
Load Rebalancing for Distributed
File Systems in Clouds

Hung-Chang Hsiao, Member, IEEE Computer Society, Hsueh-Yi Chung,

Haiying Shen, Member, IEEE, and Yu-Chang Chao

Abstract—Distributed file systems are key building blocks for cloud computing applications based on the MapReduce programming

paradigm. In such file systems, nodes simultaneously serve computing and storage functions; a file is partitioned into a number of

chunks allocated in distinct nodes so that MapReduce tasks can be performed in parallel over the nodes. However, in a cloud

computing environment, failure is the norm, and nodes may be upgraded, replaced, and added in the system. Files can also be

dynamically created, deleted, and appended. This results in load imbalance in a distributed file system; that is, the file chunks are not

distributed as uniformly as possible among the nodes. Emerging distributed file systems in production systems strongly depend on a

central node for chunk reallocation. This dependence is clearly inadequate in a large-scale, failure-prone environment because the

central load balancer is put under considerable workload that is linearly scaled with the system size, and may thus become the

performance bottleneck and the single point of failure. In this paper, a fully distributed load rebalancing algorithm is presented to cope

with the load imbalance problem. Our algorithm is compared against a centralized approach in a production system and a competing

distributed solution presented in the literature. The simulation results indicate that our proposal is comparable with the existing

centralized approach and considerably outperforms the prior distributed algorithm in terms of load imbalance factor, movement cost,

and algorithmic overhead. The performance of our proposal implemented in the Hadoop distributed file system is further investigated in

a cluster environment.

Index Terms—Load balance, distributed file systems, clouds

Ç

1 INTRODUCTION

CLOUD Computing (or cloud for short) is a compelling
technology. In clouds, clients can dynamically allocate

their resources on-demand without sophisticated deploy-
ment and management of resources. Key enabling technol-
ogies for clouds include the MapReduce programming
paradigm [1], distributed file systems (e.g., [2], [3]),
virtualization (e.g., [4], [5]), and so forth. These techniques
emphasize scalability, so clouds (e.g., [6]) can be large in
scale, and comprising entities can arbitrarily fail and join
while maintaining system reliability.

Distributed file systems are key building blocks for cloud

computing applications based on the MapReduce program-

ming paradigm. In such file systems, nodes simultaneously

serve computing and storage functions; a file is partitioned

into a number of chunks allocated in distinct nodes so that

MapReduce tasks can be performed in parallel over the
nodes. For example, consider a wordcount application that
counts the number of distinct words and the frequency of
each unique word in a large file. In such an application, a
cloud partitions the file into a large number of disjointed
and fixed-size pieces (or file chunks) and assigns them to
different cloud storage nodes (i.e., chunkservers). Each
storage node (or node for short) then calculates the
frequency of each unique word by scanning and parsing
its local file chunks.

In such a distributed file system, the load of a node is
typically proportional to the number of file chunks the node
possesses [3]. Because the files in a cloud can be arbitrarily
created, deleted, and appended, and nodes can be up-
graded, replaced and added in the file system [7], the file
chunks are not distributed as uniformly as possible among
the nodes. Load balance among storage nodes is a critical
function in clouds. In a load-balanced cloud, the resources
can be well utilized and provisioned, maximizing the
performance of MapReduce-based applications.

State-of-the-art distributed file systems (e.g., Google GFS
[2] and Hadoop HDFS [3]) in clouds rely on central nodes to
manage the metadata information of the file systems and to
balance the loads of storage nodes based on that metadata.
The centralized approach simplifies the design and im-
plementation of a distributed file system. However, recent
experience (e.g., [8]) concludes that when the number of
storage nodes, the number of files and the number of
accesses to files increase linearly, the central nodes (e.g., the
master in Google GFS) become a performance bottleneck, as
they are unable to accommodate a large number of file
accesses due to clients and MapReduce applications. Thus,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 5, MAY 2013 951

. H.-C. Hsiao is with the Department of Computer Science and Information
Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
E-mail: hchsiao@csie.ncku.edu.tw.

. H.-Y. Chung is with the Department of Computer Science and Information
Engineering, Distributed Computing Research Laboratory, National Cheng
Kung University, Tainan 70101, Taiwan.
E-mail: p7697138@mail.ncku.edu.tw.

. H. Shen is with the Holcombe Department of Electrical and Computer
Engineering, Clemson University, Clemson, SC 29634.
E-mail: shenh@clemson.edu.

. Y.-C. Chao is with the Cloud Platform Technology Department, Cloud
Service Application Center, Industrial Technology Research Institute
South Campus, Tainan 709, Taiwan. E-mail: ycchao@itri.org.tw.

Manuscript received 18 Jan. 2012; revised 27 May 2012; accepted 7 June 2012;
published online 22 June 2012.
Recommended for acceptance by H. Jiang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2012-01-0037.
Digital Object Identifier no. 10.1109/TPDS.2012.196.

1045-9219/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

depending on the central nodes to tackle the load imbalance
problem exacerbate their heavy loads. Even with the latest
development in distributed file systems, the central nodes
may still be overloaded. For example, HDFS federation [9]
suggests an architecture with multiple namenodes (i.e., the
nodes managing the metadata information). Its file system
namespace is statically and manually partitioned to a
number of namenodes. However, as the workload experi-
enced by the namenodes may change over time and no
adaptive workload consolidation and/or migration scheme
is offered to balance the loads among the namenodes, any of
the namenodes may become the performance bottleneck.

In this paper, we are interested in studying the load
rebalancing problem in distributed file systems specialized
for large-scale, dynamic and data-intensive clouds. (The
terms “rebalance” and “balance” are interchangeable in this
paper.) Such a large-scale cloud has hundreds or thousands
of nodes (and may reach tens of thousands in the future).
Our objective is to allocate the chunks of files as uniformly
as possible among the nodes such that no node manages an
excessive number of chunks. Additionally, we aim to
reduce network traffic (or movement cost) caused by
rebalancing the loads of nodes as much as possible to
maximize the network bandwidth available to normal
applications. Moreover, as failure is the norm, nodes are
newly added to sustain the overall system performance [2],
[3], resulting in the heterogeneity of nodes. Exploiting
capable nodes to improve the system performance is, thus,
demanded.

Specifically, in this study, we suggest offloading the load
rebalancing task to storage nodes by having the storage
nodes balance their loads spontaneously. This eliminates
the dependence on central nodes. The storage nodes are
structured as a network based on distributed hash tables
(DHTs), e.g., [10], [11], [12]; discovering a file chunk can
simply refer to rapid key lookup in DHTs, given that a
unique handle (or identifier) is assigned to each file chunk.
DHTs enable nodes to self-organize and -repair while
constantly offering lookup functionality in node dynamism,
simplifying the system provision and management.

In summary, our contributions are threefold as follows:

. By leveraging DHTs, we present a load rebalancing
algorithm for distributing file chunks as uniformly
as possible and minimizing the movement cost as
much as possible. Particularly, our proposed algo-
rithm operates in a distributed manner in which
nodes perform their load-balancing tasks indepen-
dently without synchronization or global knowledge
regarding the system.

. Load-balancing algorithms based on DHTs have
been extensively studied (e.g., [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22]). However, most
existing solutions are designed without considering
both movement cost and node heterogeneity and
may introduce significant maintenance network
traffic to the DHTs. In contrast, our proposal not
only takes advantage of physical network locality in
the reallocation of file chunks to reduce the move-
ment cost but also exploits capable nodes to improve
the overall system performance. Additionally, our

algorithm reduces algorithmic overhead introduced
to the DHTs as much as possible.

. Our proposal is assessed through computer simula-
tions. The simulation results indicate that although
each node performs our load rebalancing algorithm
independently without acquiring global knowledge,
our proposal is comparable with the centralized
approach in Hadoop HDFS [3] and remarkably
outperforms the competing distributed algorithm
in [14] in terms of load imbalance factor, movement
cost, and algorithmic overhead. Additionally, our
load-balancing algorithm exhibits a fast convergence
rate. We derive analytical models to validate the
efficiency and effectiveness of our design. Moreover,
we have implemented our load-balancing algorithm
in HDFS and investigated its performance in a
cluster environment.

The remainder of the paper is organized as follows: the

load rebalancing problem is formally specified in Section 2.

Our load-balancing algorithm is presented in Section 3. We

evaluate our proposal through computer simulations and

discuss the simulation results in Section 4. In Section 5, the

performance of our proposal is further investigated in a

cluster environment. Our study is summarized in Section 6.

Due to space limitation, we defer the extensive discussion

of related works in the appendix, which can be found on

the Computer Society Digital Library at http://doi.

ieeecomputersociety.org/10.1109/TPDS.2012.196.

2 LOAD REBALANCING PROBLEM

We consider a large-scale distributed file system consisting

of a set of chunkservers V in a cloud, where the cardinality of

V is jV j ¼ n. Typically, n can be 1,000, 10,000, or more. In

the system, a number of files are stored in the n

chunkservers. First, let us denote the set of files as F . Each

file f 2 F is partitioned into a number of disjointed, fixed-

size chunks denoted by Cf . For example, each chunk has

the same size, 64 Mbytes, in Hadoop HDFS [3]. Second, the

load of a chunkserver is proportional to the number of

chunks hosted by the server [3]. Third, node failure is the

norm in such a distributed system, and the chunkservers

may be upgraded, replaced and added in the system.

Finally, the files in F may be arbitrarily created, deleted,

and appended. The net effect results in file chunks not

being uniformly distributed to the chunkservers. Fig. 1

illustrates an example of the load rebalancing problem with

the assumption that the chunkservers are homogeneous

and have the same capacity.
Our objective in the current study is to design a load

rebalancing algorithm to reallocate file chunks such that the

chunks can be distributed to the system as uniformly as

possible while reducing the movement cost as much as

possible. Here, the movement cost is defined as the number

of chunks migrated to balance the loads of the chunkser-

vers. Let A be the ideal number of chunks that any

chunkserver i 2 V is required to manage in a system-wide

load-balanced state, that is,

952 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 5, MAY 2013

A ¼
P

f2F Cf
�� ��
n

: ð1Þ

Then, our load rebalancing algorithm aims to minimize the
load imbalance factor in each chunkserver i as follows:

kLi �Ak; ð2Þ

where Li denotes the load of node i (i.e., the number of file
chunks hosted by i) and k � k represents the absolute value
function. Note that “chunkservers” and “nodes” are
interchangeable in this paper.

Theorem 1. The load rebalancing problem is NP-hard.

Proof. By restriction, an instance of the decision version of
the load rebalancing problem is the knapsack problem
[23]. That is, consider any node i 2 V . i seeks to store a
subset of the file chunks in F such that the number of
chunks hosted by i is not more than A, and the “value”
of the chunks hosted is at least �, which is defined as the
inverse of the sum of the movement cost caused by the
migrated chunks. tu

To simplify the discussion, we first assume a homo-
geneous environment, where migrating a file chunk
between any two nodes takes a unit movement cost and
each chunkserver has the identical storage capacity. How-
ever, we will later deal with the practical considerations of
node capacity heterogeneity and movement cost based on
chunk migration in physical network locality.

3 OUR PROPOSAL

Table 1 in Appendix B, which is available in the online
supplemental material, summarizes the notations frequently
used in the following discussions for ease of reference.

3.1 Architecture

The chunkservers in our proposal are organized as a DHT
network; that is, each chunkserver implements a DHT
protocol such as Chord [10] or Pastry [11]. A file in the
system is partitioned into a number of fixed-size chunks,
and “each” chunk has a unique chunk handle (or chunk
identifier) named with a globally known hash function such
as SHA1 [24]. The hash function returns a unique identifier
for a given file’s pathname string and a chunk index. For
example, the identifiers of the first and third chunks of file
“/user/tom/tmp/a.log” are, respectively, SHA1(/

user/tom/tmp/a.log, 0) and SHA1(/user/tom/

tmp/a.log, 2). Each chunkserver also has a unique ID.
We represent the IDs of the chunkservers in V by
1
n ;

2
n ;

3
n ; . . . ; nn ; for short, denote the n chunkservers as

1; 2; 3; . . . ; n. Unless otherwise clearly indicated, we denote

the successor of chunkserver i as chunkserver iþ 1 and the

successor of chunkserver n as chunkserver 1. In a typical

DHT, a chunkserver i hosts the file chunks whose handles

are within ði�1
n ; in�, except for chunkserver n, which manages

the chunks whose handles are in ðnn ; 1
n�.

To discover a file chunk, the DHT lookup operation is

performed. In most DHTs, the average number of nodes

visited for a lookup is OðlognÞ [10], [11] if each chunkserver

i maintains log2 n neighbors, that is, nodes iþ 2k mod n for

k ¼ 0; 1; 2; . . . ; log2 n� 1. Among the log2 n neighbors, the

one iþ 20 is the successor of i. To look up a file with l

chunks, l lookups are issued.
DHTs are used in our proposal for the following reasons:

. The chunkservers self-configure and self-heal in our
proposal because of their arrivals, departures, and
failures, simplifying the system provisioning and
management. Specifically, typical DHTs guarantee
that if a node leaves, then its locally hosted chunks
are reliably migrated to its successor; if a node joins,
then it allocates the chunks whose IDs immediately
precede the joining node from its successor to
manage. Our proposal heavily depends on the node
arrival and departure operations to migrate file
chunks among nodes. Interested readers are referred
to [10], [11] for the details of the self-management
technique in DHTs.

. While lookups take a modest delay by visiting
OðlognÞ nodes in a typical DHT, the lookup latency
can be reduced because discovering the l chunks of a
file can be performed in parallel. On the other hand,
our proposal is independent of the DHT protocols.
To further reduce the lookup latency, we can adopt
state-of-the-art DHTs such as Amazon’s Dynamo in
[12] that offer one-hop lookup delay.

. The DHT network is transparent to the metadata
management in our proposal. While the DHT net-
work specifies the locations of chunks, our proposal
can be integrated with existing large-scale distribu-
ted file systems, e.g., Google GFS [2] and Hadoop
HDFS [3], in which a centralized master node
manages the namespace of the file system and the
mapping of file chunks to storage nodes. Specifically,
to incorporate our proposal with the master node in
GFS, each chunkserver periodically piggybacks its
locally hosted chunks’ information to the master in a
heartbeat message [2] so that the master can gather
the locations of chunks in the system.

HSIAO ET AL.: LOAD REBALANCING FOR DISTRIBUTED FILE SYSTEMS IN CLOUDS 953

Fig. 1. An example illustrates the load rebalancing problem, where (a) an initial distribution of chunks of six files f1, f2, f3, f4, f5, and f6 in three nodes
N1, N2, and N3, (b) files f2 and f5 are deleted, (c) f6 is appended, and (d) node N4 joins. The nodes in (b), (c), and (d) are in a load-imbalanced state.

. In DHTs, if nodes and file chunks are designated
with uniform IDs, the maximum load of a node is
guaranteed to be OðlognÞ times the average in a
probability of 1�Oð1nÞ [14], [16], [25], thus balancing
the loads of nodes to a certain extent. However, our
proposal presented in Section 3.2 performs well for
both uniform and nonuniform distributions of IDs of
nodes and file chunks due to arbitrary file creation/
deletion and node arrival/departure.

As discussed, the load rebalancing problem defined in
Section 2 is NP-hard (Theorem 1), which is technically
challenging and thus demands an in-depth study. Ortho-
gonal issues such as metadata management, file consistency
models, and replication strategies are out of the scope of our
study, and independent studies are required.

3.2 Load Rebalancing Algorithm

3.2.1 Overview

A large-scale distributed file system is in a load-balanced
state if each chunkserver hosts no more than A chunks. In
our proposed algorithm, each chunkserver node i first
estimates whether it is underloaded (light) or overloaded
(heavy) without global knowledge. A node is light if the
number of chunks it hosts is smaller than the threshold of
ð1��LÞA (where 0 � �L < 1). In contrast, a heavy node
manages the number of chunks greater than ð1þ�UÞA,
where 0 � �U < 1. �L and �U are system parameters. In
the following discussion, if a node i departs and rejoins as a
successor of another node j, then we represent node i as
node jþ 1, node j’s original successor as node jþ 2, the
successor of node j’s original successor as node jþ 3, and
so on. For each node i 2 V , if node i is light, then it seeks a
heavy node and takes over at most A chunks from the
heavy node.

We first present a load-balancing algorithm, in which
each node has global knowledge regarding the system, that
leads to low movement cost and fast convergence. We then
extend this algorithm for the situation that the global
knowledge is not available to each node without degrading
its performance. Based on the global knowledge, if node i
finds it is the least-loaded node in the system, i leaves the
system by migrating its locally hosted chunks to its
successor iþ 1 and then rejoins instantly as the successor
of the heaviest node (say, node j). To immediately relieve
node j’s load, node i requests minfLj �A;Ag chunks from
j. That is, node i requests A chunks from the heaviest node j
if j’s load exceeds 2A; otherwise, i requests a load of Lj �A
from j to relieve j’s load.

Node j may still remain as the heaviest node in the
system after it has migrated its load to node i. In this case,
the current least-loaded node, say node i0, departs and then
rejoins the system as j’s successor. That is, i0 becomes node
jþ 1, and j’s original successor i thus becomes node jþ 2.
Such a process repeats iteratively until j is no longer the
heaviest. Then, the same process is executed to release the
extra load on the next heaviest node in the system. This
process repeats until all the heavy nodes in the system
become light nodes. Such a load-balancing algorithm by
mapping the least-loaded and most-loaded nodes in the
system has properties as follows:

. Low movement cost. As node i is the lightest node
among all chunkservers, the number of chunks
migrated because of i’s departure is small with the
goal of reducing the movement cost.

. Fast convergence rate. The least-loaded node i in the
system seeks to relieve the load of the heaviest node
j, leading to quick system convergence towards the
load-balanced state.

The mapping between the lightest and heaviest nodes at
each time in a sequence can be further improved to reach
the global load-balanced system state. The time complexity
of the above algorithm can be reduced if each light node can
know which heavy node it needs to request chunks
beforehand, and then all light nodes can balance their
loads in parallel. Thus, we extend the algorithm by pairing
the top-k1 underloaded nodes with the top-k2 overloaded
nodes. We use U to denote the set of top-k1 underloaded
nodes in the sorted list of underloaded nodes, and use O to
denote the set of top-k2 overloaded nodes in the sorted list
of overloaded nodes. Based on the above-introduced load-
balancing algorithm, the light node that should request
chunks from the k02th (k02 � k2) most loaded node in O is the
k01th (k01 � k1) least loaded node in U, and

k01 ¼

Pk02

ith most loaded node 2 O
i ¼ 1

Li �Að Þ

A

2
6666666

3
7777777
; ð3Þ

where
Pk02

ith most loaded node 2O
i¼1

ðLi �AÞ denotes the sum of the excess

loads in the top-k02 heavy nodes. It means that the top-k01
light nodes should leave and rejoin as successors of the top-

k02 overloaded nodes. Thus, according to (3), based on its

position k01 in U, each light node can compute k02 to identify

the heavy node to request chunks. Light nodes concurrently

request chunks from heavy nodes, and this significantly

reduces the latency of the sequential algorithm in achieving

the global system load-balanced state.
We have introduced our algorithm when each node has

global knowledge of the loads of all nodes in the system.
However, it is a formidable challenge for each node to have
such global knowledge in a large-scale and dynamic
computing environment. We then introduce our basic
algorithms that perform the above idea in a distributed
manner without global knowledge in Sections 3.2.2. Section
3.2.3 improves our proposal by taking advantage of
physical network locality to reduce network traffic caused
by the migration of file chunks. Recall that we first assume
that the nodes have identical capacities in order to simplify
the discussion. We then discuss the exploitation of node
capacity heterogeneity in Section 3.2.4. Finally, high file
availability is usually demanded from large-scale and
dynamic distributed storage systems that are prone to
failures. To deal with this issue, Section 3.2.5 discusses the
maintenance of replicas for each file chunk.

3.2.2 Basic Algorithms

Algorithms 1 and 2 (see Appendix C, which is available in
the online supplemental material) detail our proposal;

954 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 5, MAY 2013

Algorithm 1 specifies the operation that a light node i seeks
an overloaded node j, and Algorithm 2 shows that i requests
some file chunks from j. Without global knowledge, pairing
the top-k1 light nodes with the top-k2 heavy nodes is clearly
challenging. We tackle this challenge by enabling a node to
execute the load-balancing algorithm introduced in Section
3.2.1 based on a sample of nodes. In the basic algorithm, each
node implements the gossip-based aggregation protocol in [26]
and [27] to collect the load statuses of a sample of randomly
selected nodes. Specifically, each node contacts a number of
randomly selected nodes in the system and builds a vector
denoted by V. A vector consists of entries, and each entry
contains the ID, network address and load status of a
randomly selected node. Using the gossip-based protocol,
each node i exchanges its locally maintained vector with its
neighbors until its vector has s entries. It then calculates the
average load of the s nodes denoted by eAi and regards it as
an estimation of A (Line 1 in Algorithm 1).

If node i finds itself is a light node (Line 2 in Algorithm
1), it seeks a heavy node to request chunks. Node i sorts the
nodes in its vector including itself based on the load status
and finds its position k01 in the sorted list, i.e., it is the top-k1

underloaded node in the list (Lines 3-5 in Algorithm 1).
Node i finds the top-k02 overloaded nodes in the list such
that the sum of these nodes’ excess loads is the least greater
than or equal to k01

eAi (Line 6 in Algorithm 1). Formula (ii) in
the algorithm is derived from (3). The complexity of the step
in Line 6 is OðjVjÞ. Then, the k02th overloaded node is the
heavy node that node i needs to request chunks (Line 7 in
Algorithm 1). Considering the step in Line 4, the overall
complexity of Algorithm 1 is then OðjVj log jVjÞ.

We note the following:

. Our proposal is distributed in the sense that each
node in the system performs Algorithms 1 and 2
simultaneously without synchronization. It is possi-
ble that a number of distinct nodes intend to share
the load of node j (Line 1 of Algorithm 2). Thus, j
offloads parts of its load to a randomly selected node
among the requesters. Similarly, a number of heavy
nodes may select an identical light node to share
their loads. If so, the light node randomly picks one
of the heavy nodes in the reallocation.

. The nodes perform our load rebalancing algorithm
periodically, and they balance their loads and
minimize the movement cost in a best effort fashion.

Example: Fig. 2 depicts a working example of our proposed
algorithm. There are n ¼ 10 chunkservers in the system; the
initial loads of the nodes are shown in Fig. 2a. Assume
�L ¼ �U ¼ 0 in the example. Then, nodes N1, N2, N3, N4,
and N5 are light, and nodes N6, N7, N8, N9, and N10 are
heavy. Each node performs the load-balancing algorithm
independently, and we choose N1 as an example to explain
the load-balancing algorithm. N1 first queries the loads of
N3, N6, N7, and N9 selected randomly from the system
(Fig. 2b). Based on the samples, N1 estimates the ideal load
A (i.e., eAN1 ¼ LN1þLN3þLN6þLN7þLN9

5). It notices that it is a light
node. It then finds the heavy node it needs to request
chunks. The heavy node is the most loaded node (i.e., N9)
as N1 is the lightest among N1 and its sampled nodes
fN3; N6; N7; N9g (Line 6 in Algorithm 1). N1 then sheds its

load to its successor N2, departs from the system, and
rejoins the system as the successor of N9. N1 allocates
minfLN9 � eAN1; eAN1g¼ eAN1 chunks from N9 (Lines 5 and 6
in Algorithm 2).

In the example, N4 also performs the load rebalancing
algorithm by first sampling fN3; N4; N5; N6; N7g (Fig. 2d).
Similarly,N4 determines to rejoin as the successor ofN6.N4
then migrates its load to N5 and rejoins as the successor of
N6 (Fig. 2e). N4 requests minfLN6 � eAN4; eAN4g¼ L6 � eAN4

chunks from N6.
Our load-balancing algorithm offers an analytical per-

formance guarantee and exhibits a fast convergence rate in
terms of algorithmic rounds. Let the initial number of heavy
nodes be k (where k � jV j ¼ n). Then, we have the major
analytical result as follows:

Theorem 2. Algorithms 1 and 2 take Oðlog log kÞ algorithmic
rounds in expectation such that the system contains no light
nodes.

For the detailed proof of Theorem 2, interested readers
are referred to Appendix D, which is available in the online
supplemental material.

3.2.3 Exploiting Physical Network Locality

A DHT network is an overlay on the application level. The
logical proximity abstraction derived from the DHT does
not necessarily match the physical proximity information in
reality. That means a message traveling between two

HSIAO ET AL.: LOAD REBALANCING FOR DISTRIBUTED FILE SYSTEMS IN CLOUDS 955

Fig. 2. An example illustrating our algorithm, where (a) the initial loads of
chunkservers N1; N2; . . . ; N10, (b) N1 samples the loads of N1, N3,
N6, N7, and N9 in order to perform the load rebalancing algorithm,
(c) N1 leaves and sheds its loads to its successor N2, and then rejoins
as N9’s successor by allocating eAN1 chunks (the ideal number of
chunksN1 estimates to manage) from N9, (d) N4 collects its sample set
fN3; N4; N5; N6; N7g, and (e) N4 departs and shifts its load to N5, and
it then rejoins as the successor of N6 by allocating L6 � eAN4 chunks
from N6.

neighbors in a DHT overlay may travel a long physical
distance through several physical network links. In the
load-balancing algorithm, a light node i may rejoin as a
successor of a remote heavy node j. Then, the requested
chunks migrated from j to i need to traverse several
physical network links, thus generating considerable net-
work traffic and consuming significant network resources
(i.e., the buffers in the switches on a communication path
for transmitting a file chunk from a source node to a
destination node).

We improve our proposal by exploiting physical net-
work locality. Basically, instead of collecting a single vector
(i.e., V in Algorithm 1) per algorithmic round, each light
node i gathers nV vectors. Each vector is built using the
method introduced previously. From the nV vectors, the
light node i seeks nV heavy nodes by invoking Algorithm 1
(i.e., SEEK) for each vector and then selects the physically
closest heavy node based on the message round-trip delay.

In Algorithm 3 (see Appendix C, which is available in
the online supplemental material), Lines 2 and 3 take
OðnVjVj log jVjÞ. We will offer a rigorous performance
analysis for the effect of varying nV in Appendix E, which
is available in the online supplemental material. Specifically,
we discuss the tradeoff between the value of nV and the
movement cost. A larger nV introduces more overhead for
message exchanges, but results in a smaller movement cost.

To demonstrate Algorithm 3, consider the example
shown in Fig. 2. Let nV ¼ 2. In addition to the sample set
V1 ¼ fN1; N3; N6; N7; N9g (Fig. 2b), N1 gathers another
sample set, say, V2 ¼ fN1; N4; N5; N6; N8g. N1 identifies
the heavy node N9 in V1 and N8 in V2. Suppose N9 is
physically closer to N1 than N8. Thus, N1 rejoins as a
successor of N9 and then receives chunks from N9. Node i
also offloads its original load to its successor. For example,
in Figs. 2a and 2b, node N1 migrates its original load to its
successor node N2 before N1 rejoins as node N9’s
successor. To minimize the network traffic overhead in
shifting the load of the light node i to node iþ 1, we suggest
initializing the DHT network such that every two nodes
with adjacent IDs (i.e., nodes i and iþ 1) are geometrically
close. As such, given the potential IP addresses of the
participating nodes (a 4D lattice) in a storage network,
we depend on the space-filling curve technique (e.g., Hilbert
curve in [28]) to assign IDs to the nodes, making physically
close nodes have adjacent IDs. More specifically, given a 4D
lattice representing all IP addresses of storage nodes, the
space-filling curve attempts to visit each IP address and
assign a unique ID to each address such that geometrically
close IP addresses are assigned with numerically close IDs.
By invoking the space filling curve function with the input
of an IP address, a unique numerical ID is returned.

Algorithm 3 has the performance guarantee for the data
center networks with �-power law latency expansion. By
latency we mean the number of physical links traversed by
a message between two storage nodes in a network. For
example, BCube [29] and CamCube [30], respectively,
organize the data center network as a hypercube inter-
connect and a 2D torus network, thus exhibiting 3- and 2-
power law latency expansion. For further discussion,
interested readers are referred to Appendix E, which is
available in the online supplemental material.

3.2.4 Taking Advantage of Node Heterogeneity

Nodes participating in the file system are possibly hetero-
geneous in terms of the numbers of file chunks that the
nodes can accommodate. We assume that there is one
bottleneck resource for optimization although a node’s
capacity in practice should be a function of computational
power, network bandwidth, and storage space [20], [31].
Given the capacities of nodes (denoted by f�1; �2; . . . ; �ng),
we enhance the basic algorithm in Section 3.2.2 as follows:
each node i approximates the ideal number of file chunks
that it needs to host in a load balanced state as follows:

eAi ¼ ��i; ð4Þ

where � is the load per unit capacity a node should manage in
the load balanced state and

� ¼ mPn
k¼1 �k

; ð5Þ

where m is the number of file chunks stored in the system.
As mentioned previously, in the distributed file system

for MapReduce-based applications, the load of a node is
typically proportional to the number of file chunks the node
possesses [3]. Thus, the rationale of this design is to ensure
that the number of file chunks managed by node i is
proportional to its capacity. To estimate the aggregate �, our
proposal again relies on the gossip-based aggregation
protocol in [26] and [27] in computing the value.

Algorithm 4 in Appendix C, which is available in the

online supplemental material, presents the enhancement for

Algorithm 1 to exploit node heterogeneity, which is similar

to Algorithm 1 and is self-explanatory. If a node i estimates

that it is light (i.e., Li < ð1��LÞ eAi), i then rejoins as a

successor of a heavy node j. i seeks j based on its sampled

node set V. i sorts the set in accordance with Lt
�t

, the load per

capacity unit a node currently receives, for all t 2 V. When

node i notices that it is the kth least-loaded node (Line 6 in

Algorithm 4), it then identifies node j and rejoins as a

successor of node j. Node j is the least-loaded node in the

set of nodes P � V having the minimum cardinality, where

1) the nodes in P are heavy, and 2) the total excess load of

nodes in P is not less than
Pk

jth light node in V
j¼1

eAj (Line 7 in

Algorithm 4). Here,
Pk

jth light node in V
j¼1

eAj indicates the sum of

loads that the top-k light nodes in V will manage in a load-

balanced system state.

3.2.5 Managing Replicas

In distributed file systems (e.g., Google GFS [2] and Hadoop
HDFS [3]), a constant number of replicas for each file chunk
are maintained in distinct nodes to improve file availability
with respect to node failures and departures. Our current
load-balancing algorithm does not treat replicas distinctly.
It is unlikely that two or more replicas are placed in an
identical node because of the random nature of our load
rebalancing algorithm. More specifically, each underloaded
node samples a number of nodes, each selected with a
probability of 1

n , to share their loads (where n is the total
number of storage nodes). Given k replicas for each file
chunk (where k is typically a small constant, and k ¼ 3 in
GFS), the probability that k0 replicas (k0 � k) are placed in an

956 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 5, MAY 2013

identical node due to migration of our load-balancing
algorithm is ð1nÞ

k0 independent of their initial locations. For
example, in a file system with n ¼ 1;000 storage nodes and
k ¼ 3, then the probabilities are only 1

106 and 1
109 for two and

three replicas stored in the same node, respectively.
Consequently, the probability of more than one replica
appearing in a node due to our proposal is approximately
(as k� n)

Xk
i¼2

1

n

� �i
: ð6Þ

Replica management in distributed systems has been
extensively discussed in the literature. Given any file chunk,
our proposal implements the directory-based scheme in [32] to
trace the locations of k replicas for the file chunk. Precisely,
the file chunk is associated with k� 1 pointers that keep
track of k� 1 randomly selected nodes storing the replicas.

We have investigated the percentage of nodes storing
redundant replicas due to our proposal. In our experiments,
the number of file chunks and the number of nodes in the
system are m ¼ 10;000 and n ¼ 1;000, respectively. (Details
of the experimental settings are discussed in Section 4.)
Among the m ¼ 10;000 file chunks, we investigate in the
experiment k ¼ 2; 4; 8 replicas for each file chunk; that is,
there are 5,000, 2,500 and 1,250 unique chunks in the
system, respectively. The experimental results indicate that
the number of nodes managing more than one redundant
chunk due to our proposal is very small. Specifically, each
node maintains no redundant replicas for k ¼ 2; 4, and only
2 percent of nodes store � 2 redundant replicas for k ¼ 8.

4 SIMULATIONS

4.1 Simulation Setup and Workloads

The performance of our algorithm is evaluated through
computer simulations. Our simulator is implemented with
Pthreads. In the simulations, we carry out our proposal
based on the Chord DHT protocol [10] and the gossip-based
aggregation protocol in [26] and [27]. In the default setting,
the number of nodes in the system is n ¼ 1;000, and the
number of file chunks is m ¼ 10;000. To the best of our
knowledge, there are no representative realistic workloads
available. Thus, the number of file chunks initially hosted by
a node in our simulations follows the geometric distribu-
tion, enabling stress tests as suggested in [15] for various
load rebalancing algorithms. Fig. 3 shows the cumulative
distribution functions (CDF) of the file chunks in the
simulations, where workloads A, B, C, and D represent

four distinct geometric distributions. Specifically, these

distributions indicate that a small number of nodes initially

possess a large number of chunks. The four workloads

exhibit different variations of the geometric distribution.
We have compared our algorithm with the competing

algorithms called centralized matching in [3] and distributed
matching in [14], respectively. In Hadoop HDFS [3], a
standalone load-balancing server (i.e., balancer) is em-
ployed to rebalance the loads of storage nodes. The server
acquires global information on the file chunks distributed in
the system from the namenode that manages the metadata
of the entire file system. Based on this global knowledge, it
partitions the node set into two subsets, where one (denoted
by O) contains overloaded nodes, and the other (denoted by
U) includes the underloaded nodes. Conceptually, the
balancer randomly selects one heavy node i 2 O and one
light node j 2 U to reallocate their loads. The reallocation
terminates if the balancer cannot find a pair of heavy and
light nodes to reallocate their loads. Notably, to exploit
physical network locality and thus reduce network traffic,
the balancer first pairs i and j if i and j appear in the same
rack. If a node in a rack remains unbalanced, and if it cannot
find any other node in the same rack to pair, then the node
will be matched with another node, in a foreign rack. The
balancer in HDFS does not differentiate different locations
of foreign racks when performing the matches. In our
simulations, each rack has 32 nodes in default.

On the contrary, a storage node i in the decentralized
random matching algorithm in [14] independently and
randomly selects another node j to share its load if the ratio
of i’s load to j’s is smaller (or larger) than a predefined
threshold � (or 1

�). As suggested by [14], � is greater than 0
and not more than 1

4 . In our simulations, � ¼ 1
4 . To be

comparable, we also implement this algorithm on the Chord
DHT. Thus, when node i attempts to share the load of node
j, node i needs to leave and rejoin as node j’s successor.

In our algorithm, we set �L ¼ �U ¼ 0:2 in default. Each

node maintains nV vectors, each consisting of s ¼ 100

random samples of nodes (entries in a vector may be

duplicated), for estimating A. nV ¼ 1 in default.
The cloud network topology interconnecting the storage

nodes simulated is a 2D torus direct network, as suggested
by the recent studies in [30] and [33]. (In Appendix E, which
is available in the online supplemental material, we also
investigate the performance effects on the hypercube
topology in [29].) Finally, unless otherwise noted, each
node has an identical capacity in the simulations.

Due to space limitation, we report the major performance

results in Section 4.2. Extensive performance results can

be found in the appendix, which is available in the online

supplemental material, including the effect of varying

the number of file chunks (Appendix G, which is available

in the online supplemental material), the effect of different

numbers of samples (Appendix H, which is available in the

online supplemental material), the effect of different

algorithmic rounds (Appendix I, which is available in the

online supplemental material) and the effect of system

dynamics (Appendix J, which is available in the online

supplemental material).

HSIAO ET AL.: LOAD REBALANCING FOR DISTRIBUTED FILE SYSTEMS IN CLOUDS 957

Fig. 3. The workload distribution.

4.2 Simulation Results

Fig. 4 presents the simulation results of the load distribution
after performing the investigated load-balancing algorithms.
Here, the nodes simulated have identical capacity. The
simulation results show that centralized matching

performs very well as the load balancer gathers the global
information from the namenode managing the entire file
system. SinceA ¼ 10 is the ideal number of file chunks a node
should manage in a load-balanced state, in centralized

matching, most nodes have 10 chunks. In contrast, dis-
tributed matching performs worse than centralized

matching and our proposal. This is because each node
randomly probes other nodes without global knowledge
about the system. Although our proposal is distributed and
need not require each node to obtain global system knowl-
edge, it is comparable with centralized matching and
remarkably outperforms distributed matching in terms
of load imbalance factor.

Fig. 5 shows the movement costs of centralized

matching, distributed matching, and our algorithm,
where the movement costs have been normalized to that of
centralized matching (indicated by the horizontal line
in the figure). Clearly, the movement cost of our proposal is
only 0.37 times the cost of distributed matching. Our
algorithm matches the top least-loaded light nodes with the
top most-loaded heavy nodes, leading to a fewer number of
file chunks migrated. In contrast, in distributed match-

ing, a heavy node i may be requested to relieve another
node j with a relatively heavier load, resulting in the
migration of a large number of chunks originally hosted by
i to i’s successor. We also observe that our proposal may
incur slightly more movement cost than that of centra-
lized matching. This is because in our proposal, a light
node needs to shed its load to its successor.

Fig. 6 shows the total number of messages generated by a
load rebalancing algorithm, where the message overheads
in distributed matching and our proposal are normal-
ized to that of centralized matching. The simulation

results indicate that centralized matching introduces
much less message overhead than distributed match-

ing and our proposal, as each node in centralized

matching simply informs the centralized load balancer of
its load and capacity. On the contrary, in distributed

matching and our proposal, each node probes a number of
existing nodes in the system, and may then reallocate its
load from/to the probed nodes, introducing more mes-
sages. We also see that our proposal clearly produces less
message overhead than distributed computing. Speci-
fically, any node i in our proposal gathers partial system
knowledge from its neighbors [26], [27], whereas node i in
distributed matching takes OðlognÞ messages to probe
a randomly selected node in the network.

Both distributed matching [14] and our proposal
depend on the Chord DHT network in the simulations.
However, nodes may leave and rejoin the DHT network for
load rebalancing, thus increasing the overhead required to
maintain the DHT structure. Thus, we further investigate
the number of rejoining operations. Note that centra-

lized matching introduces no rejoining overhead be-
cause nodes in centralized matching does not need to
self-organize and self-heal for rejoining operations. Fig. 7
illustrates the simulation results, where the number of
rejoining operations caused by our algorithm is normalized
to that of distributed matching (indicated by the
horizontal line). We see that the number of rejoining
operations in distributed matching can be up to two
times greater than that of our algorithm. This is because a
heavy node in distributed matching may leave and
rejoin the network to reduce the load of another heavy
node. On the contrary, in our proposal, only light nodes
rejoin the system as successors of heavy nodes. Our
algorithm attempts to pair light and heavy nodes precisely,
thus reducing the number of rejoining operations.

In Section 3.2.3, we improve our basic load rebalancing
algorithm by exploiting physical network locality. The
network traffic introduced by centralized matching,

958 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 5, MAY 2013

Fig. 4. The load distribution.

Fig. 5. The movement cost.

Fig. 6. The message overhead.

Fig. 7. The rejoining cost.

distributed matching, and our proposal is thus
investigated. Specifically, we define the weighted movement
cost (WMC) as follows:X

chunk i 2M
sizei 	 linki; ð7Þ

where M denotes the set of file chunks selected for
reallocation by a load rebalancing algorithm, sizei is the
size of file chunk i, and linki represents the number of
physical links chunk i traverses. In the simulations, the size
of each file chunk is identical. We assume that sizei ¼ 1 for
all i 2 Mwithout loss of generality. Hence, based on (7), the
greater the WMC, the more physical network links used for
load reallocation.

Fig. 8 shows the WMC’s caused by centralized

matching, distributed matching, and our proposal
(where the costs of distributed matching and our
proposal are normalized to that of centralized match-

ing, and Fig. 9 presents the corresponding CDF for the
numbers of physical links traversed by file chunks for
workload C. (The other workloads are not presented due to
space limitation.) Notably, as suggested by Raicu et al. [30],
[33], a 2D torus direct network is simulated in the
experiment. The simulation results indicate that our
proposal clearly outperforms centralized matching

and distributed matching in terms of the WMC. In
contrast to distributed matching, which does not
exploit the physical network locality for pairing light and
heavy nodes, centralized matching initially pairs
nodes present in the same rack and then matches light
nodes with heavy ones in different racks. (Here, each rack
contains 32 nodes.) However, centralized matching

does not differentiate the locations of nodes in different
racks for matching. Unlike centralized matching and
distributed matching, each light node in our proposal
first finds eight matched heavy nodes from its eight vectors
(i.e., nV ¼ 8 in this experiment), and then chooses the

physically closest node to pair with, leading a shorter

physical distance for migrating a chunk. This operation

effectively differentiates nodes in different network loca-

tions, and considerably reduces the WMC.
As previously mentioned in Section 3.2.3, our proposal

organizes nodes in the Chord ring such that adjacent nodes

in the ring are physically close. Before rejoining a node, the

node departs and migrates its locally hosted file chunks to

its physically close successor. The simulation results

illustrate that
 45% of file chunks in our proposal are

moved to the physically closest nodes, which is due to our

design having a locality-aware Chord ring (see Fig. 9).

Interested readers may refer to Appendix E, which is

available in the online supplemental material, for the

analytical model that details the performance of the

locality-oblivious and locality-aware approaches discussed

in this section. Moreover, in Appendix E, which is available

in the online supplemental material, the effects of the

different numbers of racks in centralized matching

and the different numbers of node vectors nV maintained by

a node in our proposal are investigated.
We then investigate the effect of node heterogeneity for

centralized matching, distributed matching, and
our proposal. In this experiment, the capacities of nodes
follow the power-law distribution, namely, the Zipf dis-
tribution [19], [20], [22]. Here, the ideal number of file
chunks per unit capacity a node should host is approxi-
mately equal to � ¼ 0:5. The maximum and minimum
capacities are 110 and 2, respectively, and the mean is
 11.
Fig. 10 shows the simulation results for workload C. In
Fig. 10, the ratio of the number of file chunks hosted by each
node i 2 V to i’s capacity, denoted by �, is measured. Node
i attempts to minimize k�� �k in order to approach its
load-balanced state. The simulation results indicate that
centralized matching performs better than distrib-

uted matching and our proposal. This is because capable
nodes in distributed matching and our proposal may
need to offload their loads to their successors that are
incapable of managing large numbers of file chunks. We
also see that our proposal manages to perform reasonably
well, clearly outperforming distributed matching. In
our proposal, although a light node may shed its load to its
successor j, which is incapable and accordingly overloaded,
another light node can quickly discover the heavy node j to
share j’s load. In particular, our proposal seeks the top-k
light nodes in the reallocation and thus reduces the
movement cost caused by rejoining these light nodes as
compared to distributed matching.

HSIAO ET AL.: LOAD REBALANCING FOR DISTRIBUTED FILE SYSTEMS IN CLOUDS 959

Fig. 8. The WMC.

Fig. 9. The breakdown of WMC.

Fig. 10. The effect of heterogeneity.

5 IMPLEMENTATION AND MEASUREMENT

5.1 Experimental Environment Setup

We have implemented our proposal in Hadoop HDFS
0.21.0, and assessed our implementation against the load
balancer in HDFS. Our implementation is demonstrated
through a small-scale cluster environment (Fig. 11a)
consisting of a single, dedicated namenode and 25
datanodes, each with Ubuntu 10.10 [34]. Specifically, the
namenode is equipped with Intel Core 2 Duo E7400
processor and 3 Gbytes RAM. As the number of file chunks
in our experimental environment is small, the RAM size of
the namenode is sufficient to cache the entire namenode
process and the metadata information, including the
directories and the locations of file chunks.

In the experimental environment, a number of clients are
established to issue requests to the namenode. The requests
include commands to create directories with randomly
designated names, to remove directories arbitrarily chosen,
etc. Due to the scarce resources in our environment, we
have deployed 4 clients to generate requests to the name-
node. However, this cannot overload the namenode to
mimic the situation as reported in [8]. To emulate the load
of the namenode in a production system and investigate the
effect of the namenode’s load on the performance of a load-
balancing algorithm, we additionally limit the processor
cycles available to the namenode by varying the maximum
processor utilization, denoted by M, available to the
namenode up to M¼ 1%; 2%; 8%; 16%; 32%; 64%; 99%. The
lower processor availability to the namenode represents
the less CPU cycles that the namenode can allocate to
handle the clients’ requests and to talk to the load balancer.

As data center networks proposed recently (e.g., [29]) can
offer a fully bisection bandwidth, the total number of
chunks scattered in the file system in our experiments is
limited to 256 such that the network bandwidth in our
environment (i.e., all nodes are connected with a 100 Mbps
fast Ethernet switch) is not the performance bottleneck.
Particularly, the size of a file chunk in the experiments is set
to 16 Mbytes. Compared to each experimental run requiring
20-60 minutes, transferring these chunks takes no more than
16	256	8

100
 328 seconds
 5:5 minutes in case the network
bandwidth is fully utilized. The initial placement of the
256 file chunks follows the geometric distribution as
discussed in Section 4.

For each experimental run, we quantity the time elapsed to
complete the load-balancing algorithms, including the HDFS
load balancer and our proposal. We perform 20 runs for a

givenM and average the time required for executing a load-
balancing algorithm. Additionally, the 5- and 95-percentiles
are reported. For our proposal, we let �U ¼ �L ¼ 0:2. Each
datanode performs 10 random samples.

Note that 1) in the experimental results discussed later,
we favor HDFS by dedicating a standalone node to perform
the HDFS load-balancing function. By contrast, our propo-
sal excludes the extra, standalone node. 2) The datanodes in
our cluster environment are homogeneous, each with Intel
Celeron 430 and 3 Gbytes RAM. We, thus, do not study the
effect of the node heterogeneity on our proposal. 3) We also
do not investigate the effect of network locality on our
proposal as the nodes in our environment are only linked
with a single switch.

5.2 Experimental Results

We demonstrate in Fig. 11 the experimental results. Fig. 11b
shows the time required for performing the HDFS load
balancer and our proposal. Our proposal clearly outper-
forms the HDFS load balancer. When the namenode is
heavily loaded (i.e., small M’s), our proposal remarkably
performs better than the HDFS load balancer. For example,
if M¼ 1%, the HDFS load balancer takes approximately
60 minutes to balance the loads of datanodes. By contrast,
our proposal takes nearly 20 minutes in the case of
M¼ 1%. Specifically, unlike the HDFS load balancer, our
proposal is independent of the load of the namenode.

In Figs. 11c and 11d, we further show the distributions of
chunks after performing the HDFS load balancer and our
proposal. As there are 256 file chunks and 25 datanodes, the
ideal number of chunks that each datanode needs to host is
256
25
 10. Due to space limitation, we only offer the
experimental results for M¼ 1 and the results for M 6¼ 1
conclude the similar. Figs. 11c and 11d indicate that our
proposal is comparable to the HDFS load balancer, and
balances the loads of datanodes, effectively.

6 SUMMARY

A novel load-balancing algorithm to deal with the load
rebalancing problem in large-scale, dynamic, and distrib-
uted file systems in clouds has been presented in this paper.
Our proposal strives to balance the loads of nodes and
reduce the demanded movement cost as much as possible,
while taking advantage of physical network locality and
node heterogeneity. In the absence of representative real
workloads (i.e., the distributions of file chunks in a large-
scale storage system) in the public domain, we have

960 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 5, MAY 2013

Fig. 11. The experimental environment and performance results, where (a) shows the setup of the experimental environment, (b) indicates the time
elapsed of performing the HDFS load balancer and our proposal, and (c) and (d) show the distributions of file chunks for the HDFS load balancer and
our proposal, respectively

investigated the performance of our proposal and com-
pared it against competing algorithms through synthesized
probabilistic distributions of file chunks. The synthesis
workloads stress test the load-balancing algorithms by
creating a few storage nodes that are heavily loaded. The
computer simulation results are encouraging, indicating
that our proposed algorithm performs very well. Our
proposal is comparable to the centralized algorithm in the
Hadoop HDFS production system and dramatically out-
performs the competing distributed algorithm in [14] in
terms of load imbalance factor, movement cost, and
algorithmic overhead. Particularly, our load-balancing
algorithm exhibits a fast convergence rate. The efficiency
and effectiveness of our design are further validated
by analytical models and a real implementation with a
small-scale cluster environment.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers who
have provided us with valuable comments to improve their
study. Hung-Chang Hsiao and Chung-Hsueh Yi were
partially supported by Taiwan National Science Council
under Grants 100-2221-E-006-193 and 101-2221-E-006-097,
and by the Ministry of Education, Taiwan, under the NCKU
Project of Promoting Academic Excellence & Developing
World Class Research Centers. Haiying Shen was sup-
ported in part by US National Science Foundation (NSF)
grants CNS-1254006, CNS-1249603, OCI-1064230, CNS-
1049947, CNS-1156875, CNS-0917056 and CNS-1057530,
CNS-1025652, CNS-0938189, CSR-2008826, CSR-2008827,
Microsoft Research Faculty Fellowship 8300751, and the
US Department of Energy’s Oak Ridge National Laboratory
including the Extreme Scale Systems Center located at
ORNL and DoD 4000111689.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Proces-
sing on Large Clusters,” Proc. Sixth Symp. Operating System Design
and Implementation (OSDI ’04), pp. 137-150, Dec. 2004.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File
System,” Proc. 19th ACM Symp. Operating Systems Principles (SOSP
’03), pp. 29-43, Oct. 2003.

[3] Hadoop Distributed File System, http://hadoop.apache.org/
hdfs/, 2012.

[4] VMware, http://www.vmware.com/, 2012.
[5] Xen, http://www.xen.org/, 2012.
[6] Apache Hadoop, http://hadoop.apache.org/, 2012.
[7] Hadoop Distributed File System “Rebalancing Blocks,” http://

developer.yahoo.com/hadoop/tutorial/module2.html#rebalan-
cing, 2012.

[8] K. McKusick and S. Quinlan, “GFS: Evolution on Fast-Forward,”
Comm. ACM, vol. 53, no. 3, pp. 42-49, Jan. 2010.

[9] HDFS Federation, http://hadoop.apache.org/common/docs/
r0.23.0/hadoop-yarn/hadoop-yarn-site/Federation.html, 2012.

[10] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A Scalable Peer-to-Peer
Lookup Protocol for Internet Applications,” IEEE/ACM Trans.
Networking, vol. 11, no. 1, pp. 17-21, Feb. 2003.

[11] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object
Location and Routing for Large-Scale Peer-to-Peer Systems,” Proc.
IFIP/ACM Int’l Conf. Distributed Systems Platforms Heidelberg,
pp. 161-172, Nov. 2001.

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.
Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W.
Vogels, “Dynamo: Amazon’s Highly Available Key-Value Store,”
Proc. 21st ACM Symp. Operating Systems Principles (SOSP ’07),
pp. 205-220, Oct. 2007.

[13] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica,
“Load Balancing in Structured P2P Systems,” Proc. Second Int’l
Workshop Peer-to-Peer Systems (IPTPS ’02), pp. 68-79, Feb. 2003.

[14] D. Karger and M. Ruhl, “Simple Efficient Load Balancing
Algorithms for Peer-to-Peer Systems,” Proc. 16th ACM Symp.
Parallel Algorithms and Architectures (SPAA ’04), pp. 36-43, June
2004.

[15] P. Ganesan, M. Bawa, and H. Garcia-Molina, “Online Balancing of
Range-Partitioned Data with Applications to Peer-to-Peer Sys-
tems,” Proc. 13th Int’l Conf. Very Large Data Bases (VLDB ’04),
pp. 444-455, Sept. 2004.

[16] J.W. Byers, J. Considine, and M. Mitzenmacher, “Simple Load
Balancing for Distributed Hash Tables,” Proc. First Int’l Workshop
Peer-to-Peer Systems (IPTPS ’03), pp. 80-87, Feb. 2003.

[17] G.S. Manku, “Balanced Binary Trees for ID Management and
Load Balance in Distributed Hash Tables,” Proc. 23rd ACM Symp.
Principles Distributed Computing (PODC ’04), pp. 197-205, July
2004.

[18] A. Bharambe, M. Agrawal, and S. Seshan, “Mercury: Supporting
Scalable Multi-Attribute Range Queries,” Proc. ACM SIGCOMM
’04, pp. 353-366, Aug. 2004.

[19] Y. Zhu and Y. Hu, “Efficient, Proximity-Aware Load Balancing for
DHT-Based P2P Systems,” IEEE Trans. Parallel and Distributed
Systems, vol. 16, no. 4, pp. 349-361, Apr. 2005.

[20] H. Shen and C.-Z. Xu, “Locality-Aware and Churn-Resilient Load
Balancing Algorithms in Structured P2P Networks,” IEEE Trans.
Parallel and Distributed Systems, vol. 18, no. 6, pp. 849-862, June
2007.

[21] Q.H. Vu, B.C. Ooi, M. Rinard, and K.-L. Tan, “Histogram-Based
Global Load Balancing in Structured Peer-to-Peer Systems,” IEEE
Trans. Knowledge Data Eng., vol. 21, no. 4, pp. 595-608, Apr. 2009.

[22] H.-C. Hsiao, H. Liao, S.-S. Chen, and K.-C. Huang, “Load Balance
with Imperfect Information in Structured Peer-to-Peer Systems,”
IEEE Trans. Parallel Distributed Systems, vol. 22, no. 4, pp. 634-649,
Apr. 2011.

[23] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Co., 1979.

[24] D. Eastlake and P. Jones, “US Secure Hash Algorithm 1 (SHA1),”
RFC 3174, Sept. 2001.

[25] M. Raab and A. Steger, “Balls into Bins-A Simple and Tight
Analysis,” Proc. Second Int’l Workshop Randomization and Approx-
imation Techniques in Computer Science, pp. 159-170, Oct. 1998.

[26] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-Based
Aggregation in Large Dynamic Networks,” ACM Trans. Computer
Systems, vol. 23, no. 3, pp. 219-252, Aug. 2005.

[27] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M.V.
Steen, “Gossip-Based Peer Sampling,” ACM Trans. Computer
Systems, vol. 25, no. 3, Aug. 2007.

[28] H. Sagan, Space-Filling Curves, first ed. Springer, 1994.
[29] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,

and S. Lu, “BCube: A High Performance, Server-Centric Network
Architecture for Modular Data Centers,” Proc. ACM SIGCOMM
’09, pp. 63-74, Aug. 2009.

[30] H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea, and A.
Donnelly, “Symbiotic Routing in Future Data Centers,” Proc.
ACM SIGCOMM ’10, pp. 51-62, Aug. 2010.

[31] S. Surana, B. Godfrey, K. Lakshminarayanan, R. Karp, and I.
Stoica, “Load Balancing in Dynamic Structured P2P Systems,”
Performance Evaluation, vol. 63, no. 6, pp. 217-240, Mar. 2006.

[32] S. Iyer, A. Rowstron, and P. Druschel, “Squirrel: A Decentralized
Peer-to-Peer Web Cache,” Proc. 21st Ann. Symp. Principles of
Distributed Computing (PODC ’02), pp. 213-222, July 2002.

[33] I. Raicu, I.T. Foster, and P. Beckman, “Making a Case for
Distributed File Systems at Exascale,” Proc. Third Int’l Workshop
Large-Scale System and Application Performance (LSAP ’11), pp. 11-
18, June 2011.

[34] Ubuntu, http://www.ubuntu.com/, 2012.

HSIAO ET AL.: LOAD REBALANCING FOR DISTRIBUTED FILE SYSTEMS IN CLOUDS 961

Hung-Chang Hsiao received the PhD degree in
computer science from National Tsing Hua
University, Taiwan, in 2000. Currently, he is a
professor in computer science and information
engineering, National Cheng Kung University,
Taiwan, since August 2012. He was also a
postdoctoral researcher in computer science,
National Tsing Hua University, from October
2000 to July 2005. His research interests include
distributed computing, and randomized algo-

rithm design and performance analysis. He is a member of the IEEE
and the IEEE Computer Society.

Hsueh-Yi Chung received the BS degree in
computer science and engineering at Tatung
University, Taiwan, in 2009, and the MS degree
in computer science and information engineering
from National Cheng Kung University, Taiwan, in
2012. His research interests include cloud
computing and distributed storage.

Haiying Shen received the BS degree in
computer science and engineering from Tongji
University, China, in 2000, and the MS and PhD
degrees in computer engineering from Wayne
State University, in 2004 and 2006, respectively.
Currently, she is an assistant professor in the
Holcombe Department of Electrical and Compu-
ter Engineering at Clemson University. Her
research interests include distributed and paral-
lel computer systems and computer networks,

with an emphasis on peer-to-peer and content delivery networks, mobile
computing, wireless sensor networks, and grid and cloud computing.
She was the program cochair for a number of international conferences
and member of the Program Committees of many leading conferences.
She is a Microsoft Faculty fellow of 2010 and a member of the ACM and
the IEEE.

Yu-Chang Chao received the BS degree in
computer science and information engineering
from Tamkang University, Taipei, Taiwan, and
the MS degree in computer science and
information engineering from Nation Chen Kung
University, Tainan, Taiwan, 2000. He is now a
research staff member in Industrial Technology
Research Institute (ITRI). His research interests
include cloud computing, home networking, and
multimedia networking.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

962 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 5, MAY 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

