed by node A.
———————————————————————————————
Algorithm 1: Source file selection executed by node A.
———————————————————————————————
SelectSourceFile (FA, ΔLA) // FA is the list of all files {

Order FA by load in descending order, then update rate in
ascending order, and then visit rate in descending order
//find the initial FA in F that satisfy SumLFA

≥ΔLA

while (SumLFA
< ΔLA) do {

Add FA[i] to FA

SumLFA
+ = LFA[i++] }

while i < FA.length do // find replacements in FA {
can replace = false //flag: file FA[i] can replace a file in FA

for (j = 0; j < FA.length; ++j) do {
if (SumLFA

− LFA[j] + LFA[i]) ≥ ΔLA then {
can replace = true
if UFA[i] < UFA[j] then {

//replace FA[j] because FA[i] has smaller update rate
swap(FA[j] , FA[i])}

else if UFA[i] == UFA[j] && VFA[i] > VFA[j] then {
// replace FA[j] because FA[i] has larger visit rate
swap(FA[j],FA[i])}}}

i++ //get the next file in FA[i]
if !can replace then

break //stop checking due to small load of the rest of files}
return FA}

———————————————————————————————

3.3 Integrated Consideration of Update and Visit
Rates
We also propose a method to integrate file update rate and
visit rate in source file selection to give both factors the same
priority in consideration. We define a metric called replication

priority (R) measured by V/U of a file. Node A sorts its
files in descending order of their load, and the files with the
same load are ordered in descending order of their replication
priorities. Node A executes the same first step. In the second
step, the rest of the files in F continue to be fetched in the
top-down manner. Assume a fetched file is FA[m̃ + 1]. It is
compared to the files in FA one by one from FA[1] to FA[m̃].
If RFA[m̃+1] > RFA[k] (1 ≤ k ≤ m̃) and the condition∑m̃

i=1 LFA[i] ≥ ΔLA is still satisfied after replacing FA[k]
with FA[m̃+ 1], file FA[k] is replaced by file FA[m̃+1]. This
step aims to maximize the sum of Rs of the selected files in
order to increase the replica utilization, reduce the cost of file
replication and consistency maintenance.

3.4 Locality-aware Information Clustering
Nodes periodically report the information for file replication
(IR) to repository supernodes. The IR of overloaded node A
is for source files, which is represented by:

IR =< LFA[i], SFA[i], VFA[i], UFA[i], IDFA[i], IP (A) >,

in which IDFA[i] denotes the ID of file FA[i] and IP (A)
denotes the IP address of node A. The IR of lightly-loaded
node B is for available capacity, which is in a representation:
IR =< δCB , IP (B) >, where δCB = CB −LB is node B’s
available capacity.

CORP realizes locality-aware file replication through
locality-aware information clustering, which collects the IR of
physically close nodes together. It is developed by leveraging
hash-based proximity clustering in our previous work [44].
Similar works of locality-awareness can also be found in [21,
47, 49]. These works did not deal with file replication. We
choose the Chord structured P2P network [2] as an example
to explain this clustering method. It can be applied to any
other existing structured P2P networks.

The hash-based proximity clustering method [44] represents
the physical distances between nodes by indices, called Hilbert
numbers. Briefly, each node measures its physical distances
to the pre-determined m landmarks, and uses the vector of
distances < d1, d2, . . . , dm > as its coordinate. Then, the node
uses the space-filling curves [50] to transform the coordinate
to a Hilbert number, which indicates node physical closeness
on the Internet. Two nodes with closer Hilbert numbers are
physically closer to each other and vice versa.

In general, supernodes are nodes with high capacity and fast
connections, and regular nodes are nodes with lower capacity
and slower connections. For simplicity, we define a node with
capacity greater than a predefined threshold as a supernode;
otherwise it is a regular node. The logical distance of node
A and node B is calculated by D(A,B) = |IDB − IDA|.
The clustering method assigns regular nodes to their logically
closest supernodes. A structured P2P network provides two
main functions, Put(ID,object) and Lookup(ID) [51],
to store an object with an ID in its owner node and to retrieve
the object. In Chord, the object is assigned to the first node
whose ID is equal to or follows the key in the ID space. If
two objects have the same or close IDs, the objects are stored
in the same node or close nodes in ID space. Therefore, if
nodes report their information for file replication with their
Hilbert number, H, as the key by put(H, IR), the IR of
nodes with the same or close H will reach the same node or
logically close nodes because the Hilbert number represents
node physical closeness. The nodes further forward the IR
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to their supernodes. As a result, the IR of physically close
nodes are pooled in the same supernode. Figure 2(b) shows an
example of the information pooling in the supernode ring. The
links between regular nodes and their supernode are omitted
for clearness. Physically close regular nodes n1, n10 and n30
periodically send their IR with their Hilbert number 56 as
the destination. The IR will first arrive at n60, and then is
forwarded to n63. We call the destination supernode of the
reporting nodes as their cluster server and call the nodes as
the cluster server’s clients.

Before a supernode leaves, it finds its preceding and suc-
ceeding supernodes in the supernode ring and moves its clients
to them. The clients then connect to their new supernodes. The
supernode ring use lazy-update to handle supernode failures.
That is, if a supernode leaves or fails without warning, its
clients will not receive a response from the supernode. The
clients then connect to new supernodes. Proposition 3.1 sheds
insight into the subtleties of the clustering method.

Proposition 3.1: For any set of Ns supernodes and Nr

regular nodes, with high probability:
1. Each supernode is responsible for at most (1 + ε)Nr/Ns

regular nodes, where ε equals to O(logNs).
2. When an (N+1)st supernode joins in or leaves the network,
responsibility for Nr/Ns regular nodes changes hands (and
only to or from the joining or leaving supernode).

Proof: We can regard supernodes and regular nodes in
the supernode ring as nodes and keys in Chord ring. Theorem
1 in [2] proved that for N nodes and K keys, each node is
responsible for at most (1+ε)K/N keys where ε = logN , and
a node join and departure leads to responsibility of O(K/N)
keys changing hands.

In CORP, each overloaded node reports the IR of its source
files and each lightly-loaded node reports the IR of its avail-
able capacity (i.e. δC) to its cluster server periodically. The
cluster server then arranges the replica nodes for each source
file (Section 3.5). Some supernodes may be overloaded due
to the load of file replication arrangement. The load balancing
mechanisms in our previous work [44] can be adopted to deal
with the load imbalance between supernodes.

3.5 File Replication Arrangement
Upon receiving the IR from its clients, each cluster server
stores the IR into a pair of source file list and available capac-
ity list. It then arranges replica nodes for each source file. It is
important to avoid the fragmentation of the available capacity
of a node so that the intact capacity can be for high-load
source files. Also, as explained, for efficient file consistency
maintenance, a frequently-updated or infrequently-visited file
should have fewer replicas. As shown in Figure 2(c), CORP
orders the IR pieces of source files in descending order of
update rate. Files with the same update rate are ordered in
ascending order of visit rate, and files with the same visit rate
are further ordered in a descending order of their load values.
For the integrated consideration of update rate and visit rate,
CORP orders IR pieces of source files in ascending order of
their replication priorities, and files with the same replication
priority are further ordered in a descending order of their load
values. CORP organizes the IR pieces of available capacity in
a balanced binary search tree based on δC. maxδC represents
the maximum δC in the list. Then, each IR piece in the source
file list is fetched, and its replica node is searched in the tree
to locate the item that has the minimum available capacity no

less than the load of the source file (i.e., min δC ≥ LFA[i]).
Thus, a source file is assigned to the most fit lightly-loaded
node which has minimum free capacity left after the source
file is replicated to it.

This arrangement facilitates to reduce the number of file
replicas while releasing the excess load of overloaded nodes.
Algorithm 2 shows the pseudocode of the file replication ar-
rangement. This algorithm guarantees that frequently-updated
files have the highest priority to be reassigned to a lightly-
loaded node with higher available capacity, infrequently-
visited files are given priority over higher-load files for the
assignment, and higher load files finally. It reduces the number
of these files’ replicas and their total update, and subsequently
reduces consistency maintenance overhead.

———————————————————————————————
Algorithm 2: A cluster server performs file replication arrangement
between a pair source file list (SFL) and available capacity list (ACL).
———————————————————————————————
ReplicationArrange (SFL, ACL) // FA is the list of all files {
for each IR item IRi in the source file list do
//assume it is < LFA[k], SFA[k], VFA[k], UFA[k], IDFA[k], IP (A) >

Search LFA[k] in the balanced binary tree of ACL to find the item that has

min δCB with LFA[k] ≤ δCB //assume it is < δCB , IP (B) >
if successfully find the item then {
//node B can afford file FA[k]’s load totally

File FA[k] is replicated from node A to node B
Remove the IR item of FA[k] from source file list
if δCB − LFA[k] > 0 then

Insert <(δCB − LFA[k]), IP (B)> back to the tree }
else {
//assume the node with max δCB in ACL is node B
and it can afford file FA[k]’s load partially

File FA[k] is replicated from node A to B
b = �δCB/SFA[k]�
Change VFA[k] in IRi to VFA[k] − b
Change LFA[k] in IRi to SFA[k] × VFA[k]

Insert item IRi back to the source file list
if δCB − (SFA[k] × b) > 0 then

Insert <(δCB − (SFA[k] × b)), IP (B)>
back to the tree }

}
———————————————————————————————

If the lightly-loaded node with maxδC does not have
enough capacity for a file’s total load, it can be responsible for
partial load based on visit rate, and leaves the rest of load to
other lightly-loaded nodes. A node records the replica nodes
for each of its source files and the visit rate the replica node
is responsible for. Later on, if it receives a file query when it
is overloaded, it forwards the query to the replica nodes based
on their responsible visit rates. A replica node responsible for
higher visit rate will receive proportionally more queries.

Let n denote the total number of nodes in a supernode’s
cluster, c1 denote the percent of overloaded nodes in the
cluster, and m denote the average number of reported source
files of each overloaded node. A supernode needs to sort all
the reported files by load, which has O(c1nm log(c1nm)) time
complexity, and builds the available capacity items of lightly
overloaded nodes into a balanced binary search tree, which has
O((1− c1)n log((1− c1)n)) time complexity. The value of m
is small and can be regarded as a constant. Then, the total
complexity of first two steps is O(n log n). Let c2 denote the
average number of replicas of a source file. The file replication
arrangement has O(c2nm log((1 − c1)n)) time complexity.
Regarding c2 as a constant, the total time complexity of
replication arrangement in a super node is O(n log n).

A cluster server may not be able to resolve all source files
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within its cluster. Recall that physically close nodes report
their information to logically close cluster servers. Therefore,
the distances between neighboring cluster servers represent the
physical distances between their virtual clients. For locality-
aware probing, a cluster server s probes its logically nearby
cluster servers in sequence by probing its successors or prede-
cessors. It contacts its succeeding cluster server and preceding
cluster servers represented by suc(s) and pre(s). After file repli-
cation arrangement operation between their available capacity
lists and the cluster server’s source file list, if the source file list
is still nonempty, suc(suc(s)) and pre((pre(s)) are attempted.
This process is repeated until the cluster server’s source file list
becomes empty. Communication and file replication between
physically close nodes improve the efficiency.

3.6 Adaptive File Replication
A node periodically checks its load status. If it is lightly-
loaded, it first removes some of its replicas in other nodes
before reporting its available capacity. The replicas of files
with a low visit rate, high update rate, or low load should be
removed first in order to reduce overhead of consistency main-
tenance and increase the replica utilization. An overloaded
node can also select its replica files to replicate. Each node
periodically reports its source files or available capacity based
on its experienced actual load, and it increases or decreases
the number of replica nodes of its files adaptively based on file
popularity and visit pattern. It then notifies replica nodes to
delete replicas or requests its cluster server for more replicas.

In skewed lookups, many nodes query for a highly-popular
file. CORP enables the file owner to quickly locate physically
close nodes with sufficient capacity to replicate the file, and
forward the file queries to the replica nodes later on. In
traditional file replication methods, the file will be replicated
to other nodes without the consideration of available node
capacity, which may overload the replica nodes, exacerbating
the situation of overloaded nodes. CORP selects source files
and replicates files based on their recent file visit rate, thus it
is adaptive to time-varying file visit rates.

3.7 Replication for Locality-aware Replica Retrieval
Replicating files on the nodes physically close to the file
owner generates low cost for file replication and consistency
maintenance since the files and updates are transmitted among
physically close nodes. A file normally has a larger size than
the update message. If we can replicate a file in or physically
near the file requester that frequently requests for this file, it
can greatly reduce the transmission cost for file retrieval. Thus,
we propose a replication algorithm for locality-aware replica
retrieval to further enhance CORP.

When a node requests for a file, it sends out a request along
with its Hilbert number to indicate its physical location. CORP
pre-defines a threshold, T , for a node’s visit rate on a file. T
can be the average node visit rate on a file in the system. If
the visit rate of a node on a file is larger than T , this file
will be replicated in this node or a node physically close to
this node. As a result, for a file with a large visit rate from
individual nodes, the file’s access load will be distributed to
individual frequent requesters based on their visit rates, and
the file owner is responsible for the accumulated load due to
file visits from other nodes in the system.

After a node selects its files to replicate, it compares the
visit rate of each individual node on each selected file with

T . For example, a selected file i has requesters B, C and
D that have visit rates on file i larger than T . Then, node
A generates an additional three IR marked by ∗ (IR∗) for
file i to report to the cluster servers of nodes B, C and D,
respectively. Finally, node A reports IRA for the remaining
visit rate from other nodes denoted by

V(FA[i],r) = VFA[i] − V(FA[i],B) − V(FA[i],C) − V(FA[i],D)

by executing put(HA, IRA).
———————————————————————————————
Algorithm 3: Replication for locality-aware replica retrieval.
———————————————————————————————

//node A reports IR of selected files to replicate
for each selected file FA[i] do

for each node K that has visited file FA[i] do
if V(FA[i],K) ≥ T then {
//node K frequently requests for file FA[i]

Generate IR∗
K

Send put(HK , IRK) }
Generate IRA

Send put(HA, IRA)
//A cluster server executes file replication arrangement
if receive an IR∗

K then
if has an IRK in the available capacity list then

if δCK ≥ SFA[i] in IR∗
K then {

Assign file in IR∗
K to node K

δCK− = SFA[i]

Remove IR∗
K }

Executes file replication arrangement
//File request redirection
if receive a request for a file from node B when overloaded then

if there exists a replica node C having the same H as B then
Notify node B to retrieve the file from node C

else
if there exists a replica node(s) for the file then

Notify the requester to retrieve the file from a replica node
else

Queue the request
———————————————————————————————

When B’s cluster server arranges file replication, if it has
IR from node B in the available capacity list and δCB >
SFA[i], the cluster server assigns the load in IR∗

B to node B.
Then, B can retrieve its frequently visited file from itself.
This file replication consumes B’s capacity that equals to
the file size, since there is no file transmission in retrieving
the file. If the cluster server does not have IR from B in
the available capacity list, it arranges the file replication as
described previously. As a result, this file is replicated to a
node physically close to B, say node E. When B asks the
file server for this file, the server will notify it to retrieve
the file from node E. Hence, the file transmission is between
physically close nodes. Algorithm 3 shows the pseudocode for
the replication for locality-aware replica retrieval.

4 SIMULATION PERFORMANCE EVALUATION
We designed and implemented a simulator for evaluating
CORP based on Chord. There are two other classes of file
replication methods: ID-based and location-based. We chose
PAST [9] and LAR [15] in each class and compared the per-
formance of CORP with them in terms of capacity-awareness,
locality-awareness, and file consistency maintenance cost.
Briefly, PAST replicates a file to a number of nodes whose
IDs match most closely to the file’s ID. When a node is
overloaded by file queries, it chooses its higher-load files to
replicate to its neighbors until it is lightly loaded. The number
of replicas per file was set to 5 as used in [9]. LAR replicates
a file to query initiators. When a node is overloaded by file
queries, it orders the query initiators according to the load
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Fig. 3. Number of replicas. Fig. 4. Node utilization. (a) ts5k-large (b) ts5k-small

Fig. 5. CDF of total load of replicated files.

generated by them, and replicates higher-load files to them
until being lightly loaded. To make them comparable, we did
not create routing hints in lookup paths, and an update message
is directly sent from the file owner to the replica nodes in each
protocol in consistency maintenance.

The number of nodes in the system was set to 4096, and the
number of files was set to 20480. The visit rate and update rate
of each file is randomly chosen from [1,10]. We define node
utilization of node A, NUA, as the fraction of its capacity that
is used: NUA = LA/CA. System utilization (SU) is the ratio
between the system’s total load and the system’s total target
capacity, which equals to

∑
i Li/

∑
i Ci. We assumed bounded

Pareto distribution for the capacity of nodes and the sizes of
files. This distribution reflects the real world where there are
machines with capacities that vary by different orders of mag-
nitude. For node capacity, the upper and lower bounds were
set to 25× 104 and 25× 103 respectively, with a shape of 2.
For file size, we set the upper and lower bounds to L̄×10 and
L̄ respectively with a shape of 2, and L̄ is the average load per
node. All files were visited based on their visit rate with ran-
domly chosen requesters, and the experiment stopped when all
overloaded nodes release their excess loads by replicating files.

The network topologies were generated by GT-ITM [52]:
“ts5k-large” and “ts5k-small”. “ts5k-large” represents a situa-
tion in which the network consists of nodes from several big
stub domains. It has 5 transit domains, 3 transit nodes per
transit domain, 5 stub domains attached to each transit node,
and 60 nodes in each stub domain on average. “ts5k-small”
represents a situation in which the network consists of nodes
scattered in the entire Internet and there are only a few nodes
from the same edge network. It has 120 transit domains, 5
transit nodes per transit domain, 4 stub domains attached to
each transit node, and 2 nodes in each stub domain on average.
To account for the fact that interdomain routes have higher
latency, each interdomain and intradomain hop count as 3 and
1 hop of units of latency respectively.

4.1 Capacity-aware File Replication
Figure 3 shows the total number of file replicas versus SU.
We observe that the number of replicas increases with the
increase of SU. This is because higher SU leads to more
overloaded nodes, resulting in more file replicas. We also
find that LAR and PAST generate dramatically more replicas
than CORP. Recall that LAR and PAST do not consider
node available capacity during file replication, which results
in unnecessary file replication. Although PAST uses load
balancing afterwards, it will generate extra overhead. In addi-
tion, the replica nodes may not have sufficient capacity for
the replicas, leading to more overloaded nodes. Thus, the
neglect of node available capacity in file replication leads to
more replicas, more overloaded nodes, and extra overhead for
load balancing and file consistency maintenance. In contrast,

(a) ts5k-large (b) ts5k-small

Fig. 6. File consistency maintenance cost.

CORP proactively takes into account node available capacity
during file replication. It not only avoids unnecessary file
replication but also avoids exacerbating overloaded node by
choosing nodes with sufficient available capacity as replica
nodes. Thus, it outperforms LAR and PAST by controlling
the overloaded nodes and extra overhead for load balancing
and file consistency maintenance.

We measured the maximum NUs of all nodes after all over-
loaded nodes replicate their files in the first round. Figure 4
plots the median, 1st and 99th percentiles of node NUs versus
SU in different methods. It shows that the 99th NUs of LAR
and PAST increase with SU due to the same reason as in Fig-
ure 3. The median NUs of CORP are sometimes higher than
LAR and PAST, but it constrains the 99th NUs within 1, while
those of LAR and PAST are higher than 1. The results imply
that LAR and PAST incur much more overloaded nodes, while
CORP can keep all nodes lightly-loaded by balanced load
distribution. The figure also demonstrates that the 99th NU of
PAST is higher than that of LAR. This is because PAST repli-
cates files in a file owner’s logically close node. Relying on the
nodes within a small range around the heavy file owner node
will make these replica nodes overloaded. LAR only replicates
files in the requesters that are scattered in the network.

4.2 Locality-aware File Replication

This test shows the effectiveness of CORP to achieve locality-
aware file replication between physically close nodes. Fig-
ures 5(a) and (b) show the cumulative distribution function
(CDF) of the total load of replicated files when the SU
approaches 1 in “ts5k-large” and “ts5k-small”, respectively.
We can see that in “ts5k-large,” CORP is able to replicate
95% of the total load of replicated files, while LAR and PAST
replicate about 30% within 10 hops. Almost all replications in
CORP are within 15 hops, while LAR and PAST replicate only
80% of the total file load within 15 hops. The results show
that CORP replicates most files in short distances but LAR and
PAST replicate most files in long distances. From Figure 5(b),
we can make the same observations although the performance
difference between the protocols is not so significant. The
results show the superior performance of CORP compared to
LAR and PAST with regards to locality-aware file replication.
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Fig. 7. Performance in churn. (a) Number of replicas (b) Node utilization (c) Consistency maintenance cost

Fig. 8. Performance of file replication protocols in skewed lookups.

4.3 Lightweight File Consistency Maintenance

The cost of a message transmission is directly related to
message size and physical distance of the message travelled.
We use the product of these two factors of all file update
messages to represent the consistency maintenance cost. It
is assumed that the size of an update message is 1 unit.
Figures 6(a) and (b) plot the file consistency maintenance cost
of CORP, PAST, and LAR in “ts5k-large” and “ts5k-small”,
respectively. We see that the cost increases as system load
increases, and LAR and PAST incur considerably higher cost
than CORP. There are three reasons for the observation. First,
LAR and PAST replicate each file without the consideration
of node available capacity, file popularity and visit rate,
resulting in many unnecessary file replicas or replicas for
files with high update rates. Taking these factors into account,
CORP generates fewer replicas for files with high update
rates. Second, because LAR and PAST neglect locality in file
replication, they render significantly high cost for file updates
since messages travel long physical distances. In contrast,
CORP proactively considers locality in file replication such
that the update messages only travel between physically close
nodes. Third, CORP considers the update rate factor in file
replication. It tries to replicate files with lower update rate
in order to reduce the subsequent consistency maintenance
cost. Its fewer replicas, shorter update message travel distance,
and low update rate of replicas contribute to low-overhead file
consistency maintenance.

4.4 Performance in a Dynamic Environment

This section evaluates the efficiency of CORP in a dynamic
environment with churn. In this experiment, we run each trial
of the simulation for 20t simulated seconds, where t is a
parameterized period set to 60 seconds. We measured the
maximum node utilization after every t, and averaged the
simulation outcomes as the final results. The file join/departure
rate was modelled as a Poisson process at rate 0.4 as in [2];
one file joins and one file departs every 2.5 seconds. We
ranged node interarrival/interdeparture rate from 0.1 to 0.5
with step size of 0.1. When a replica node leaves, it needs
to transfer all of its files and replicas to its nearby nodes.
Figure 7 illustrates the average of maximum NUs versus
node interarrival/interdeparture rate. We can make a number
of observations. First, the 99th percentile maximum NUs
of CORP are no higher than 1. This implies that CORP
achieves the file replication goal of reducing overloaded nodes
in dynamism. Second, the 99th percentile maximum NUs of
LAR and PAST are higher than 1, and they increase as the
node interarrival/interdeparture rate increases. Because LAR
and PAST overlook the node available capacity factor, they are
not able to control NU as in the static situation. In conclusion,
unlike LAR and PAST, CORP ensures a load balance condition
by file replication even in a dynamic environment.

4.5 Effect of Skewed Lookups
Skewed lookups due to non-uniform and time-varying file pop-
ularity and node interest variation may lead to load imbalance.
In this section, we consider the effect of skewed lookups on
file replication. We consider an “impulse” of 20480 queries
for files whose IDs are distributed over a contiguous interval
of the ID space from 0 to l, where l ranged from 500 to 4000
with 500 step size. We set the SU as 0.8 and tested the metrics
of CDF of total load of replicated files, the total number of
replicas, the NU, and the file consistency maintenance cost.

Figure 8(a) plots the total number of replicas versus the
range of query keys. We find that the result drops with the
increase of range. By comparing to the results without skewed
lookups in Figure 3, we can see that skewed lookups generate
much more replicas when the query range is smaller than 3500.
It is expected because if query load concentrates on shorter ID
space, more nodes will be overloaded and more replicas are
needed to release their load. We also see that LAR and PAST
generate much more replicas than CORP. With node available
capacity consideration, CORP is able to deal with skewed
lookups due to hot files, but LAR and PAST are not sufficiently
flexible to handle skewed lookups. They replicate files to other
nodes without considering their available capacity. Thus, the
replica nodes will also be overloaded in skewed lookups, and
subsequently they need to replicate files to other nodes, thus
generating many more file replicas than CORP.

Figure 8(b) shows the median, 1st and 99th percentiles
of NU rates in different query ranges. We can make two
observations. First, all the 99th rates of CORP are no more
than 1, which implies that even in skewed lookups, CORP
can control a node’s load under its capacity. Second, all the
99th rates of PAST and LAR are greater than 1, and PAST
has higher 99th rates than LAR. The results are consistent
with those in Figure 4 for the same reasons, and confirm the
importance of considering node available capacity during file
replication, especially in skewed lookups.

Figure 8(c) plots the file consistency maintenance cost
with skewed lookups. It demonstrates that LAR and PAST
incur dramatically higher cost than without skewed lookups in
Figure 6, whereas the cost of CORP remains almost stable with
different query ranges. The reason for higher cost in skewed
lookups is because skewed lookups result in more overloaded
nodes, leading to more replicas.

5 PLANETLAB PERFORMANCE EVALUATION

We conducted experiments on the real-world PlanetLab [53]
testbed to measure the performance of CORP. We randomly
selected 350 nodes all over the world, and then generated
350×5 virtual nodes with each real node representing 5 virtual
nodes. The nodes can be clustered into 169 groups using the
clustering method. We resort to the statistics derived from
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(a) Number of replicas (b) Node utilization (c) Replicas per file (d) CDF of load of replicated files

Fig. 9. Performance on the PlanetLab testbed.

(a) Number of replicas (b) Node utilization (c) Replicas per file (d) CDF of load of replicated files

Fig. 10. Performance in the Pareto distribution scenario with smaller bound ranges.

(a) Number of replicas (b) Node utilization (c) Replicas per file (d) CDF of load of replicated files

Fig. 11. Performance in the random distribution scenario.

4 million MSN video users’ viewing behavior in the trace
collected by Microsoft [54] for file size, visit rate, and file
capacity in the experiment. We set the number of files to
11000, which is 1/10 of the number of files in the trace.
Following the distributions of fie size, visit rate and node
capacity in the trace, we designed the experiment setting. The
file size obeys the bounded Pareto distribution. We set the
upper bound, lower bound and shape to 49/(5 × 102)MB,
1/(5 × 102)MB and 1, respectively. The distributions of the
file visit rate and the capacity of nodes in the experiment obey
the distributions in the trace, which approximately follow the
Pareto and mirror-image Pareto distributions respectively. We
also used the Pareto distribution for the file update rate. We
set the lower bound, upper bound and shape to 1, 10, and 1,
respectively. Since PAST [9] does not choose higher-load files
to replicate, we let a node randomly choose files for replication
in PAST in order to see the performance difference. We used
the spherical law of cosines to calculate the distance between
two PlanetLab nodes i and j as shown below:

d = r arccos(sinφi sinφj + cosφi cosφj cosΔλ) (3)
where r is the radius of the earth, φ and λ denote the
geographical latitude and longitude, and Δλ = |λi − λj |.

5.1 Capacity-aware File Replication
Figure 9(a) plots the total number of replicas versus SU. CORP
generates much fewer replicas than LAR and PAST, and the
total number of replicas increases as SU increases. The result
is in line with that in Figure 3 due to the same reason that
CORP chooses higher-load source files and tries to replicate
one file to a node that can handle more visits of the file. We
also see that LAR generates slightly fewer replicas than PAST.

This is because PAST randomly selects files to replicate, while
LAR gives higher-load file higher priority to replicate.

Figure 9(b) shows the 1st percentile, median and 99th
percentile NU versus SU. The result is consistent with that
in Figure 4. CORP can always maintain the NU of no more
than 1, while LAR and PAST produce many overloaded nodes.
This is because CORP does not assign more load beyond what
a node can afford. However, PAST does not consider node
available capacity. LAR aims to balance the load between
nodes but also does not consider node available capacity.

Figure 9(c) shows the 1st percentile, average and 99th
percentile of the number of replicas per file versus SU. Our
result shows that the median is always 0, so we demonstrate
the average here. We see that the average number increases as
SU grows because higher SU leads to more replicas. We also
see that the average number and the 99th percentile follow
CORP<LAR<PAST. This is because CORP tries to reduce
the number of replicas of each file in replication arrangement,
while LAR and PAST do not pay attention to the number of
replicas. Because PAST always creates 5 replicas for a file, its
99th percentile stays at 5. Also, the 99th percentile of LAR is
always smaller than that of PAST because a node can always
release its excess load before one of its file is replicated 5
times. We also see that the 99th percentile of CORP stays at
1 when the SU is lower than 0.8. This shows the effectiveness
of CORP in constraining the number of replicas of a file.

5.2 Locality-aware File Replication
Figure 9(d) shows the CDF of load of replicated files versus
the actual physical distance. We see that within 2 × 103km,
96% of file load is replicated in CORP, while 28% of file
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Fig. 12. Consistency mainte-
nance cost.

(a) Latency to replicate and update files (b) The average latency

Fig. 13. Latency to replicate and update files.
Fig. 14. Total latency.

(a) Info. collection latency in CORP (b) Replica rearrangement cost (c) Reporting cost in hops (d) Reporting cost in distance

Fig. 15. Reporting and replication arrangement latency and cost in CORP.

load is replicated in LAR and 25% of file load is replicated in
PAST. This result is consistent with that in Figure 5. CORP
tries to replicate files to physically close nodes in order to
reduce the cost of file replication and consistency maintenance.
Therefore, most of the load of replica files is within short
distances. In contrast, LAR and PAST do not consider the
locality in file replication. Thus, they replicate 96% of the
file load within 15× 103km. The file transmission and update
propagation between physically-far nodes generate a high cost.

5.3 Performance in Balanced Scenarios
In this section, we conducted experiments in two less un-
balanced scenarios. In one scenario, we reduced the upper
bounds of file size, visit rate and update rate in the original
Pareto distribution settings by one half. In the other scenario,
we used random distribution with the same upper bounds and
lower bounds in the original Pareto distribution settings. We
reduced the lower and upper bounds of file size to 1/15 of the
original in order not to overload the system. Figure 10 and
Figure 11 show the performance of different methods in the
two scenarios, respectively. For each performance metric, the
experimental results in Figure 10 and Figure 11 are consistent
with that in Figure 9 due to the same reasons. Because of
smaller file size in the less unbalanced scenarios, the system
is lightly loaded. Thus, an overloaded node can easily find
a physically-close lightly loaded node to release its load.
As a result, 93% of files in the Pareto distribution scenario
and 96% of files in the random distribution scenario are
replicated within 1000km, compared to 54% in Figure 9. All
the experimental results confirm the efficiency of CORP in
both file replication and consistency maintenance in systems
with unbalanced and balanced distributions.

5.4 Lightweight File Consistency Maintenance
Figure 12 shows the consistency maintenance cost versus SU.
We see that as SU increases, the consistency maintenance also
increases. Higher SU leads to more overloaded nodes, and
triggers more file replication operations and more replicas.
Again, as in Figures 6(a) and (b), we see that CORP produces
significantly lower consistency maintenance cost than PAST
and LAR. This is caused by three reasons. First, CORP tries to

replicate files in physically close nodes, generating short dis-
tances for update propagation. Second, CORP tries to reduce
the number of replicas, producing less update messages. Third,
CORP tries to replicate files with lower update rates. Because
neither LAR nor PAST considers to minimize the physical
distances, replica update rate and the number of replicas, they
generate higher consistency maintenance cost than CORP.

5.5 Latency of Creating and Updating Replicas

In this test, we measured the actual latency for creating and
updating replicas. In order to test the performance in a heavy
traffic, we enlarged the file size by 500 times. Figure 13(a)
shows the total latency for both file replication and consistency
maintenance phases. We see that when SU increases, the
total latency increases in all three methods due to increasing
number of replicas. CORP has lower latency than LAR and
PAST because it creates fewer replicas and tries to replicate
files to geographically close nodes. LAR has slightly lower
latency than PAST because LAR has a little fewer replicas
than PAST. The result indicates the higher efficiency of CORP
in replicating and updating files.

Figure 13(b) shows the average latency per file for repli-
cating and updating files versus SU. When SU increases,
the average latency increases in all three methods. This is
because more file replications generate more load and message
transmissions in the system, which produces more traffic
congestions and increases node response latency due to longer
queuing, processing and propagation delay. When SU equals
0.5, the average latency of CORP is about 1% of the latency of
PAST and LAR because CORP’s locality-awareness decreases
its propagation delay. As SU increases, more congestions
occur, which leads to longer delay. Therefore, CORP produces
similar average latency as those of PAST and LAR.

Figure 14 shows the latency for file replication (including
information collection and replication arrangement in CORP)
and updates. It shows that with extra source file selection
and replication arrangement phases, CORP still generates
much less latency than others. Comparing Figure 14 and
Figure 13(a), we see that CORP has slightly longer latency
due to the extra phases. These experimental results confirm
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Fig. 16. Node utilization in
churn.

(a) Number of replicas (b) Node utilization (c) Consistency maintenance cost

Fig. 17. Performance of file replication protocols in skewed lookups.

the efficiency of CORP even with extra information collection
and replication arrangement phases.

5.6 Latency of Information Collection and Replica-
tion Arrangement

In CORP’s information collection phase, each node period-
ically selects source files (i.e., executes Algorithm 1) and
sends information to its supernode. This experiment lasted one
hour and each node conducted the operation every 5 minutes.
The size of each parameter in IR was set to 1 unit. We
measured the latency of each step and the whole phase for
each node as shown in Figure 15(a). We see all file selection
operations are within 8 ms (99.94% of operations are within
1ms). 87% of information report operations are within 32ms.
97% of information collection phases are within 64ms, and all
are within 256 ms. In conclusion, the information collection
takes very short time compared to the file replication and
consistency maintenance latency as shown in Figure 13(a).

Figure 15(b) shows the latency for replication arrangement
that determines which files should be replicated in which
nodes. We see that the latency follows CORP>LAR>PAST.
This is because CORP needs to order files based on their load,
visit rate and update rate for both source file selection and
replication arrangement, PAST only needs to find higher-load
files to directly replicate to its neighbors, and LAR needs to
find both higher-load files and query initiators that generate
most load. We also see that CORP has similar time latency
when SU≤0.8, and it only generates 15% and 27% higher
time latency than PAST when SU is 0.9 and 1, respectively.
The results imply that CORP generates slightly longer latency
for replica rearrangement, but can significantly reduce the cost
for replication and consistency maintenance.

Figure 15(c) shows the total number of hops needed to
report the information for file replication to the supernodes
and the average hops per replica file. This figure indicates that
the total reporting cost is proportional to the system utilization.
This is because more nodes are overloaded when SU increases,
and more files need to be replicated. The figure also shows that
the reporting cost of each replica file decreases when the sys-
tem utilization increases. With an increased system utilization,
each overloaded node may have more than one file replica,
which can be reported together, thus reducing the average hops
of each replica file. We see that each replica file generates less
than 1.5 reporting hops, which indicates that CORP does not
produce a high cost in the information clustering stage.

Figure 15(d) shows the information reporting cost in CORP
versus SU. Comparing it with Figure 12, we see that CORP’s
information reporting cost only constitutes a small percent
of the consistency maintenance cost of LAR and PAST,
which implies that CORP’s extra step of information reporting

generates a small amount of cost, but helps CORP significantly
reduce the cost of consistency maintenance.

5.7 Node Utilization with Churn
We run one round of file replication in churn. Figure 16 shows
the 1st percentile, median and 99th percentile of maximum
NU of a node versus SU. We see that the median increases
as SU grows because higher SU leads to more replicas. We
also see that the 99th percentiles of LAR and PAST always
stay very high while that of CORP is always less than 1. This
is because CORP avoids overloading nodes in file replication,
while LAR and PAST do not pay attention to the available
capacity of nodes. LAR replicates files to requester and PAST
replicates files to a limited number of a server’s neighbors.
Thus, PAST generates higher 99th percentile than LAR.

5.8 Effect of Skewed Lookups
Figure 17(a) shows the total number of file replicas versus the
range of query keys. We see that LAR and PAST generate
more replicas than CORP due to the same reasons explained
in Figure 8(a). Also, when the range of query keys is small,
LAR and PAST generate much more replicas, while CORP
only produces slightly more replicas. This is because the
queries are on smaller number of nodes, which generates more
overloaded nodes. Unlike LAR and PAST, CORP considers
the available capacity of nodes chosen to replicate nodes in
order to create fewer replicas. Also, it tries to constrain the
number of replicas when choosing source files to replicate.
Thus, it produces much fewer replicas than LAR and PAST.
The number of replicas of PAST is larger than that of LAR,
because a node in PAST randomly chooses a file to replicate
rather than choosing high-load files as in simulation. The
slower load release produces more replicas.

Figure 17(b) shows the median, 1st and 99th percentiles
of NUs versus the query range. We see that the result is
consistent with that in Figure 8(b) due to the same reasons.
Also, PAST generates a much higher 99th percentile NU
because of the same reason as in Figure 8. Finally, we
observe that the median values of all methods are almost the
same. This is because the loads of nodes not in the range of
query keys are almost the same.

Figure 17(c) demonstrates the consistency maintenance cost
with different query ranges. It shows that CORP produces
significantly less maintenance cost than PAST and LAR due to
its locality-awareness, fewer replicas and lower update rates of
replicas. In contrast, LAR and PAST do not consider locality
in file replication. Also, they do not try to reduce the file
replicas and the update rates of the replicas. Therefore, they
produce much higher consistency maintenance cost. PAST
leads to higher maintenance cost than LAR because it has
more replicas as shown in Figure 17(a).
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(a) Lookup path length (b) Number of replicas (c) Consistency maintenance cost (d) CDF of total load of replicated files

Fig. 18. Performance of CORP and enhanced CORP.

(a) Update rate (b) Visit rate

Fig. 19. CDF of percentage of replicas.
5.9 Replication for Locality-aware Replica Retrieval
In this experiment, we test the effectiveness of the locality-
aware replica retrieval policy described in Section 3.7. We use
ECORP to represent CORP with this policy. Recall the system
has N = 350×5 nodes. Given each file’s visit rate V in trace,
we randomly selected a pool of 80%N nodes and assigned
20%V requests of the file to the 80%N nodes randomly. We
then assigned the remaining 80%V requests to the remaining
20%N nodes randomly. In the test, each node sends out its
assigned requests. We call a node that replicates a file because
its visit rate is ≥ T replica client and call such a source file
client replicated file.

Figure 18(a) shows the average lookup path length of
requests for all client replicated files versus the different values
of threshold T. The average path length of ECORP is less than
that of CORP. Also, the average path length of CORP always
stays at 5.5, while that of ECORP increases as T increases.
When T=6, ECORP and CORP achieve similar average lookup
path length, which means there are few client replicated files
in ECORP. Figure 18(b) plots the total number of replicas
versus the different threshold values. We see that the number
of replicas of ECORP drops sharply, while that of CORP
remains nearly constant. Again, when T=6, ECORP and CORP
generate almost the same number of replicas. When T is
smaller, more requesters have replicas and they can retrieve
the files from themselves, leading to shorter average path
lengths. Figure 18(c) plots the consistency maintenance cost
versus the threshold, which shows similar results as those in
Figure 18(b). This is because more replicas produce more
update propagations. These results show the effectiveness of
the replication for locality-aware replica retrieval, and imply
that the threshold should be set to an appropriate value so that
the lookup path length can be greatly reduced with a moderate
amount of additional replicas.

Figure 18(d) shows the CDF of the percentage of total
load of replicated files. We see that CORP resolves more
load within shorter physical distances, while ECORP resolves
relatively less load within shorter distances. Also, smaller T
generates less load in shorter distance and more load in long
distance. This result is consistent with that in Figure 18(b).
Since replicated files usually are not necessarily replicated to

physically close nodes, more such replicas in ECORP lead to
more load resolved in long distances.

5.10 Integrated Consideration of Update and Visit
Rates

In this test, we set the load of all files to 2000kB in order to
see the effect of considering update rate and visit rate on the
file replication and consistency maintenance performance. We
use CORP-w/o to denote CORP without considering update
rate or visit rate, and its source files is FA after the first
step in Algorithm 1. We use CORP-w/ to denote CORP
with integrated consideration of update rate and visit rate as
described in Section 3.3.

Recall that CORP reduces the replicas of frequently-updated
or infrequently-visited files to decrease the overhead of file
consistency maintenance and increase replica utilization. This
experiment illustrates the effectiveness of CORP that considers
visit rate and update rate. Figure 19(a) demonstrates the CDF
of percent of the number of replicas. We see that CORP-w/o
generates fewer replicas with low update rate than CORP-
w/, which generates fewer replicas with low update rate than
CORP. This is because CORP-w/o does not consider update
rate when selecting files to replicate. In contrast, CORP-w
assigns high priorities to barely-updated files to be replicated
into high available capacity nodes in order to reduce consis-
tency maintenance overhead. CORP gives higher priority to
update rate than visit rate, while CORP-w/ gives relatively
lower priority to the update rate than CORP since CORP-w/
integrates the update rate and visit rate. Consequently, CORP-
w/ generates fewer replicas with low update rate than CORP.

Figure 19(b) plots the CDF of percent of the number of
replicas versus the visit rate. We observe that CORP-w/o
generates more replicas with low visit rate than CORP, which
generates more replicas with low visit rate than CORP-w/.
This is because CORP-w/o does not consider visit rate and
CORP gives lower priority to visit rate than CORP-w/. From
the figure, we conclude that compared to CORP-w/o, CORP
and CORP-w/ generates fewer replicas for less popular files,
and more replicas for more popular files, thus avoiding idle
file replicas and enhancing replica utilization.

Figure 20(a) shows the total number of files replicas versus
SU. We see that all three methods produce the same number of
replicas. The three methods need to release the same amount
of total load and all files have the same load. Also, the
methods are all capacity-aware. As a result, they generate the
same number of total replicas. This means that the integrated
consideration of update and visit rates does not create more
replicas. Figure 20(b) shows the consistency maintenance
cost versus SU. It shows that CORP-w/o generates higher
consistency maintenance than other two methods. This is
because CORP and CORP-w/ try to replicate files with lower
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(a) Total number of file replicas (b) Consistency maintenance cost (c) Accumulated size of replicated files

Fig. 20. The efficiency of integrated consideration of update and visit rates.
Fig. 21. Consistency mainte-
nance cost with I/O trace.

(a) Number of replicas (b) Number of replicas (c) Replicas per file (d) CDF of load of replicated files

Fig. 22. Performance of file replication with I/O trace.

update rates, which decreases the consistency maintenance
cost. CORP produces similar consistency maintenance cost
as CORP-w/. This result verifies the effectiveness of the
integrated consideration of update rate and visit rate.

Figure 20(c) shows the accumulated size of replicated files
versus physical distance. It shows that the result follows
CORP-w/o>CORP>CORP-w/. CORP-w/o does not consider
file visit rate, CORP gives the lowest priority to visit rate,
and CORP-w/ gives the same priority to both update rate and
visit rate. Recall the three methods need to replicate the same
amount of load, replicating files with higher visit rates leads to
less total size of replicated files. As a result, file replicated size
follows CORP-w/<CORP<CORP-w/o. These results imply
that CORP-w/ replicates less amount of file sizes and hence
has shorter latency when replicating files to remote nodes.

5.11 I/O Trade-driven Experiments
We then used a 4-hour I/O (read/write) trace for large scale
applications known as CTH [55] in the previous network con-
sisting of 350x5 nodes. The trace has 16,566 files, 3,972,284
file I/O calls and 3300 clients. The read and write block size
varies in [1,2200]kB. The highest transaction read bandwidth
is around 200MB/s. Then, the capacity of each node was
assigned to 200/3300MB/s. The number of files held in a
node was randomly chosen from [1,15], and the files are
randomly chosen from the file pool. Figure 21 shows the
consistency maintenance cost versus SU. Due to the same
reason as in Figure 12, CORP saves much more consistency
maintenance cost in other methods. Figure 22(a) shows the
total number of replicas versus SU. Due to the same reason
as in Figure 9(a), CORP generates fewer replicas than other
methods. We also notice that the number of replicas of all
three methods increases slowly as SU increases, and LAR
and PAST generate relatively more replicas at low SUs. The
trace shows that around 80% I/O operations are on 20% of the
files. Thus, the nodes holding these 20% files easily become
overloaded even when SUs are low, which is the reason for
the above results. Figure 22(b) shows the median, 1st and
99th percentiles of NUs versus SU. Due to the same reason
as in Figure 9(b), CORP always maintain the NUs no more
than 1 and achieves better load balance than other methods.

Figure 22(c) shows the median, 1st and 99th percentiles of
the number of replicas per file versus SU. Due to the same
reasons as in Figure 9(c), CORP produces fewer replicas per
file than other methods. Figure 22(d) shows the CDF of load
of replicated files versus physical distance. Due to the same
reasons as in Figure 9(d), most of replicas in CORP are within
short distances.

6 CONCLUSIONS
In P2P file sharing systems, in spite of the significant impact of
file replication on the efficiency of consistency maintenance,
the two issues have been typically addressed separately. Most
traditional file replication methods focus on hot spot elimi-
nation and query efficiency but neglect the efficiency of the
subsequent file consistency maintenance. This paper presents
a COoperative file Replication Protocol (CORP) that not only
achieves high efficiency in file replication but also proactively
supports scalable, low-cost, and timely consistency mainte-
nance. It considers file popularity, update rate, node available
capacity and file load to reduce the number of replicas and
the replicas for frequently-updated or infrequently-visited files.
It further takes into account node locality to replicate files
in physically close nodes. Moreover, it adaptively adjusts the
number of replicas based on ever-changing file popularity and
visit pattern. Thus, CORP significantly improves the efficiency
of both replication and consistency maintenance. Extensive
experimental results on simulation and PlanetLab demonstrate
the efficiency and effectiveness of CORP in comparison with
other file replication protocols. In the future, we will study
how to integrate the load, visit rate, and update rate into one
metric for selecting files to replicate and replica nodes. We
will also study how to set the threshold T to greatly reduce
lookup path length at a moderate cost of additional replicas.
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