
1

A DHT-Aided Chunk-Driven Overlay for Scalable
and Efficient Peer-to-Peer Live Streaming

Haiying Shen*, Member, IEEE, Ze Li, Student Member, IEEE, Jin Li, Fellow, IEEE

�

Abstract—Internet-based video streaming applications are becoming
more and more popular, attracting millions of online viewers every day.
The incredible growth of viewers, dynamics of participants, and high
video quality of service (QoS) requirement pose scalability, availability
and low-latency challenges to peer-to-peer (P2P) live video streaming
systems. Tree-based systems have low-delay but are vulnerable to
churn, while mesh-based systems are churn-resilient but suffer from
high delay and overhead. Also, both structures cannot make full uti-
lization of the bandwidth in the system. To tackle the challenges, we
propose a DHT-aided Chunk-driven Overlay (DCO). It introduces a scal-
able DHT ring structure into a mesh-based overlay to efficiently manage
video stream sharing. DCO includes a two-layer hierarchical DHT-based
infrastructure, a chunk sharing algorithm and a video provider selec-
tion algorithm. It selects stable nodes to form a scalable DHT-based
infrastructure. The nodes in the DHT serve as distributed matchmakers
between video providers and requesters. In order to motivate stable
nodes to serve as the DHT nodes, we introduce an incentive mechanism
based on the game theory. Aided by DHT, DCO guarantees stream
chunk availability and assigns to a chunk requester a provider among all
available providers in the system so that stream chunks are transmitted
along a dynamic tree with top-down decreasing node bandwidth. In this
way, DCO takes full advantage of available bandwidth in the system and,
at the same time, provides high scalability and low latency. Experimental
results show the superior performance of DCO compared with mesh-
based and tree-based systems, and the effectiveness of the incentive
mechanism and provider selection algorithm.

Index Terms—DHT; P2P live streaming; Chunk-driven.

1 INTRODUCTION
Internet-based video streaming applications are becoming
more and more popular and attract millions of online viewers
every day [1]. The number of unique online video viewers
increased 5.2% year-over-year, from 137.4 million in January
2009 to 142.7 million in January 2010 [2]. Take YouTube as an
example, 120.5 million viewers watched videos on YouTube in
the month of August in 2009 [3], and that number is expected
to rise to at least one billion viewers worldwide by 2013 [4].
Live streaming applications provide broadcasting streams
from live channels such as TV and live events. Recently,
peer-to-peer (P2P) techniques have attracted significant
interest for live video broadcasting over the Internet. In a
P2P live video streaming system, a streaming media server
generates a series of chunks, each of which is a small video
stream fragment containing media content of a certain length.
The peers watching the same video program form an overlay
for sharing the chunks of a video stream between each other.

• * Corresponding Author. Email: shenh@clemson.edu.

• H. Shen and Z. Li are with the Department of Electrical and Computer
Engineering, Clemson University, Clemson, SC, 29634. J. Li is with the
Microsoft Research, Redmond, WA 98052.

The P2P paradigm dramatically reduces the bandwidth burden
on the centralized media server and generates more available
bandwidth as the number of viewers increases. Typical P2P
video streaming applications include PPLive [5], UUSee [6],
ESM [7], and CoolStreaming [8]. As an example, UUSee
simultaneously sustains 500 live stream channels and routinely
serves millions of users each day [9]. As users spend more
and more time watching videos online, they are becoming
increasingly unsatisfied with the quality of service (QoS) (i.e.,
image freezes and poor resolution) [10, 11]. The incredible
growth of viewers, dynamics of participants, and high-QoS
requirement pose scalability, availability and low-latency
challenges to the widespread adoption of the applications.
• Scalability. The performance of a system will not degrade and
even improve as the number of users grows to a large scale.
• Availability. The live streaming service with acceptable
streaming quality is always available to users under all
network conditions, including node dynamics (i.e., churn).
• Low-latency. High quality video streaming with stringent
real-time performance demands requires that video streams
are transferred under time and bandwidth constraints.

However, the capability of existing P2P live streaming
systems is insufficient to tackle these challenges. Most current
systems construct their overlays into either tree-based struc-
tures or mesh-based structures.

Existing Methods. In a tree-based structure [12–21], all
peers are arranged in a tree and the source distributes the
live stream from the tree root. The internal nodes receive
media pieces from parents and relay them to child nodes. This
solution can rapidly deliver contents if the tree is stable and
the links between nodes have sufficient bandwidth. However,
it has a number of inherent limitations: (i) It is vulnerable to
churn. If a parent leaves or fails, its children cannot receive
the live stream before the tree is repaired. (ii) The fixed tree
structure and stream flow direction make it difficult to easily
take full advantage of bandwidth. (iii) Since the performance
is limited by the minimum throughput among the upstream
connections, an inappropriately constructed tree may result in
inefficient bandwidth utilization and long delay.

In a mesh-based structure [8, 10, 22–31], each node main-
tains a list of their overlay neighbors. Each node also maintains
a buffer map which summarizes the chunks that it currently has
cached for sharing. Nodes periodically exchange and compare
the buffer maps with their neighbors and retrieve video data
accordingly. Specifically, peers share chunks through either
pull-based approaches or push-based approaches. In the for-
mer, each peer sends requests to its neighbors to constantly
look for new chunks; in the latter, a peer pushes chunks to its

Digital Object Indentifier 10.1109/TPDS.2012.302 1045-9219/12/$31.00 © 2012 IEEE

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

neighbors once there is available upload bandwidth. A mesh-
based structure is naturally resilient to churn without a strict
topology, but it also has a number of limitations. (i) A peer
may suffer long latency if its desired chunks are not available
in its neighbors. (ii) Periodic information exchange generates
high overhead and consumes a lot of bandwidth. (iii) Push-
based approaches may cause a node to receive many identical
chunks, producing extra overhead.

Several recently proposed works [32–37] seek to combine
mesh and tree structures to enhance their individual perfor-
mance. However, the nodes in the mesh still need to exchange
information periodically and the tree structure needs to be
maintained and frequently adjusted. These hybrid methods
cannot overcome the inherent problems in both structures.

Our Proposed Method. Distributed hash table (DHT) [38]
is a structure for managing data and is deployed in
many file sharing applications. It is well-known for high
scalability, reliability, and self-organizing. In order to solve
the drawbacks of current live streaming solutions and tackle
the aforementioned three challenges, we propose a DHT-aided
Chunk-driven Overlay (DCO). DCO is suitable for channels
with large-scale users. It includes a two-layer hierarchical
DHT-based infrastructure, a chunk sharing algorithm, and a
provider selection algorithm.

• A two-layer hierarchical DHT-based infrastructure. The
infrastructure has two layers. In the upper layer, stable
nodes form into a DHT, and in the lower layer, normal
nodes connect to DHT nodes, which serve as deputy
to the normal nodes in mapping chunk requesters and
providers to guarantee content availability and low la-
tency. A game theory based incentive mechanism moti-
vates stable nodes to serve as the DHT nodes.

• A chunk sharing algorithm. Using the DHT functions
indexed by chunk IDs, each node initially reports
its available chunks to the DHT and sends chunk
requests to the DHT. The DHT maps the providers and
requests of the same chunk to the same coordinator
DHT node, which locates an chunk provider for each
requester, and the requester then stays connected with the
provider for subsequent requests, so that stream chunks
are transmitted along a dynamic tree with top-down
decreasing node bandwidth.

• A provider selection algorithm. In order to build a
dynamic tree with top-down decreasing node bandwidth
for fluent stream flow, a coordinator DHT node considers
total bandwidth, available bandwidth and buffering
capacity in assigning chunk providers to requesters. A de-
centralized selection algorithm is also proposed to enable
chunk providers and requesters to automatically matched
up by themselves without relying on coordinators.

With the three components, DCO flexibly takes full advan-
tage of available bandwidth in the system and provides high
scalability, availability and low latency. As far as we know, this
is the first work that leverages DHT to increase scalability and
availability and reduces latency in P2P live streaming systems.

The rest of this paper is organized as follows. Section 2
gives a brief overview of the existing approaches for P2P live
streaming systems. Sections 3 and 4 present the background
of this work and the design of the DCO system in detail.
Section 5 presents simulation results of DCO in comparison
with other approaches. Section 6 summarizes the paper.

2 RELATED WORK
P2P live streaming systems fall into three categories: tree-
based [12–21], mesh-based [8, 10, 22–31] and hybrid struc-
ture, which combines both structures [32–37, 39].

Tree-based structure. The early P2P streaming solutions
are single-tree based, such as Overcast [40], ESM [41], mul-
ticast overlay [13, 12], Narada [15], and ZIGZAG [16]. They
feature a single multicast tree with the server at the root posi-
tion. Each user joins in the tree at a certain level, and it receives
the video from its parent and forwards the received video to
its children. However, the single-tree approach suffers from
sub-optimal performance of throughput and is vulnerable to
churn. To deal with this problem, multi-tree based approaches,
including CoopNet [17], SplitStream [18] and Bullet [42], have
been proposed. In multi-tree streaming, the server divides the
stream into multiple sub-streams. Each peer joins all trees to
retrieve sub-streams. Within each tree, the corresponding sub-
stream flows down level by level from the source server to all
the leaf nodes. Thag et al. and Yin et al. [19, 21] employ
multiple description coding to divide media contents into
multiple sub-streams, which are delivered through multiple
multicast trees. However, these mechanisms generate high
maintenance cost and involve complex protocols. Tree-based
systems rigidly determine node locations in the tree; thus,
they are unable to flexibly adapt to continuous changes in
bandwidth status and churn. Unlike the tree-based system that
builds a fixed tree, DCO forms a dynamic tree in a distributed
manner and ensures that each parent has sufficient bandwidth
to transfer a stream to its children. DCO is also churn-resilient
since a node can quickly find a new chunk provider when its
current provider fails.

Mesh-based structure. A mesh-based system constructs
a mesh out of the overlay nodes and swarms media contents
by interchanging chunks with neighbors. At any given time,
a peer has multiple neighbors, and can download/upload
video from/to them. If a peer’s neighbor leaves, the peer
can download video from other neighbors. Examples
of mesh-based systems include PPLive [5], UUSee [6],
CoolStreaming [8], AnySee [23] and Chainsaw [24].
CliqueStream [22] builds a live streaming network on top
of eQuus [25], which is a clustered locality-aware P2P
overlay. Mol et al. [36] presented extensions to BitTorrent for
supporting live video streaming. Carra et al. [29] studied the
fundamental properties of stream-based content distribution
services. To improve resource utilization between peers, a
number of packet scheduling algorithms have been proposed,
such as AQCS [26], RUPF [27] and DP/LU [10]. Their
performances are compared extensively in [10, 43]. Mesh-
based systems consume high bandwidth for frequent message
exchanges and cannot guarantee chunk availability due to
local neighbor search. Unlike the mesh-based systems, DCO
does not need frequent message exchanges to ensure chunk
availability due to system-wide search using DHT.

Hybrid structure. A number of recently proposed ap-
proaches [32–37] combine tree and mesh structures to con-
struct hybrid overlays. PRIME [32] is a two-phase mesh-based
live P2P streaming system. It builds a tree with nodes located
in different levels according to their distances in hops to the
server. In the first phase, data segments of a chunk are rapidly
transmitted from the server in the top-down manner along the
tree. The second phase is swarming content delivery, in which
peers pull data segments of the chunk from their neighbors in

2

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

the same level. Chunkyspread [33] forms multiple trees over a
mesh. The server multi-casts a video stream to its neighbors,
each of which is the root of each tree. Each node periodically
checks whether its parent is overloaded and recommends a set
of candidate nodes in the tree to its parent for replacement.
Wang et al. proposed a two-tier structure [34, 35]. In the
first tier, stable nodes constitute a tree-based backbone, which
pushes most data downwards. All transient and stable nodes
form a mesh overlay in order to enhance the resilience to
churn, and provide a high utilization of bandwidth among
overlay nodes. However, the hybrid structure still inherits the
drawbacks of the tree-based and mesh-based system.

Leverage heterogeneous bandwidth and stable nodes.
The heterogeneous nature of a P2P network has been studied,
and peers with different outgoing bandwidth are treated differ-
ently in some designs. Banerjee et al. [44] used supernodes or
dedicated proxies to provide efficient data distribution services
to a set of end-hosts. In the method proposed in [45], peers
with larger outgoing bandwidth adaptively move closer to the
source to reduce the mesh delay of the entire system. Yeung
and Kwok [46] proposed assigning more parent nodes to peers
with large outgoing bandwidth in order to ensure they receive
stream even in node dynamism. Contracts [47] provides con-
tribution incentives in P2P live streaming systems. It rewards
the globally effective node contributions by placing those
nodes close to the server. Liu [37] derived the minimum delay
bounds for P2P live streaming systems. He further proposed a
snow-ball streaming algorithm to approach the minimum delay
bound by exploiting bandwidth heterogeneity among peers.
Wang et al. [35] indicated that stable nodes are important in
P2P live video streaming systems using traces from PPLive
and analytical models. Kumar [30] developed a stochastic
fluid model that exposes the fundamental characteristics of a
P2P streaming system, including the peers’ real time demand
for content, peer churn, peers with heterogeneous upload
capacity, limited infrastructure capacity, and peer buffering and
playback delay. Built upon these previous works, DCO forms
nodes into a tree with top-down decreasing node bandwidth
for fluent stream flow. DCO also forms stable nodes to a DHT
to help all nodes in the system to efficiently retrieve chunks,
achieving reliable video sharing.

3 BACKGROUND
P2P Live Video Streaming Systems. In a P2P live video
streaming system, live channel sources broadcast various me-
dia programs. A server in the live streaming network slices
the media stream in a live channel into small chunks, each
containing media contents of a certain length. The chunks
are then delivered to the users in the channel. The users
watching the same channel constitute an overlay for chunk
sharing between each other. This process of chunk production
and delivery is shown in Figure 1. Each chunk is named
uniquely in the format of the channel name plus its generation
timestamp. For example, if a chunk has a session length of
one second, the name of the chunk from the NBC channel
beginning at 01:30:01 on January 1st, 2009 is labeled as
NBC20090101013001. Chunks are constantly generated from
channel servers at a certain streaming rate. Every node watch-
ing the channel keeps a playing buffer which contains a certain
number of chunks whose timestamps are within a short time
window. These chunks are called active chunks. The time
window steadily moves forward as new chunks are received
for streaming playback.

DHT Systems. In a DHT, every node maintains a routing
table, in which the number of entries amounts to logN , where
N is the number of nodes in the system. Each node or file
is assigned a unique ID that is the consistent hash value [48]
of its IP address or file name, respectively. A file is stored in
the node whose ID equals or immediately succeeds the file’s
ID. We call this node the owner of the file or the file’s ID.
A DHT system provides two main functions: Insert(ID,object)
and Lookup(ID) to store a file to the ID’s owner and to retrieve
the file. The messages of the functions are forwarded based on
the DHT routing algorithm. The number of hops in a routing in
the worst case is logN . DHT systems have a self-maintenance
mechanism to deal with churn including node joins, depar-
tures and failures for structure maintenance. We use Chord
DHT [38] in this work, although any other DHT system could
also be adopted. As shown in Figure 2, in Chord, all nodes
constitute a virtual ring in the network. Each node Ni has a
predecessor, predecessor(Ni), and a successor, successor(Ni).

Network

NBC20090101013000

NBC20090101013001

CNN20090101013001

CNN20090101013000

NBC
Server

CNN
Server

Fig. 1: The process of chunk production and delivery.

4 DHT-AIDED CHUNK-DRIVEN OVERLAY
By taking advantage of the file storage and lookup functions of
DHTs, we build a DHT-aided chunk-driven overlay for scal-
able and efficient chunk sharing in P2P live streaming systems.
DCO has a two-layer hierarchical DHT-based infrastructure as
shown in Figure 2, where stable nodes form a Chord DHT in
the upper tier and other nodes connect to the DHT nodes in
the lower tier. DCO organizes all the nodes’ chunk information
elegantly in the DHT so that a node can always find providers
with sufficient outgoing bandwidth in a short time period. An
active chunk in a node has an index indicating its name, its
owner node, its owner’s buffer map, available bandwidth, and
so on. The index of each active chunk in a node is regarded as
a file for storage, Insert(ID,index), and lookup, Lookup(ID), in
the DHT. Using the name of a missing chunk as a file name, a
node can always find a chunk provider from the DHT. Because
the provider is also watching the same channel, it may continue
to provide subsequent chunks as long as it is alive. Thus, the
requester directly pulls the provider for subsequent chunks.
While the node is watching the channel and receiving chunks
from its provider, it continuously reports its buffered chunks
to the DHT and provides the chunks to other nodes upon
receiving their requests. As each node receives chunks from a
provider and offers chunks to others, thus the chunks spread
out in the network in the fashion of a tree. In the following,
we present the three components of DCO.

4.1 Two-layer Hierarchical DHT-based Infrastructure
DCO selects stable nodes to form a DHT ring structure for
high chunk availability and QoS. We call these distributed
nodes coordinators. There are two main reasons for choosing
only the stable nodes rather than all nodes to form the DHT
structure. First, the number of active chunks in a live stream
channel at a time is limited. As each node’s time window
of a fixed length steadily moves forward, new chunks are

3

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

created and outdated chunks are discarded, hence the total
number of active chunks in the system at any given time stays
fairly constant. Second, coordinators must be stable. While
watching live videos, every node in the network consults the
coordinators for chunk indices and reports its chunks to the
coordinators for chunk sharing. Therefore, the stability of the
coordinators is critical to the availability of chunks and the
quality of the live stream. Section 7 in the supplementary
file presents the stable node selection method and incentive
mechanism to encourage nodes to be coordinators.

4.1.1 Infrastructure Construction and Maintenance
Node Join. In current P2P live streaming systems, the server
keeps track of tens to hundreds of nodes in each channel.
In DCO, the server provides one coordinator Ni to each
newly joined node Nj in a round-robin manner in order to
achieve load balance between coordinators. Then, Nj connects
to Ni and becomes Ni’s client in the lower tier. Nj requests
chunks from the DHT and reports chunks to the DHT via
Ni. DCO aims to minimize the DHT network size in order
to minimize its maintenance overhead and avoid overloading
any coordinator upon many chunk requests. Driven by this
goal, the network size of the DHT in DCO is not fixed, and
it adapts to the actual load in the system. Specifically, when a
node in the upper tier is overloaded, one of its stable clients
in the lower tier joins in the DHT to release its load. If a node
in the upper tier is always lightly loaded for a certain period
of time, it becomes a node in the lower tier. For example,
Nj periodically calculates its longevity probability. If the
probability exceeds a pre-defined threshold, Nj reports to Ni.
If Ni is overloaded, it acts as a bootstrap node and makes Nj

its successor or predecessor in the DHT. The process of node
joining in the DHT is the same as that in general DHTs. Then,
Nj becomes a coordinator and can directly communicate with
other coordinators without relying on Ni. Regarding chunk
indices as files in DHTs, Nj receives its responsible chunk
indices from Ni based on the DHT file assignment policy,
builds its index table accordingly, and will handle all requests
for chunks in its index table. Thus, partial load in Ni is
transferred to Nj . Similarly, if Ni is always lightly loaded,
it leaves the DHT and becomes a client.

Node Departure. A node may leave a channel either
gracefully, by informing its neighbors, or abruptly, without
any notice. As we will explain later, the chunks are transmitted
along a tree in DCO. When Ni gracefully leaves the network,
it notifies nodes that are currently pulling chunks from it
about its parent in the tree, so that they can directly connect to
the parent for subsequent chunks. Meanwhile, it informs the
coordinators to which it has previously reported its chunks,
then the coordinators remove Ni from their index tables. If
Ni is a coordinator, it needs to conduct three more operations.
(1) It partitions its clients to two groups, and recommends
successor(Ni) and predecessor(Ni) to each group for them to
connect to. (2) It transfers its chunk indices to its successor
and predecessor according to the DHT file assignment policy.
That is, the chunk indices are stored in their new owners after
Ni leaves. Thus, the chunk availability is guaranteed since
the requests for the chunks will automatically be forwarded
to their new owners according to the DHT routing algorithm.
(3) It performs the standard leaving process in Chord by
notifying its successor and predecessor, so that relevant DHT
nodes are aware of Ni’s departure.

N0

Index Table (N4)

1.Lookup(004) for
chunk ‘CNN1430’

2. Reply with an optimal
chunk provider.

N4

N9

N80
ID Name
001 CNN0001 …
002 CNN2215 …
004 CNN1430 …

Index Table (N4)
along log(N) nodes.

N32

I d T bl (N14)

2. Forward the request to
coordinator N14 along
log(N) nodes.

N14

N20

Index Table (N14)
ID Name
010 CNN0200 …
011 CNN1652 …
013 CNN2021 …
014 CNN0526

1. Node C sends a
lookup(010) request
f h k ‘CNN0200’

C

014 CNN0526 …for chunk ‘CNN0200’.

3. Send an optimal chunk
provider to C.

Fig. 2: Chunk sharing in the DHT-aided chunk-driven overlay.

Node Failure. When node Ni fails or abruptly departs, node
Nj pulling chunks from Ni will notice a timeout failure in
fetching chunks. Then, Nj will inform the chunk’s coordinator
about the failure of Ni and meanwhile receive a new chunk
provider. The coordinator removes Ni from its index table. If
Ni is a coordinator in the DHT, its client Nk will also notice
its failure or departure upon communication failure. Then, Nk

contacts the server for a new coordinator to connect to. The
stabilization operation in DHTs helps to maintain the DHT
infrastructure due to node joins, departures, and failures. In
stabilization, each node periodically probes its neighbors and
updates them if they are outdated.

4.2 Efficient Chunk Sharing
Chunk Sharing. In DCO, the coordinators function as index
servers by collecting chunk indices in order to facilitate chunk
discovery. Each coordinator maintains an index table where
each entry holds the indices of a chunk. Figure 2 shows an
example of the DCO infrastructure along with index tables
in coordinators N4 and N14. Each chunk has an ID that is
the consistent hash value of its name. A chunk index includes
the chunk’s ID, name (e.g., CNN0240), the IP address of its
holder node (e.g., 192.168.0.2), the chunk owner’s buffer map
and available bandwidth.

When a video server generates a new chunk or a node
receives a new chunk from another node, it stores the index
of the new chunk in the DHT. Specifically, it generates the ID
of the chunk by applying the consistent hash function to the
chunk’s name. It then sends the chunk’s index to the DHT by
the function Insert(ID,index). By the DHT routing algorithm,
the index will be forwarded to the coordinator which is the
owner of the ID. The coordinator adds the chunk’s index to the
corresponding entry in its index table. As a result, the indices
of a specific chunk of different nodes in the system gather in
the same coordinator, which facilitates the chunk discovery.
In Figure 2, different providers’ chunk indices of the chunk
with ID=001 and name=CNN0001 are in the first entry. Since
N4 is the owner of IDs 001, 002 and 004, it stores the chunk
indices of chunks with these IDs. Similarly, the chunk indices
for chunks 010, 011, 013 and 014 are in coordinator N14. The
chunk index distribution based on the consistent hash function
in the DHT leads to a comparatively balanced distribution, i.e.,
logN imbalance [38]. If a coordinator is overloaded due to
the number of lookup inquiries from peers, new coordinators
can always be added to the DHT to release its load.

When a node needs chunks to play for a certain time and
does not have any connection with a chunk provider, it consults

4

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

the DHT. Specifically, it calculates the ID of the chunk by
applying the consistent hash function to the chunk’s name.
Then, it sends a Lookup(ID) request to the DHT. Through
the DHT routing algorithm, the request will be forwarded to
the owner of the ID, i.e., the coordinator of the chunk. For
example, in Figure 2, node C requests chunk CNN0200. It
generates the ID of the chunk, 010. It then asks N32 to send
out request Lookup(010). This request is forwarded to the co-
ordinator N14, the owner of ID 010. Then, N14 responds to C
with an optimal chunk provider. The algorithm of the provider
selection is presented in Section 4.3. A coordinator can directly
send Lookup(ID) requests to the DHT for chunks. As the figure
shows, the coordinator N80 sends a Lookup(ID) request to
another coordinator N4. The coordinator processes the request
and sends the information of a chunk provider to the requester.

After receiving the information of a provider from the
coordinator, the requester sends a chunk request along with its
buffer map to the provider. Then, in addition to the requested
chunk, the provider also sends the requester its active chunks
missed by the requester. The requester directly turns to this
provider later on for its missing chunks. Thus, after the first
chunk querying, the chunk transfer between the provider and
the requester follows a direct pull-based style. If the provider
cannot offer the chunk or the requester detects the provider’s
failure or departure through a timeout chunk request, the
requester can always turn to the DHT for a new provider of
the chunk. Therefore, chunk availability is guaranteed. Once
a requester receives new chunks, it reports the chunks to
the DHT using Insert(ID,index) for chunk sharing. When a
coordinator gracefully leaves, it transfers its chunk indices
to its predecessor or successor based on the DHT file as-
signment policy. Then, the requests for the chunks will be
forwarded to the departed node’s predecessor or successor
based on the DHT routing algorithm. If a coordinator fails
or abruptly leaves, the requests for the chunks whose indices
were originally in the coordinator will be forwarded to a new
coordinator, and at the same time, new chunk indices of the
requested chunk will also be reported to the new coordinator.

Tree Formation. In DCO, the process of chunk spreading
dynamically forms a tree structure. In Figure 3, we can see

Coordinator Provider
N4 N14

N80

N32
N80

N20

N80

Ti
m
e

N0
N32

Fig. 3: Chunk transmission in
a tree manner.

how a chunk is transmitted in
a tree manner. The three layers
in the figure follow a top-down
time sequence. In the highest
layer (earliest time), node N80
contacts coordinator N4. N4
responds with chunk provider
N14, from which N80 pulls
for the chunk. Later on, in the
second layer, node N32 also
requests the chunk, and coor-
dinator N4 recommends N80
to N32 as the chunk provider.
Then, N32 pulls the chunk
from N80. After that, nodes
N20 and N0 in the third layer request the chunk. If N32
is the recommended node, then it provides the chunk to N0
and N20. Consequently, as shown in the dotted arrows, the
dissemination process of the chunk is in the fashion of a tree.

Index Table Entry Size. After a new chunk is produced
by a server, it is spread to more and more nodes until every
node has the chunk. Thus, at the beginning, a chunk is highly

shared. As time goes on, the frequency that a chunk is shared
decreases. It is a resource waste if a coordinator maintains all
chunk indices. We set a threshold for the number of chunk
indices in an entry to δn (0 < δ < 1). Our experiment
results showed that 20% is an optimized number for δ that
keeps high performance and reduces unnecessary messages.
Every coordinator sets up a flag for each entry in its index
table. When an entry is first created, the flag is set to zero. It
turns to one when the number of chunk indices in the entry
exceeds the threshold. Recall that a chunk’s name indicates
its timestamp and a chunk is discarded when it is out of a
node’s time window. If the coordinator receives a new chunk
index, it replaces an old one with the new one. Therefore, the
chunk indices in index tables are almost up-to-date. Also, the
bandwidth of the reporters of the new index can be utilized
so that the nodes for the old chunk index already connected
with several requesters will not be overloaded. Since every one
contacts the server when joining in the overlay, the server can
keep a counter to record the number of nodes n in the channel.

4.3 Chunk Provider Selection
It was indicated that there are around 50,000 concurrent peers
at any time in the streaming overlay watching a popular
channel such as CCTV1 [9]. This means a chunk needs to
be distributed among so many peers in time for high QoS. In
this section, we will discuss two ways for the nodes to select
chunk providers: a centralized way and a decentralized way.
Section 8 in the supplementary file introduces a prefetching
mechanism in DCO.

4.3.1 Centralized Chunk Provider Selection
In the centralized chunk provider selection algorithm, the
chunk distribution speed depends on how a coordinator selects
a provider for a chunk requester from the provider list, so
that providers’ bandwidth can be optimally used. That is, the
selection method will not produce overloaded providers or idle
providers. In order to choose the optimal chunk provider for
each requester, a coordinator considers the following factors:

1) Total bandwidth. Recall that chunk dissemination in
DCO is essentially in a tree manner. Arranging nodes
with higher total bandwidth closer to the server allows
chunks to be rapidly transmitted along the tree [45].
Thus, we aim to dynamically form a tree with top-down
decreasing bandwidth.

2) Available bandwidth. A node with greater available
bandwidth is preferred, since it can quickly and suc-
cessfully provide chunks.

3) Buffering level. A node with a higher buffering level
can provide the requester more consecutive blocks in the
playback buffer, reducing subsequent chunk requests.

DCO divides the node total bandwidth into different levels,
denoted by LTB. To consider total bandwidth, a coordinator
should choose providers whose LTB = min{LTB|LTB >
LTB
r , ∀LTB}, where LTB

r is the requester’s LTB.
Recall that a node i reports its available chunk to a

coordinator with its available bandwidth, denoted by bi. To
estimate a chunk provider’s current available bandwidth, we
need to consider the number of requesters it has been assigned
for this chunk, denoted by mi. The chunk provider may
also offer other chunks. To take into account this factor, we
use the elapsed time from the reporting time to the current
time, denoted by t, to approximately estimate its bandwidth

5

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

consumption during t. We use bi−γmi

ti
to estimate provider

i’s available bandwidth, where γ is the average bandwidth
consumed by continuously offering a chunk to a requester.

When a node requests a chunk provider from a coordinator,
the coordinator first selects a set of chunk providers s that have

higher LTB than the requester. We use
LTB

i −LTB
r

LTB
r

to consider

the level closeness of the requester and chunk provider i. We
introduce the recommendation degree (denoted by Ri) to show
the degree that a chunk provider i should be recommended to
the requester considering both total and available bandwidths.
The coordinator calculates the Ri of each provider i in the
node set s.

Ri =

{
bi−γmi

ti
× LTB

r
LTB

i −LTB
r
, i ∈ s

0, otherwise.
(1)

The coordinator chooses a subset of nodes from s that have
the highest Ri, and then selects the node with the highest
buffering level. The final selected node is the optimal chunk
provider for the requester.

4.3.2 Decentralized Chunk Provider Selection
We propose a decentralized chunk provider selection algo-
rithm, in which the chunk scheduling does not depend on the
coordinators. Rather, the chunk providers and requesters are
autonomously matched up by themselves in a decentralized
manner. In the network, a number of nodes may ask the
DHT for the same providers’ information at the same time.
There are several providers in a chunk index entry with
different available bandwidths. How can a node select optimal
providers efficiently in a distributed manner? Based on non-
cooperative game, we design a decentralized provider selection
strategy for requesters. The game players are a number of
requesters asking for the same chunk and competing for the
outgoing bandwidths of providers in a chunk index entry. If
more than two nodes are assigned to a provider, the provider
prefers to select a requester with larger outgoing bandwidth
in order to increase the utilization of the transferred chunk.
If the requesting is successful, the requester will receive the
chunk from the provider and gain benefits. If a request is
not responded by the provider, the requester gains no benefit.
The basic strategy of our provider selection strategy is to
select a provider with enough bandwidth while generating
low probability that the requester’s request will be rejected
by the chosen provider. Specifically, a coordinator periodically
sends all available providers to all requesters along with the
information of available outgoing bandwidth of the providers.
After a requester i receives the information of providers
and requesters from a coordinator, it chooses the provider
satisfying LTB = min{LTB|LTB > LTB

r , ∀LTB}, where LTB
r

is the requester’s LTB. If the LTB
r is evenly distributed, the

requesters will be evenly distributed to different providers.
Therefore, a selected provider is unlikely to be overloaded and
a requester’s request is unlikely to be rejected and its chosen
provider should have the bandwidth to serve it. In the high-
level view of the entire system, all nodes form into different
layers and the bandwidth of nodes decreases from the top
to the bottom. This structure enables a video stream to flow
fluently in the top-down manner.

5 PERFORMANCE EVALUATION
We developed our simulator based on P2PSim [49] and
compared DCO with the pull-based, push-based, and tree-
based methods. A DHT needs logN hops on average for

message routing and log2 N messages for handling a node
join or departure. Higher N leads to more delay and cost for
the operations. Thus, we made N the maximum by forming all
nodes into a DHT in DCO to compare the worst performance
of DCO with other methods. A higher-layer DHT formed
by a subset of the nodes would lead to better performance
than our presented performance of DCO. The default chunk
provider selection algorithm was the centralized algorithm.
In the push-based method, every node sends missing chunks
to their neighbors regardless of whether they have received
chunks from others; in the pull-based method, every node
sends a request to each of its neighbors asking for its missing
chunk in a round robin manner until it receives the chunk. In
the tree-based method, the chunks are pushed top-down from
the server.

The number of nodes in the network was set to 512 unless
otherwise specified. In the pull-based and push-based mesh
overlays, every node was randomly connected with 8 to 64
peers with an increment of 8. In the tree-based method, in
order to ensure fluent top-down stream flow, we set the number
of children per node to 1

8 of the number of neighbors per node
in the other three methods. The default number of children per
node in the tree-based method was set to 3, and the default
number of neighbors per node in other methods was set to 48.
Nodes in the pull/push-based method exchange buffer maps
with their neighbors every second.

In the simulation, a chunk was a video fragment that can be
played for one second. Since today’s online video is approx-
imately 300kbps, the size of a video chunk was set to 300kb
and was generated from the server node every second for 100
seconds unless otherwise specified. We set both the upload and
download bandwidths of the server to 4000kbps, and those of
all other nodes to 600kbps. When a node was overloaded, it
would queue its chunks in its buffer and would not perform
any chunk transmission until it had sufficient bandwidth.

In the experiments with churn, the node life span was set
to an exponential distribution [50] with a mean ranging from
60s to 120s, and the join interval of nodes was set to the
same distribution. Therefore, nodes are constantly leaving and
joining the network, and the network scale remains relatively
stable. We run each experiments 5 times and report the average
as the final experimental results. We examine the following
performance metrics.

(1) Mesh delay: The interval from the time when a chunk is
generated at the server to the time it reaches all nodes. We
report the average mesh delay of all chunks.
(2) Fill ratio: The ratio of nodes holding a chunk at a certain
time. Unless otherwise specified, we report the average fill
ratio of all chunks.
(3) Extra overhead: The number of communication messages
other than video chunks after all chunks reach all nodes. In
the push and pull methods, it includes messages for buffer
map exchanges and subsequent requests. In DCO, it includes
messages between nodes and coordinators, chunk owners and
the server. The tree-based method does not generate any extra
overhead due to its top-down push method. One message
forwarding operation is regarded as one unit of extra overhead.
(4) Percent of received chunks: The number of chunks success-
fully received by all nodes from peers rather than the server
over the total number of chunks in churn.
Section 9 in the supplementary file presents additional ex-
perimental results for the incentives for being cooperative

6

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

1

10

100

1000

10000

8 16 24 32 40 48 56 64

M
es

h
de

la
y

(s
ec

.)

Number of neighbors

push
pull
DCO
tree*
tree

Fig. 4: Mesh delay vs. number
of neighbors.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

8 16 24 32 40 48 56 64

Fi
ll

ra
tio

Number of neighbors

push pull
DCO tree*

Fig. 5: Fill ratio vs. number of
neighbors.

0

0.2

0.4

0.6

0.8

1

1.2

100 101 102 103 104 105 106

Fi
ll

ra
tio

Time (sec.)

push pull
DCO tree

Fig. 6: Fill ratio vs. time.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

60 70 80 90 100 110 120

Fi
ll

ra
tio

Average node life (sec.)

push
pull
DCO
tree

Fig. 7: Fill ratio vs. average node
life.

coordinators and chunk provider selection method, as well as
the performance of different methods on real-world PlanetLab.

5.1 Performance of Latency
Figure 4 shows the mesh delay versus the number of neighbors
per node. Here “tree*” denotes a tree-based method in which
the number of children of each node is the same as those
in the other three methods, while “tree” denotes the tree-
based method with our experiment setting. As the result shows,
the mesh delays in the push and pull methods are very high
when the number of neighbors is small. The mesh delay of
DCO stably remains in a very low level all the time even
with its logN hop routing delay. This is because that DCO
can guarantee the availability of a chunk due to its system-
wide search, while nodes in push/pull may not always receive
desired chunks due to their local search among neighbors.
A chunk request in DCO is always answered with a chunk
provider. However, in the push and pull methods, a peer may
take a relatively longer time to find a neighbor with a requested
chunk, especially when the size of the neighbor list is small.
We also observe that the pull method generates higher mesh
delay than the push method. This is because the nodes in
the pull method need to pull their neighbors one by one
and wait for their responses, which takes a longer time than
directly accepting chunks from neighbors in the push method.
In the tree-based method, when the number of children is
set to the same number of neighbors as other methods, the
performance of the tree method is degraded significantly. This
is because the parent nodes need a long time to be able to
push a specific chunk to a large number of children. However,
when the number of children is set to 1

8 of the number of
neighbors of other methods, the tree method can achieve the
best mesh delay when the number of children is less than
32
8 . This is because when the number of children is larger,

the bandwidth limit constrains the spreading of chunks from
parents to children. Therefore, to make the results comparable,
in the following experiments, we set the number of children
in the tree method to 1

8 of other methods.

5.2 Performance of Availability
Figure 5 shows the measured fill ratios two seconds after a
chunk is generated versus the number of neighbors per node.
Clearly, the performance of DCO is the most stable. The fill
ratio of the push method grows sharply when the number of
neighbors increases from 8 to 32, and beyond that it generates
nearly the same fill ratio as DCO. This is because when a
node has fewer neighbors, the push method needs more time
to spread a chunk; but when a node has many neighbors,
the push method can push the chunks to every node in the
network in only a few steps, functioning as flooding. The pull
method always shows the worst performance. A node has to
pull from each of its neighbors for a chunk and then waits

for the response. If the neighbor does not have the chunk, the
requester needs to pull from another neighbor. For the tree
method, when the number of children is less than 32

8 , its fill
ratio reaches nearly 100%, which is higher than the other three
methods. Without buffer map exchanges and logN hop request
routing, the tree method directly pushes a chunk to nodes
along the tree. Thus, it generates a higher fill ratio than others.
However, when the number of children is larger than 32

8 , its fill
ratio drops dramatically. This is because when the number of
children is large, the bandwidth constraints significantly slow
down the pushing process.

Recall the server creates 100 chunks in total. Figure 6 shows
the fill ratio of the 100th chunk every second starting from
the time of 100 seconds. The figure shows that the fill ratio
increases as time elapses. In the tree method, when the number
of children is set to the default value 3, it achieves the fastest
chunk spreading speed for the same reason as in Figure 5.
The push method and DCO show better performance. It takes
a chunk only three seconds to swarm the entire network after
its generation. One interesting observation is that at the 101st

second, the fill ratio of push is better than DCO. This is
because the logN routing hops in the DHT overlay make the
initial chunk dissemination speed of DCO slower. At the 102nd

second, DCO is able to catch up with the push method, because
there are more and more providers of the chunk as time goes
on, which helps to achieve faster chunk dissemination speed
by effectively utilizing more nodes’ bandwidth. For the same
reason as Figure 5, the pull method’s fill ratio is significantly
lower than others. It confirms the low speed of the pull method
in spreading chunks.

The next experiment measures the fill ratio in churn. Fig-
ure 7 shows the fill ratio two seconds after a chunk is generated
versus the average node lifetime in seconds. We can see that
DCO and pull generate over 90% fill ratio which stays nearly
constant. However, the tree and push methods produce less
than 10% fill ratio and the ratio increases as the average node
lifetime increases. In DCO, a chunk requester can always find
a chunk provider as long as there exists at least one chunk
provider. Thus, DCO provides high chunk availability. In the
pull method, a node keeps pulling its neighbors, which enables
a node always to receive its requested chunks. In the tree and
push methods, a node passively receives chunks or information
about available chunks. Shorter node lifetimes make many
nodes unable to receive chunks, leading to a significantly lower
fill ratio. We also observe that the fill ratios in all methods
grow as the average node lifetime increases. This is because
the located chunk providers have a lower probability of leaving
before or while serving the requesters when the average node
lifetime is longer. Also, in the tree and push methods, longer
lifetimes make more nodes push chunks to other nodes before
leaving, resulting in a faster increase in fill ratio than DCO

7

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

0E+00

5E+05

1E+06

2E+06

2E+06

3E+06

3E+06

4E+06

4E+06

8 16 24 32 40 48 56 64

E
xt

ra
 o

ve
rh

ea
d

(u
ni

t)

Number of neighbors

push
pull
DCO
tree

Fig. 8: Extra overhead vs.
number of neighbors.

0E+00

1E+06

2E+06

3E+06

4E+06

5E+06

6E+06

7E+06

8E+06

64 395 726 1057 1388 1719 2050

E
xt

ra
 o

ve
rh

ea
d

(u
ni

t)

Number of nodes

push
pull
DCO
tree

Fig. 9: Extra overhead vs.
number of nodes.

0E+00

1E+07

2E+07

3E+07

4E+07

5E+07

6E+07

0 400 800 1200 1600

E
xt

ra
 o

ve
rh

ea
d

(u
ni

t)

Time (sec.)

push
pull
DCO
tree

Fig. 10: Extra overhead vs.
time.

100

102

104

106

108

110

112

114

0% 20% 40% 60% 80%

M
es

h
de

la
y

(s
ec

.)

Entry size / network size

Fig. 11: Mesh delay vs. ratio
of entry size.

0.0

0.2

0.4

0.6

0.8

1.0

200 220 240 260 280 300

P
er

ce
nt

 o
f r

ec
ei

ve
d

ch
un

ks

Time (sec.)

push pull
DCO tree

Fig. 12: Percent of received
chunks vs. time in churn.

0.0

0.2

0.4

0.6

0.8

1.0

60 70 80 90 100 110 120

P
er

ce
nt

 o
f r

ec
ei

ve
d

ch
un

ks

Average node life (sec.)

push pull
DCO tree

Fig. 13: Percent of received
chunks vs. node life in churn.

4E+06

4E+06

3E+06

4E+06

(u
ni

t)

2E+06

3E+06

ea
d

(

2E+06

2E+06

ov
er

h

5E 05

1E+06

Ex
tra

o

push pull

0E+00

5E+05E DCO tree

200 220 240 260 280 300
Time (sec.)

Fig. 14: Extra overhead vs.
time in churn.

0E+00

1E+06

2E+06

3E+06

4E+06

5E+06

60 70 80 90 100 110 120

E
xt

ra
 o

ve
rh

ea
d

(u
ni

t)

Average node life (sec.)

push pull
DCO tree

Fig. 15: Extra overhead vs.
node life in churn.

and the pull method.

5.3 Performance of Scalability and Overhead
Figure 8 shows the extra overhead as a function of the number
of neighbors per node. We see that the tree method can achieve
zero extra cost, because it only pushes in a top-down manner
without redundant traffic. For the other three methods, when
the number of neighbors per node is 8, the push and pull
methods perform better than DCO; as the number increases
to 16, the three methods behave almost the same; as the
number increases more, DCO presents the best performance.
Moreover, the extra overhead of the push and pull methods
mount up when there are more neighbors per node, while that
of DCO decreases. When the number of neighbors climbs to
64, the overhead of DCO is almost one third of the push
method and one fifth of the pull method. This result shows
that DCO works better when there are more neighbors. This is
because when a node has more neighbors, it needs to exchange
messages with more nodes in the pull and push methods, but
it needs less provider queries in DCO.

Figure 9 illustrates the relationship between extra overhead
and the number of nodes in the network. The number of
neighbors per node was set to 32. We observe that the extra
overhead of each method increases linearly as the number
of nodes grows. The tree method again produces no extra
overhead since its top-down chunk dissemination is the most
efficient. DCO generates less extra overhead than the push
method, which produces less extra overhead than pull. The
reason is that the chunk lookup mechanism in DCO can always
provide a valid provider to the requester, and it does not
need frequent buffer map exchanges as in the push and pull
methods. This result shows that DCO is more scalable than
the push and pull methods.

Figure 10 shows the extra overhead as time elapses. The four
methods exhibit similar behaviors as in Figure 9. The result
further verifies that apart from tree, which does not incur extra
overhead, DCO produces the lowest overhead, indicating its
high efficiency. The reason is because DCO can guarantee that
a node will receive its requested chunks while other methods
cannot. In addition, DCO can provide better parent candidates.

The periodic exchanges of buffer maps between neighbors
generate significantly high extra overhead in the push and pull
methods. The push method generates lower extra overhead
than the pull method because the pull method needs one more
request step after a buffer map exchange.

5.4 The Impact of Chunk Indices
We measure how the number of chunk indices in one index
table entry (i.e., entry size) affects the mesh delay. Through
this experiment, the optimal number of chunk indices in a
chunk’s index entry can be found. Figure 11 shows the mesh
delay versus the ratio of entry size over network size in DCO.
When the ratio is five percent, its mesh delay is high. As
the ratio increases, the mesh delay decreases sharply until
the ratio is 20 percent. After reaching 20 percent, the mesh
delay stays at roughly the same level and does not exhibit any
more abrupt changes. In DCO, the coordinators offer chunk
providers to requesters. Therefore, as the number of available
chunk providers to be shared grows, the chunk requests can be
disseminated to more nodes, hence the bandwidth utilization of
nodes increases and mesh delay decreases. The result indicates
that 20 percent of the number of all participants is the optimal
size for one index table entry with efficiency consideration.

5.5 The Impact of Churn
Since the pull and push methods are mesh-based methods, they
are naturally resilient to churn. We disable the stabilization in
DCO in order to compare its worst case performance with
others to show its superiority. There is also no tree structure
update in the tree method. We set the total number of chunks
to 200, and allowed up to 300 seconds for nodes to retrieve
the chunks. Figure 12 shows the percentage of received chunks
from the time instant of 200s to 300s with an increment of
10s in each step and a 60s average node life span. It can
be observed that DCO achieves comparable performance with
the pull approach. Nodes in DCO actively request missing
chunks from the chunk providers, which enables them to
obtain chunks in time. It can also be seen that DCO has a
little lower performance compared with the pull method at
the beginning. This is because the chunk spreading speed of

8

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

200 220 240 260 280 300

P
er

ce
nt

 o
f r

ec
ei

ve
d

ch
un

ks

Time (sec.)

push pull
DCO tree

Fig. 16: Percent of received
chunks vs. time with node
failures.

0

0.2

0.4

0.6

0.8

1

60 70 80 90 100 110 120

Pe
rc

en
t o

f r
ec

ei
ve

d
ch

un
ks

Average node life

push pull
DCO tree

Fig. 17: Percent of received
chunks vs. node life with
node failures.

0E+00

1E+06

2E+06

3E+06

4E+06

5E+06

200 220 240 260 280 300

Ex
tra

 o
ve

rh
ea

d
(u

ni
t)

Time (sec.)

push pull
DCO tree

Fig. 18: Extra overhead vs.
time with node failures.

0E+00

1E+06

2E+06

3E+06

4E+06

60 70 80 90 100 110 120

Ex
tra

 o
ve

rh
ea

d
(u

ni
t)

Average node life (sec.)

push pull
DCO tree

Fig. 19: Extra overhead vs.
node life with node failures.

DCO is initially slowed down by the logN delay in DHT
overlay routing; the slow-down is soon remedied because the
chunks are disseminated faster as the number of chunk holders
increases. The push method is slower in receiving chunks than
DCO and the pull method. This is because nodes in the push-
based method passively receive chunks from neighbors, and
some chunks may not be sent quickly by certain nodes. The
tree method has the worst performance because churn will
break its topology, and a great number of nodes will not be
able to receive chunks from their parents. Figure 13 shows
the relationship between the percentage of received chunks
and the average node life. DCO and the pull method gain a
higher percentage than the push method, in which some nodes
may depart before they send chunks to their neighbors. The
tree method is not resilient to churn due to the same reason
as in Figure 12.

Figure 14 shows that the extra overhead grows linearly as
time goes on. The tree method produces no extra overhead,
because the tree structure ensures that chunks are always
disseminated from the server to the leaf nodes without other
messages. DCO performs better than the push and pull meth-
ods because it can always locate the proper node for data
transmission, which can reduce the massive communication
overhead among each node and its neighbors. Here, the extra
overhead increases over time because nodes keep requesting
chunks during the time, which constantly generates extra
overhead to DCO and the pull and push methods. Figure 15
shows the extra overhead as a function of node lifetime. It
exhibits similar results as Figure 14, in which the tree method
incurs no overhead due to its efficient top-down topology.
DCO still exhibits better performance than the push and pull
methods. The cost of all four methods stays relatively stable,
because there is no maintenance cost for churn, so their extra
message transmission costs are not sensitive to the length of
node life. The above experimental results of churn-resilience
on the percentage of received chunks show that DCO achieves
churn-resilience performance comparable to that of the pull
method. Further, the results on extra overhead show that DCO
also features low overhead under churn.

5.6 The Impact of Node Failures
We then test the impact of node failures on chunk delivery
performance and overhead. In this experiment, we changed the
node departures to node failures (or abrupt departures) in the
previous experiments in churn. Figure 16 shows the percentage
of received chunks over time. We see that pull and DCO have
the highest percentage of received chunks, which are followed
by push, and tree generates the smallest percent of received
chunks. The reasons are the same as in Figure 12. Figure 17
shows the percentage of received chunks of different systems
versus the average node life. As the figure shows, DCO and

pull still have the highest percentage of received chunks, and
tree has the lowest percentage of received chunks. The reasons
are the same as in Figure 13.

Comparing Figure 16 and Figure 12, and Figure 17 and
Figure 13, we can see that the systems with node failures have
much lower percentages of received chunks than the systems
with graceful node departures. The main reason is that a node
failure is detected only when a provider-requester connection
timeout occurs, while in graceful node departures, a leaving
node notifies nodes that are currently pulling chunks from it
about its parent in the tree, so that the nodes can directly
connect to the parent for subsequent chunks. The chunk
retrieval delay in node failures leads to a lower percentage
of received chunks.

Figure 18 shows the extra overhead of different sys-
tems versus time. We see that the extra overhead follows
pull>push>DCO>tree. The reason remains the same as in
Figure 14. Figure 19 shows the extra overhead of different
systems versus the average node life. We see that pull has the
highest overhead, which is followed by push and then DCO.
Tree generates the least extra overhead. The reason is the same
as in Figure 15.

Comparing Figure 18 and Figure 14, and Figure 19 and
Figure 15, we see that the systems with failures produce
much less overheads than the systems with graceful node
departures. This is because a graceful node departure generates
more communication between nodes than a node failure. A
gracefully leaving node needs to notify other nodes about its
departure, while a node failure is detected by the connection
timeout. However, the less overhead of node failures than node
graceful departures is at the cost of lower percentage of re-
ceived chunks. In a conclusion, DCO can achieve high percent
of received chunks with small extra overhead comparing to
push, pull and tree.

6 CONCLUSION
In this paper, we propose a DHT-aided chunk-driven overlay
for P2P live streaming that targets higher scalability, better
availability and low latency. The design has three main com-
ponents: a two-layer hierarchical DHT-based infrastructure,
a chunk sharing algorithm, and a video provider selection
algorithm. The hierarchical DHT-based infrastructure offers
high scalability. The chunk sharing algorithm provides service
for chunk index collection and discovery, which guarantees
high availability. The provider selection algorithm enables
full utilization of system bandwidth. As a result, the overlay
can provide high quality video streaming. We use cooperative
game theory to analyze the incentives that should be provided
to stable nodes to encourage cooperative behaviors in the
DHT-based infrastructure. We also propose a centralized and
simplified decentralized provider selection algorithm. DCO

9

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

is superior to tree-based systems in dealing with churn and
mesh-based systems in bandwidth consumption and latency.
More importantly, it can flexibly take full advantage of system
bandwidth by dynamically matching chunk requesters and
providers. The experimental results show that DCO improves
the performance of the mesh-based systems (pull and push)
and tree-based systems, in term of scalability, availability,
latency and overhead. The experimental results also confirm
the importance of providing incentives to encourage nodes
to serve as coordinators in the DHT-based infrastructure and
the importance of selecting chunk providers with sufficient
bandwidth in chunk delivery. In our future, we will study how
to adopt the mechanisms that enhance the churn-resilience of
tree-based methods into DCO.

ACKNOWLEDGEMENTS
This research was supported in part by U.S. NSF grants
OCI-1064230, CNS-1049947, CNS-1156875, CNS-0917056
and CNS-1057530, CNS-1025652, CNS-0938189, CSR-
2008826, CSR-2008827, Microsoft Research Faculty Fellow-
ship 8300751, and U.S. DoE’s Oak Ridge National Laboratory
including the Extreme Scale Systems Center located at ORNL
and DoD 4000111689. An early version of this work was
presented in the Proceedings of ICPP’10 [51].

REFERENCES
[1] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross. A measurement study

of a large-scale P2P IPTV system. TMM, 2007.
[2] Total viewers of online video increased 5 percent year-over-year.

http://blog.nielsen.com/nielsenwire/online mobile.
[3] YouTube still the king of online videos.

http://www.searchenginejournal.com/.
[4] 1 billion online video viewers served by 2013.

http://www.straightupsearch.com/archives/2008/05/.
[5] PPLive. http://www.pplive.com.
[6] UUSee. http://www.uusee.com.
[7] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system multicast.

In Proc. of ACM SIGMETRICS, 2000.
[8] X. Zhang, J. Liu, B. Li, and T. P. Yum. CoolStreaming/DONet: a data-

driven overlay network for peer-to-peer live media streaming. In Proc.
of INFOCOM, 2005.

[9] C. Wu and B. Li. Exploring large-scale peer-to-peer live streaming
topologies. TOMCCAP, 4(3), 2008.

[10] F. Picconi and L. Massoulie. Is there a future for mesh-based live video
streaming? In Proc. of P2P, 2008.

[11] J. Wang, C. Huang, and J. Li. On ISP-friendly rate allocation for peer-
assisted VoD. In Proc. of ACM Multimedia, 2008.

[12] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application
layer multicast. In Proc. of SIGCOMM, 2002.

[13] Y. Chu, A. Ganjam, T. Ng, S. Rao, K. Sripanidkulchai, J. Zhang, and
H. Zhang. Early experience with an internet broadcast system based on
overlay multicast. In Proc. of USENIX, 2004.

[14] T. T. Do, K. A. Hua, and M. A. Tantaoui. P2VoD: Providing fault
tolerant video-on-demand streaming in peer-to-peer environment. In
Proc. of ICC, 2004.

[15] Y. Chu, S. Rao, and H. Zhang. A case for end system multicast. In
Proc. of ACM SIGMETRICS, 2000.

[16] D. Tran, K. Hua, and T. Do. Zigzag: An efficient peer-to-peer scheme
for media streaming. In Proc. of INFOCOM, 2003.

[17] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanid-kulchai.
Distributed streaming media content using cooperative networking. In
Proc. of ACM NOSSDAV, 2002.

[18] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh. Splitstream: High-bandwidth multicast in cooperative envi-
ronments. In Proc. of SOSP, 2003.

[19] R. Tian, Q. Zhang, Z. Xiang, Y. Xiong, X. Li, and W. Zhu. Robust and
efficient path diversity in application-layer multicast for video streaming.
IEEE TCSVT, 2005.

[20] J. Liu and M. Zhou. Tree-assisted gossiping for overlay video distribu-
tion. Multimedia Tools and Applications, 2006.

[21] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang, and B. Li.
Design and deployment of a hybrid CDN-P2P system for live video
streaming: experiences with LiveSky. In Proc. of MM, 2009.

[22] S. Asaduzzaman, Y. Qiao, and G. Bochmann. CliqueStream: an efficient
and fault-resilient live streaming network on a clustered peer-to-peer
overlay. In Proc. of P2P, 2008.

[23] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng. AnySee: Peer-to-Peer
Live Streaming. In Proc. of IEEE INFOCOM, 2006.

[24] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E. Mohr.
Chainsaw: eliminating trees from overlay multicast. In Proc. of IPTPS,
2005.

[25] T. Locher, S. Schmid, and R. Wattenhofer. eQuus: a provably robust
and locality-aware peer-to-peer system. In Proc. of P2P, 2006.

[26] Y. Guo, C. Liang, and Y. Liu. Adaptive queue-based chunk scheduling
for P2P live streaming. In Proc. of IFIP Networking, 2008.

[27] L. Massoulie, A. Twig, C. Gkantsidis, and P. Rodriguez. Randomized
decentralized broadcasting algorithms. In Proc. of INFOCOM, 2007.

[28] W. P. K. Yiu, X. Jin, and S. H. G. Chan. VMesh: Distributed segment
storage for peer-to-peer interactive video streaming. IEEE J-SAC, 2007.

[29] D. Carra, L. Cigno, and E.W. Biersack. Graph based analysis of mesh
overlay streaming systems. J-SAC, 2007.

[30] R. Kumar, Y. Liu, and K. Ross. Stochastic fluid theory for P2P streaming
systems. In Proc. of INFOCOM 2007, 2007.

[31] A. Silva, E. Leonardi, M. Mellia, and M. Meo. A bandwidth-aware
scheduling strategy for P2P-TV systems. In Proc. of P2P, 2008.

[32] N. Magharei and R. Rejaie. PRIME: peer-to-peer receiver-driven mesh-
based streaming. In Proc. of INFOCOM, 2007.

[33] J. Venkataraman and P. Francis. Chunkyspread: multi-tree unstructured
peer-to-peer multicast. In Proc. of IPTPS, 2006.

[34] F. Wang, Y. Xiong, and J. Liu. mTreebone: a hybrid tree/mesh overlay
for application-layer live video multicast. In Proc. of ICDCS, 2007.

[35] F. Wang, J. Liu, and Y. Xiong. Stable Peers: existence, importance, and
application in peer-to-peer live video streaming. In Proc. of INFOCOM,
2008.

[36] J. Mol, A. Bakker, J. Pouwelse, D. Epema, and H. Sips. The design
and deployment of a bittorrent live video streaming solution. In Proc.
of ICM, 2009.

[37] Y. Liu. Delay bounds of chunk-based peer-to-peer video streaming.
TON, 2010.

[38] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: a scalable peer-to-peer lookup
protocol for Internet applications. TON, 2003.

[39] M. Zhou and J. Liu. A hybrid overlay network for video-on demand.
In Proc. of ICC, 2005.

[40] J. Jannotti, D. Gifford, K. Johnson, and M. Kaashoek. Overcast: Reliable
multicasting with an overlay network. In Proc. of OSDI, 2000.

[41] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. A case for end system
multicast. J-SAC, 2002.

[42] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High
bandwidth data dissemincation using an overlay mesh. In Proc. of SOSP,
2003.

[43] C. Liang, Y. Guo, and Y. Liu. Is random scheduling sufficient in P2P
video streaming? In Proc. of ICDCS, 2008.

[44] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and S. Khuller.
Construction of an efficient overlay multicast infrastructure for real-time
applications. In Proc. of INFOCOM, 2003.

[45] D. Ren, Y. H. Li, and S. G. Chan. On reducing mesh delay for peer-to-
peer live streaming. In Proc. of IEEE INFOCOM, 2008.

[46] M. K. Yeung and Y. Kwok. Game theoretic peer selection for resilient
peer-to-peer media streaming systems. In Proc. of ICDCS, 2008.

[47] M. Piatek, A. Krishnamurthy, A. Venkataramani, R. Yang, D. Zhang,
and A. Jaffe. Contracts: Practical contribution incentives for P2P live
streaming. In Proc. of NSDI, 2010.

[48] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Pan-
igrahy. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the World Wide Web. In Proc.
of STOC, 1997.

[49] p2psim. http://pdos.csail.mit.edu/p2psim/.
[50] C. Vassilakis and I. Stavrakakis. Minimizing node churn in peer-to-peer

streaming. Computer Communications, 2010.
[51] H. Shen, L. Zhao, Z. Li, and J. Li. A dht-aided chunk-driven overlay

for scalable and efficient peer-to-peer live streaming. In Proc. of ICPP,
2010.

[52] Z. Liu, C. Wu, B. Li, and S. Zhao. Distilling superior peers in large-scale
P2P streaming systems. In Proc. of INFOCOM, 2009.

[53] M. Bishop, S. Rao, and K. Sripanidkulchai. Considering priority in
overlay multicast protocols under heterogeneous environments. In Proc.
of IEEE INFOCOM, 2006.

[54] D. R. Cox. Regression models and life-tables. Journal of the Royal
Statistical Society, 34(2):187–220, 1972.

[55] M. J. Osborne and A. Rubinstein. A course in game theory. The MIT
Press, July 1994.

[56] X. Cheng and J. Liu. Nettube: Exploring social networks for peer-to-
peer short video sharing. In Proc. of INFOCOM, 2009.

[57] C. Huang, J. Li, and K. W. Ross. Can internet video-on-demand be
profitable? In Proc. of SIGCOMM, 2007.

[58] E. Setton, J. Noh, and B. Girod. Low latency video streaming over
peer-to-peer networks. In Proc. of ICME, 2006.

10

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Haiying Shen Haiying Shen received the BS
degree in Computer Science and Engineering
from Tongji University, China in 2000, and the
MS and Ph.D. degrees in Computer Engineering
from Wayne State University in 2004 and 2006,
respectively. She is currently an Assistant Pro-
fessor in the Department of Electrical and Com-
puter Engineering at Clemson University. Her
research interests include distributed computer
systems and computer networks, with an em-
phasis on P2P and content delivery networks,

mobile computing, wireless sensor networks, and grid and cloud com-
puting. She was the Program Co-Chair for a number of international
conferences and member of the Program Committees of many leading
conferences. She is a Microsoft Faculty Fellow of 2010 and a member
of the IEEE and ACM.

Ze Li Ze Li received the BS degree in Electron-
ics and Information Engineering from Huazhong
University of Science and Technology, China, in
2007. He is currently a Ph.D. student in the De-
partment of Electrical and Computer Engineer-
ing of Clemson University. His research interests
include distributed networks, with an emphasis
on peer-to-peer and content delivery networks.
He is a student member of IEEE.

Jin Li Jin Li is currently a Principal Researcher
managing the Multimedia Communication and
Sto9rage team at Microsoft Research, (Red-
mond, WA). He received his Ph.D. from Ts-
inghua University (Beijing, China) in 1994. After
working at USC and Sharp Labs of America,
he joined Microsoft Research in 1999. Dr. Li
has published in top conferences and journals
in a wide area, cover audio/image/video com-
pression, multimedia streaming, VoIP and video
conferencing, P2P networking, distributed stor-

age system with erasure coding and deduplication, high performance
storage system design. His invention has been integrated into many
Microsoft products, such as Microsoft Office Communicator/Lync, Live
Messenger, Live Mesh, Windows 7, Windows 8, etc.. He holds 45 issued
US patents. He is the lead TPC Chair for ICME 2011.

11

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

