
1

Leveraging Social Networks for P2P
Content-based File Sharing in Disconnected

MANETs
Kang Chen, Haiying Shen*, Member, IEEE , and Haibo Zhang

Abstract—Current peer-to-peer (P2P) file sharing methods in mobile ad hoc networks (MANETs) can be classified into three groups:
flooding-based, advertisement-based and social contact-based. The first two groups of methods can easily have high overhead and
low scalability. They are mainly developed for connected MANETs, in which end-to-end connectivity among nodes is ensured. The
third group of methods adapt to the opportunistic nature of disconnected MANETs but fail to consider the social interests (i.e.,
contents) of mobile nodes, which can be exploited to improve the file searching efficiency. In this paper, we propose a P2P content-
based file sharing system, namely SPOON, for disconnected MANETs. The system uses an interest extraction algorithm to derive a
node’s interests from its files for content-based file searching. For efficient file searching, SPOON groups common-interest nodes that
frequently meet with each other as communities. It takes advantage of node mobility by designating stable nodes, which has the most
frequent contact with community members, as community coordinators for intra-community searching, and highly-mobile nodes that visit
other communities frequently as community ambassadors for inter-community searching. An interest-oriented file searching scheme is
proposed for high file searching efficiency. Additional strategies for file prefetching, querying-completion and loop-prevention, and node
churn consideration are discussed to further enhance the file searching efficiency. We first tested our system on the GENI Orbit testbed
with a real trace and then conducted event-driven experiment with two real traces and NS2 simulation with simulated disconnected and
connected MANET scenario. The test results show that our system significantly lowers transmission cost and improves file searching
success rate compared to current methods.

Index Terms—MANETs, Content-based file sharing, Social networks

�

1 INTRODUCTION

In the past few years, personal mobile devices such as
laptops, PDAs and smart phones have been more and
more popular. Indeed, the number of smart-phone users
increased by 118 million across the world in 2007 [1],
and is expected to reach around 300 million by 2013 [2].
The incredibly rapid growth of mobile users is leading
to a promising future, in which they can freely share files
between each other whenever and wherever. The num-
ber of mobile searching users (through smart phones,
feature phones, tablets, etc.) is estimated to reach 901.1
million in 2013 [3]. Currently, mobile users interact with
each other and share files via an infrastructure formed
by geographically distributed base stations. However,
users may find themselves in an area without wireless
service (e.g., mountain areas and rural areas). Moreover,
users may hope to reduce the cost on the expensive
infrastructure network data.

The P2P file sharing model makes large-scale networks
a blessing instead of a curse, in which nodes share files
directly with each other without a centralized server.
Wired P2P file sharing systems (e.g., BitTorrent [4] and
Kazaa [5]) have already become a popular and success-
ful paradigm for file sharing among millions of users.
The successful deployment of P2P file sharing systems
and the aforementioned impediments to file sharing in

• * Corresponding Author. Email: shenh@clemson.edu.
• K. Chen and H. Shen are with the Department of Electrical and Computer

Engineering, Clemson University, Clemson, South Carolina, 29634.
• Haibo Zhang is with the Cerner Cooperation.

MANETs make the P2P file sharing over MANETs (P2P
MANETs in short) a promising complement to current
infrastructure model to realize pervasive file sharing for
mobile users. As the mobile digital devices are carried by
people that usually belong to certain social relationships,
in this paper, we focus on the P2P file sharing in a
disconnected MANET community consisting of mobile
users with social network properties. In such a file
sharing system, nodes meet and exchange requests and
files in the format of text, short videos and voice clips in
different interest categories. A typical scenario is a course
material (e.g., course slides, review sheets, assignments)
sharing system in a school campus. Such a scenario en-
sures for the most that nodes sharing the same interests
(i.e., math) carry corresponding files (i.e., math files) and
meet regularly (i.e., attending math classes).

In MANETs consisting of digital devices, nodes are
constantly moving, forming disconnected MANETs with
opportunistic node encountering. Such transient net-
work connections have posed a challenge for the de-
velopment of P2P MANETs. Traditional methods sup-
porting P2P MANETs are either flooding-based [6]–[9]
or advertisement-based [10]–[12]. The former methods
rely on flooding for file searching. However, they lead to
high overhead in broadcast. In the latter methods, nodes
advertise their available files, build content tables, and
forward files according to these tables. But they have
low search efficiency because of expired routes in the
content tables caused by transient network connections.
Also, advertising can lead to high overhead.

Some researchers [13]–[17] further proposed to utilize
cache/replication to enhance data dissemination/access
efficiency in disconnected MANETs. However, nodes in

Digital Object Indentifier 10.1109/TMC.2012.239 1536-1233/12/$26.00 © 2012 IEEE

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

these methods passively wait for contents that they are
interested in rather than actively search files, which may
lead to a high search delay.

Recently, social networks are exploited to facili-
tate content dissemination/publishing in disconnected
MANETs [18]–[21]. These methods exploit below prop-
erty to improve the efficiency of message forwarding.

• (P1) nodes (i.e., people) usually exhibit certain
movement patterns (e.g., local gathering, diverse
centralities and skewed visiting preferences).

However, these methods are only for the dissemination
of information to subscribers. They are not specifically
designed for file searching. Also, they fail to take into
account other properties of social networks revealed by
recent studies to facilitate content sharing:

• (P2) Users usually have a few file interests that they
visit frequently [22] and a user’s file visit pattern
follows a power-law distribution [23].

• (P3) Users with common interests tend to meet with
each other more often than with others [24].

By leveraging these properties of social networks,
we propose Social network based P2P cOntent-based
file sharing in disconnected mObile ad-hoc Networks
(SPOON) with four components as shown in Figure 1.
(1) Based on P2, we propose an interest extraction al-

gorithm to derive a node’s interests from its files.
The interest facilitates queries in content-based file
sharing and other components of SPOON.

(2) We refer to a collective of nodes that share common
interests and meet frequently as a community. Ac-
cording to P3, a node has high probability to find
interested files in its community. If this fails, based
on P1, the node can rely on nodes that frequently
travel to other communities for file searching. Thus,
we propose the community construction algorithm to
build communities to enable efficient file retrieval.

(3) According to P1, we propose a node role assignment
algorithm that takes advantage of node mobility for
efficient file searching. The algorithm designates a
stable node that has the tightest connections with
others in its community as the community coordi-
nator to guide intra-community searching. For each
known foreign community, a node that frequently
travels to it is designated as the community ambas-
sador for inter-community searching.

(4) We propose an interest-oriented file searching and re-
trieval scheme that utilizes an interest-oriented routing
algorithm (IRA) and above three components. Based
on P3, IRA selects forwarding node by considering
the probability of meeting keywords of interests
rather than nodes. The file searching scheme has
two phases: intra- and inter-community searching.
In the former, a node first queries nearby nodes,
then relies on coordinator to search the entire home
community. If it fails, the inter-community searching
uses an ambassador to send the query to a matched
foreign community. A discovered file is sent back
through the search path and IRA if the path breaks.

SPOON is novel in that it leverages social network
properties of both node interest and movement pat-

Interest
Extraction

Exploiting Node
Stability/Mobility

Community
Construction

Interest
Oriented Routing

Social network based P2P cOntent-based file sharing in mobile ad hOc Networks (SPOON)

Fig. 1. Components of SPOON.

tern. First, it classifies common-interest and frequently-
encountered nodes into social communities. Second, it
considers the frequency at which a node meets different
interests rather than different nodes in file searching.
Third, it chooses stable nodes in a community as coor-
dinators and highly mobile nodes that travel frequently
to foreign communities as ambassadors. Such a structure
ensures that a query can be forwarded to the commu-
nity of the queried file quickly. SPOON also incorpo-
rates additional strategies for file prefetching, querying-
completion and loop-prevention, and node churn con-
sideration to further enhance file searching efficiency.

The rest of the paper is arranged as follows. Sec-
tion 2 provides an overview of related works. Section 3
presents the design of the components of SPOON. In
Section 4, the performance of SPOON is evaluated in
comparison with other systems. The last section presents
concluding remarks and future work.

2 RELATED WORK

2.1 P2P File Sharing in MANETs
We first introduce the P2P file sharing algorithms de-
signed in MANETs.

2.1.1 Flooding-based Methods
In flooding-based methods, 7DS [6] is one of the first ap-
proaches to port P2P technology to mobile environments.
It exploits the mobility of nodes within a geographic area
to disseminate web content among neighbors. Passive
Distributed Indexing (PDI) [8] is a general-purpose dis-
tributed file searching algorithm. It uses local broadcast-
ing for content searching and sets up content indexes on
nodes along the reply path to guide subsequent search-
ing. Klemm et al. [7] proposed a special-purpose on-
demand file searching and transferring algorithm based
on an application layer overlay network. The algorithm
transparently aggregates query results from other peers
to eliminate redundant routing paths. Anna Hayes et
al. [9] extended the Gnutella system to mobile environ-
ments and proposed the use of a set of keywords to
represent user interests. However, these flooding-based
methods produce high overhead due to broadcasting.

2.1.2 Advertisement-based Methods
Tchakarov and Vaidya [10] proposed GCLP for efficient
content discovery in location-aware ad hoc networks. It
disseminates contents and requests in crossed directions
to ensure their encountering. P2PSI [11] combines both
advertisement (push) and discovery (pull) processes.
It adopts the idea of swarm intelligence by regard-
ing shared files as food sources and routing tables as
pheromone. Each file holder regularly broadcasts an

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

advertisement message to inform surrounding nodes
about its files. The discovery process locates the desired
file and also leaves pheromone to help subsequent search
requests. Repantis and Kalogeraki [12] proposed a file
sharing mechanism in which nodes use the Bloom fil-
ter to build content synopses of their data and adap-
tively disseminate them to other nodes to guide queries.
Though the advertisement-based methods reduce the
overhead of flooding-based methods, they still generate
high overhead for advertising and cannot guarantee the
success of file searching due to node mobility.

2.2 P2P File Sharing in Disconnected MANETs
The disconnected MANETs are featured by sparse node
density and intermittent node connection, which makes
previously introduced methods infeasible in such net-
works. We then further introduce two categories of P2P
file sharing methods for disconnected MANETs.
2.2.1 Cache/Replication-based Methods
Huang et al. [13] proposed a method that considers
multiple factors (e.g., node mobility, file popularity, and
file server topology) in creating file replicas in file servers
to realize optimal file availability in content distribu-
tion community. Gao et al. [14] proposed cooperative
caching in disruption tolerant networks. It replicas each
file to network central locations, which are frequently
visited by nodes in the system, to ensure efficient data
access. QCR [15] uses file caching to realize effective
multimedia content dissemination in opportunistic net-
works. In addition to node mobility and file popularity,
it also considers the impatience of users when creating
replicas. Lenders et al. [16] investigated wireless ad hoc
podcasting, in which nodes store contents from their
neighbors that are interested by themselves or the nodes
they have met. Chen et al. [17] deduced the optimal file
replication strategy in MANETs by further considering
nodes’ ability to meet nodes as a resource since replicas
on these nodes can meet more requesters and thus have
higher availability. Though these methods improve file
availability, nodes in these methods passively wait for
contents they are interested in rather than actively search
files, which may lead to search delay.
2.2.2 Social Network-based Methods
Recently, social networks have been utilized in content
publishing/dissemination algorithms [18]–[21] in oppor-
tunistic networks. MOPS [18] provides content-based
sub/pub service by utilizing the long-term neighbor-
ing relationship between nodes. It groups nodes with
frequent contacts and selects nodes that connect differ-
ent groups as brokers, which are responsible for inter-
community communication. Then contents and subscrip-
tions are relayed through brokers to reach different
communities. MOPS only considers node mobility while
SPOON is more advantageous by considering both node
interest and mobility as described previously. Moreover,
unlike MOPS that only depends on the meeting of bro-
kers for inter-community search, SPOON enhances the
efficiency of inter-community search by (1) assigning one
ambassador for each known foreign community, which
helps to forward a query directly to the destination

community, and (2) utilizing stable nodes (coordinator)
to receive messages from ambassadors.

The work in [25] is a similar to MOPS. It selects
centrality nodes as brokers and builds them into an
overlay, in which brokers use unicast or direct proto-
cols (e.g., WiFi access points) for communication. Then
node publications are first transferred to the broker
node responsible for the node’s community and then
propagated to all brokers to find matched subscribers.
SocialCast [19] calculates a node’s utility value on an
interest based on the node’s mobility and co-location
with the nodes subscribed to the interest. It publishes
contents on an interest to subscribers by forwarding
the contents to nodes with the highest utilities on the
interest. ContentPlace [21] defines social relationship
based communities and a set of content caching policies.
Specifically, each node calculates a utility value of pub-
lished data it has met based on the data’s destination
and its connected communities, and caches the data
with the top highest utilities. However, above methods
mainly focus on disseminating publications to matched
subscribers. Therefore, these methods cannot be applied
to file searching directly.

3 THE DESIGN OF SPOON
In this section, we fist present trace data analysis to

verify the social network properties in a real MANET. A
P2P file sharing system usually consists of 1) a method
to represent contents, 2) a node management structure
and 3) a file searching method based on 1) and 2).
Accordingly, SPOON has three main components: 1)
interest extraction, 2) structure construction including
community structure and node role assignment, and 3)
interest-oriented file searching and retrieval based on 1)
and 2). We then present each component of SPOON.

3.1 Trace Data Analysis
In order to validate the correlation between node in-

terests and their contact frequencies, we analyzed the
trace from the Haggle project [26], which contains the
encountering records among 98 mobile devices carried
by scholars attending the Infocom’06 conference. Some
participants completed questionnaires, indicating the
conference tracks that they are interested in.

We use Tt to denote the time length of the trace, and
define the total meeting time of two nodes as the sum
of the time length of each encountering. By regarding a
community as a group of nodes in which each node has
total meeting time larger than Tt/4 with at least half of
all nodes in the community, we detected 8 communities
from the trace. We then calculated each node’s average
number of shared interested tracks with other members
in its own community Ci (0 ≤ i < 8), and with nodes in
all other communities, respectively. Finally, the average
values of all nodes in each community are calculated and
shown in Table 1.

From the table, we see that for each community, nodes
have higher average number of shared interested tracks
with same community nodes than with nodes from
other communities. Note that we used a relatively loose
community creation requirement that each node only

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

needs to have a high contact frequency with half of
nodes in a community. With a stricter requirement and a
more sophisticated clustering method, nodes in the same
community would share more interested tracks. Above
traces verify the previously observed social properties
and support the basis for SPOON that nodes with com-
mon interests tend to meet frequently.

TABLE 1
Average number of shared interested tracks.

Community Ci Ave. # of shared interests Ave. # of shared interests
with nodes in Ci with nodes not in Ci

1 1.50 0.99
2 0.83 0.69
3 1.17 0.79
4 1 0.39
5 1.93 0.94
6 0.33 0.21
7 1.1 0.71
8 1 0.33

3.2 Interest Extraction
Without loss of generality, we assume that node contents
can be classified to different interest categories. It was
found that users usually have a few file categories that
they query for files frequently in a file sharing system.
Specifically, for the majority of users, 80% of their shared
files fall into only 20% of total file categories [22]. Like
other file sharing systems [27], [28], we consider that
a node’s stored files can reflect its file interests. Thus,
SPOON derives the interests of a node from its files.
Table 2 lists the notations used in this section.

TABLE 2
Notations in interest extraction

Notation Meaning
fi and Gu the i-th file and u-th interest group in a node

witk and w̄utk the weight of keyword tk in fi and in Gu

fui the i-th file in Gu

vi the file vector of fi
v̄u the group vector of Gu

ṽN the node vector of node N

To derive its interests, a node infers keywords from
each of its files using the document clustering technique
[29]. Specifically, a node derives a file vector for each
of its files from its metadata. For file fi, we denote its
file vector by vi = (t1, wit1 ; t2, wit2 ; t3, wit3 ; ...; tm, witm),
in which tk and wik (1 ≤ k ≤ m) denote a keyword
and its weight that represents the importance of the
keyword in describing the file. We adopt the method in
the text retrieval literature [30] to calculate the weight of
a keyword, say tk, in a file, say fi, with below formula.

witk = 1 + log(ntk), (1)
where ntk refers to the number of occurrences of key-

word tk. Suppose there are m keywords in the file, we
further normalize the weights by:

witk = witk/
∑

m
q=1witq . (2)

Then, in order to calculate the similarity of two
file vectors, say v1=(t1, w1t1 ; t2, w1t2 , t4, w1t4) and
v2=(t1, w2t1 ; t3, w2t3 ; t5, w2t5), we first generate their
common vector, which consists of their common
keywords and corresponding weights in their own
vectors. For example, the common vector of v1 and v2 is

(t1, w1t1) from v1 and (t1, w2t1) from v2. We then use the
following formula to calculate the similarity between v1
and v2:

sim(v1, v2) =

∑m′

k=1 w1k ∗ w2k√∑m′
k=1 w

2
1k

∗
√∑m′

k=1 w
2
2k

, (3)

where m′ is the total number of common keywords and
w1k and w2k represent the weights of the kth common
keyword of the two vectors, respectively.

After retrieving the file vector of each of its files, a
node classifies its files to derive its interest groups. It cre-
ates a file similarity matrix A = sim(vr, vs) (1≤r & s≤m̃),
where m̃ is the number of files the node has. Since the
similarities among files are known, we use the AGNES
method [31] to cluster the files into interest groups in a
hierarchical manner. Each file form an individual group
initially. Then, two most similar file groups are merged
in each step. This process repeats until the similarity
between any two groups is below a threshold. The
similarity between two groups is calculated based on
their interest vectors introduced below. Consequently, a
file is classified to only one interest group and there is
no overlap among groups.

Each group has a number of files. Suppose there are g
files in interest group Gu, denoted by (fu1, fu2, . . . , fug).
The average weight of a keyword, say tk, in the group
is calculated by w̄utk =

∑g
i=1 w

fui

tk
/g, where wfui

tk
denotes

the weight of tk in fui. We also pre-define a threshold for
the average weight, denoted by Tw̄. We form an interest
vector with keywords having weights larger than Tw̄ and
use it to represent interest group Gu :

v̄u = (t1, w̄ut1 ; t2, w̄ut2 ; t3, w̄ut3 ; ...; tn′ , w̄tun′). (4)

where n′ is the total number of keywords in v̄u. Thus,
each node has a number of interest vectors to represent
its interests. The weight of Gu, denoted W (Gu), is the
portion of the group’s files in all files of the node. We
then generate a node vector (ṽN) to describe a node’s
interests. The keywords of ṽN is the keyword union of all
interest group vectors, and the weight of each keyword
is the sum of its weights in different interest groups it
belongs to normalized by the weights of these groups.

3.3 Community Construction
Social network theory reveals that people with the same
interest tend to meet frequently [24]. By exploiting this
property, SPOON classifies nodes with common interests
and frequent contacts into a community to facilitates
interest based file searching, as introduced latter in Sec-
tion 3.5. Nodes with multiple interests belong to multiple
communities. The community construction can easily be
conducted in a centralized manner by collecting node in-
terests and contact frequencies from all nodes to a central
node. However, considering that the proposed system is
for distributed disconnected MANETs, in which timely
information collection and distribution is non-trivial, we
further propose a decentralized method to ensure the
adaptivity of SPOON in real environment.

When two nodes, say N1 and N2, meet, they consider
two cases for community creation: (1) they do not belong

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

to any communities, and (2) at least one of them is
already a member of a community. In the first case, they
calculate the similarity between each pair of their interest
vectors using Formula (3). A pair of interest groups,
say Gi and Gj with interest vectors v̄i and v̄j , is called
matched interest group when W (Gi)W (Gj)sim(v̄i, v̄j) ≥
TG, where TG is a predefined threshold. The purpose of
taking into account the weight of each interest group is
to eliminate the noise of interest groups with a small
number of files and achieve better interest clustering. If
N1 and N2 have at least one pair of matched interest
group, and their contact frequency, F (N1, N2), is higher
than the top h1% highest encountering frequencies in
either node, the two nodes form a new community.
The keywords in their matched interest groups and
corresponding weights constitute the community vector
(vC) of the community.

In the second case, suppose N2 is already a member
of community C, N1 calculates W (Gi)sim(v̄i, vC) for
each of its interest groups, say Gi, to decide whether it
should join in community C. If the similarity value for
one interest group is larger than TG, and N1’s contact
frequency with community C is higher than the top
h2% of N1’s contact frequencies with all nodes it has
met, N1 is granted the membership to community C.
The contact frequency with community C refers to the
accumulated contact frequency with nodes in C. It is
updated upon each encountering with a node in C. This
means that Ni contacts members in community C fre-
quently enough to guarantee connections. N1 then copies
the community vector and other community information
from N2. Also, when a node meets the community co-
ordinator, it reports its files to the coordinator to update
its file index and community vector. The coordinator
then forwards the updated community information to
community members when meets them.

With above community construction method, nodes
with common interests and frequent contacts gradually
form a community. However, nodes that appear later
have more stringent community acceptance requirement.
Its contact frequency to the community needs to be
higher than that of more nodes, and its interest vector is
compared with a longer community vector. Also, nodes
in a group admit new members distributively. As a
result, nodes in a group may not have very similar
interests or high contact frequencies. We propose two
solutions to alleviate this problem. First, we set an initial
period for newly joined nodes in which they accumulate
contact frequencies with others. Then, when a node starts
to join in communities, its meeting frequencies with oth-
ers are relatively stable, which provides more accurate
measurement for determining the communities to join
in. Second, we use group member pruning. Existing
community members can have a second round voting
to confirm the eligibility of new community members.
Specifically, if N2 in community C finds a node, say N1,
satisfies the requirements of C, it awards N1 a potential
membership for C. Then, other community members in
C further checks N1’s eligibility to join in C. That is,
every time when N1 meets an existing member of C,

say N3, N3 checks whether they have at least one pair
of matched interest group and whether their contact
frequency is higher than the top h1% of N1’s highest
contact frequencies. If yes, N3 approves the membership
of N1. When an existing community member of C notices
that N1 receives the grants from half of the community
members, it grants N1 the group membership.

Another issue is that node contact frequencies and
interests may change over time. Since the community
construction algorithm is continuous running, a node
can detect that it fails to satisfy the requirement of
current community. It then withdraws from the current
community, notifies connected nodes in it, and search for
a new community to join in.

The values of the thresholds used in the commu-
nity construction process (TG, h1, h2) are determined
by many factors such as number of nodes, number of
interests and types of applications. Generally, TG decides
the interest tightness among nodes in each community.
A larger TG leads to higher similarity between interests
of nodes in one community, but also generates more
communities. Therefore, TG should be configured based
on application scenario. If the application has clear file
categories (i.e., course file sharing), we can set a large TG

to gather files in the same category. Otherwise, a medium
TG should be set to balance the interest closeness and
the number of communities. h1 and h2 determines the
tightness of a community. The smaller h1 and h2 are, the
tighter the community is. Therefore, we set them to 30 by
default in experiment to ensure frequent contact among
community members. These values were set based on
empirical experiences. We leave further investigation on
appropriate values as future work.

3.4 Node Role Assignment

A previous study has shown that in a social network
consisting of mobile users, only a part of nodes have
high degrees [20]. We can often find an important or
popular person who coordinates members in a com-
munity in our daily life. For example, the college dean
coordinates different departments in the college, and the
department head connects to faculty members in the
department. Thus, we take advantage of different types
of node mobility for file sharing.

We define community coordinator and ambassador
nodes in the view of a social network. A community
coordinator is an important and popular node in the
community. It keeps indexes of all files in its community.
Each community has one ambassador for each known
foreign community, which serves as the bridge to the
community. The coordinator in a community maintains
the vC of foreign communities and corresponding am-
bassadors in order to map queries to ambassadors for
inter-community searching. The number of ambassadors
and coordinators can be adjusted based on the network
size and workload in order to avoid overloading these
nodes. Since ambassadors and coordinators take more
responsibility, we can also adopt role rotation and extra
incentives for fairness consideration. Due to page limit,
we leave this as our future work.

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

3.4.1 Community Coordinator Node Selection
We define a stable node that has tight contact frequency
with other community members as the community co-
ordinator. In network analysis, centrality is often used
to determine the relative importance of a vertex within
the network. We then adopt the improved degree cen-
trality [32], which assigns weight to each link based on
the contact frequency, for coordinator selection since it
reflects the tightness of a node with other community
members. In the initial phase of coordinator discovery,
each node, say node Ni, in a community collects contact
information from its neighbors in the same community
and then calculates its degree centrality by

D(pi) =
N∑

j=1,j �=i

wij , (5)

where wij is the link weight between Ni and Nj and
N is the number of neighbors in the same community.
In order to reflect the property that the coordinator has
the most connections with all community members, wij

equals 1 if the contact frequency between Ni and Nj is
larger than a threshold and 0 otherwise. Though such
a method cannot ensure its connection to every com-
munity member, it ensures that the coordinator has the
tightest overall connection to all community members.

Each node periodically checks its degree centrality and
broadcasts such information to all community members.
If a node receives no larger centrality score than its own
centrality for three consecutive periods, it claims itself
as the potential coordinator. The potential coordinator
would confirm its status as the coordinator when meets
the previous one. If it is confirmed, it then requests the
community information from the old coordinator. Also,
when the new coordinator meets community members,
they exchange information for group vector update and
ambassador selection, as well as request routing.

3.4.2 Community Ambassador Node Selection
An ambassador is used to bridge the coordinator in its
home community and a foreign community. We use the
product of a node’s contact frequency with its coordina-
tor and that with the foreign community for ambassador
selection. Each node i calculates its utility value for
foreign community k by

Uik = F (Ni, Ck) ∗ F (Ni, Nc) (6)

where Ck represents foreign community k, Nc is the
coordinator in its home community, and F (·) denotes
the meeting frequency. Each node reports its utility
values for foreign communities it has met to the coor-
dinator in its home community. Then, the community
coordinator chooses one ambassador for each known
foreign community. Also, the node that has the highest
overall contact frequency with all foreign communities
is selected as the default ambassador. In case that a
request fails to find a matched ambassador, the default
ambassador can carry the request and seek for potential
forwarders in foreign community. If an ambassador loses
the connection with the coordinator for a certain period

DR

Community C1

Data Holder
Requester

Community C2

A1
A1

A2

A2

C1

C2

Fig. 2. File searching in SPOON.

of time, a new ambassador that satisfies above require-
ments is selected. This arrangement facilitates interest-
oriented file searching by enabling a coordinator to send
file requests to matched foreign communities quickly.

In above design, ambassadors are the key to connect
different communities efficiently. Coordinators achieves
balance between the centralized and distributed search-
ing by checking whether a community can satisfy
a query quickly, which is important in disconnected
MANETs. Also, though broadcast is used in coordinator
selection, the cost is limited because 1) it is only among
community members, and 2) we can set a long inter-
broadcast period since nodes usually have stable degree
centrality. To select ambassadors, each node just reports
its utility values to the coordinator, which can be pig-
gybacked on the beacon messages. Therefore, this step
does not incur significant extra costs.

3.5 Interest-oriented File Searching and Retrieval
In social networks, people usually have a few file in-
terests [22] and their file visit pattern generally follows
a certain distribution [23]. Also, people with the same
interest tend to contact each other frequently [24]. Thus,
interests can be a good guidance for file searching. Con-
sidering the relation among node movement pattern [33],
individuals’ common interests, and their contact fre-
quencies, we can route file requests to file holders based
on nodes’ frequencies of meeting different interests.

Then, the interest-oriented file searching scheme
has two steps: intra-community and inter-community
searching. A node first searches files in its home commu-
nity. If the coordinator finds that the home community
cannot satisfy a request, it launches the inter-community
searching and forwards the request to an ambassador
that will travel to the foreign community that matches
the request’s interest. A request is deleted when its TTL
(Time To Live) expires. During the search, a node sends
a message to another node using the interest-oriented
routing algorithm (IRA), in which a message is always
forwarded to the node that is likely to hold or to meet
the queried keywords. The retrieved file is routed along
the search path or through IRA if the route expires.

3.5.1 Interest-oriented Routing Algorithm
In SPOON, every node maintains a history vector

that records its frequency of encountering interest key-
words. The history vector is in the form of vH =
(t0, wh0; t1, wh1; t2, wh2; ...; tn, whn), where whi is the ag-
gregated times of encountering keyword ti. whi decays

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

periodically as time passes by whi = γwhi(γ < 1). When
two nodes meet, they exchange their node vectors and
update history vectors. The history vector is used to
evaluate the probability of meeting the queried content.

The destination of a request is represented by a vector
vdest = (t0, w0; t1, w1; t2, w2; ...; tn, wn). In IRA, a node
uses the fitness score F to evaluate its neighbors’ prob-
abilities to be or to meet the file holder. The fitness F
of neighbor i is measured by F = αsim(vdest, ṽi) + (1−
α)sim(vdest, vHi), where ṽi and vHi are the node vector
and history vector of node i, respectively. The factor of
sim(vdest, ṽi) aims to find the node sharing the most
similar interests with the destination, and the factor of
sim(vdest, vHi) aims to find a node that is very likely
to meet the destination in its movement. α is used to
control the weight of these two factors. In IRA, when a
node receives a message, if its neighbor with the highest
F has higher F than itself, it forwards the message to the
neighbor. This process repeats until the message arrives
at the destination. Coordinators do not use IRA but
send messages to its community members when meeting
them because they usually have tight connections with
all community members.

3.5.2 Intra-Community File Searching and Retrieval

The query message is represented by a query vector rep-
resented as: vQ = (t0, w0; t1, w1; t2, w2; ...; tn, wn). Each
query is associated with a counter (count) indicating the
number of hops it can travel. The count is decremented
by 1 after each forwarding. Since the query is initiated
by users, term weights in vQ are constant values. In
the intra-community searching, the destination that a
query is sent to is represented by a combination of the
vQ and the node vector of the requester’s community
coordinator (vNC

), represented by:

vdest = λvQ + (1− λ)vNC
, (7)

In the first step, the requester calculates the similarity
between the query vector and the community vector of the
community it belongs to. If Sim(vQ, vC) < Ts, the query
is sent to the coordinator of the community directly (i.e.,
λ equals 0). Otherwise, λ equals 1 when the counter
(count) is larger than 0 and 0 otherwise. This means
that a requester first searches nearby nodes within count
hops, and then resorts to its community coordinator.
Specifically, the requester sends out a query to top F
neighbors with the highest π. Having π > 1 copies of
a request can enhance the efficiency of file searching.
We call this strategy multi-copy forwarding. In order to
limit the number of copies for each request, we set
π = min{k|∏k

i=0 Fi > β}, where Fi is the fitness of
neighbor i and β is the minimum delivery guarantee
factor. The hop counter of a query is decreased by one
after each forwarding. If the file is not found when
count = 0, it is forwarded to the community coordinator
(λ = 0). When a node receives multiple copies of query,
it only processes the first one.

When node Nj receives a request, if vdest = vQ and
sim(vdest, vNj) reaches the similarity threshold specified
by the requester, it first tries to send the satisfied files

back to the requester along the original path. If a for-
warder on the path is not available due to node mobility,
IRA is used to forward the file. Otherwise, Nj uses IRA
to further forward the query. If vdest = vNc

and Nj is not
the coordinator Nc, Nj uses IRA to forward the request
to Nc. After Nc receives the query, it checks its file
indexes. If the indexes have files satisfying the request,
the coordinator sends the request to the file holder
when meeting it, which then sends the file back to the
requester. Otherwise, Nc initiates the inter-community
file searching. Algorithm 1 shows the pseudocode of the
intra-community searching algorithm.

——————————————————————————————
Algorithm 1:Pseudo-code of intra-community file searching for
query Q conducted by node Ni.
——————————————————————————————
Procedure intraSearchForQ ()

if a neighbor nb of Ni matches query Q then
Ni.sendQeuryTo(Q, nb)

else if Q.src = Ni then
if Sim(vQ, vC) < Ts then

Q.vdest ← vNC
Ni.sendThroughIRATo(Q, NC)

else
Q.vdest ← vQ
Ni.rankNbByFitness()
overallF ← 0
for each neighbor nb of node Ni do

overallF gets overallF + F (Q,nb)
Ni.sendQeuryTo(Q, nb)
if overallF > β then

break
else

if Q.hops < MaxHopthen
Q.vdest ← vQ
Ni.rankNbByFitNess()
nb ← the neighbor with maximal fitness
Ni.sendQeuryTo(Q, nb)

else
Q.vdest ← vNC
Ni.sendThroughIRATo(Q, NC)

——————————————————————————————

3.5.3 Inter-Community File Searching and Retrieval
In the inter-community searching algorithm, a coordina-

tor maps a request to the foreign community that is most
likely to contain the queried file. Similar to the intra-
community search step, the coordinator also uses the
multi-copy forwarding strategy, i.e., it sends out a query
to Ω ambassadors having the highest similarity with the
query in order to enhance the efficiency of the forward-
ing. We limit the number of copies for each request by
letting Ω = min{k|∏k

i=0 sim(vQ, vC) > α}, where α is
the minimum delivery guarantee factor. Ambassadors
then forward the request to the foreign community.

Upon receiving the request, the coordinator in the
foreign community checks its file index to see if its
community has the file. If not, the coordinator repeats
the inter-community file searching by looking up its am-
bassadors to check for further forwarding opportunities.
If the file exists, the coordinator asks for the file from the
file holder when meeting it and sends the file back to the
requester’s community through the corresponding am-
bassador. The coordinator of the requester’s community
will further forward the file to the requester.

Figure 2 depicts the process of file searching, in which
a requester (node R) in community C1 generates a file

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

request. Since its neighbors within count hops don’t have
the file, the request is then forwarded to the community
coordinator NC1. NC1 checks the community file indexes
but still can’t find the file. It then asks the community
ambassador NA1 to forward the request to the foreign
community matching the queried file. Using the same
way as NC1, the community coordinator NC2 finds the
file and sends it back to the requester’s community
via ambassador NA2. The file is first sent to NC1, and
then forwarded to the requester. Algorithm 2 shows the
pseudocode of the inter-community searching algorithm.

——————————————————————————————
Algorithm 2:Pseudocode of inter-community file searching for
query Q conducted by node Ni.
——————————————————————————————
Procedure interSearchForQ ()

if Ni is a coordinator then
bContain ← Ni.checkContainFile(Q)
if bContain

Ni.sendQeuryToDes(Q)
else

Ni.rankAmByMatch()
overallS ← 0
for each ambassador NA of Ni’s community do

n.sendQeuryTo(q, NA)
overallS ← overallS + Sim(q.VQ, NA.VC)
if overallS > α

break
if Ni is an ambassador then

when Ni meets another node Nj
if Nj .homeCommunity = Ni.foreighCommunity then

Ni.sendQeuryTo(Q, Nj)
Nj .sendThroughIRATo(Q, NC)

——————————————————————————————

3.6 Information Exchange among Nodes
We summarize the information exchanged among nodes
in SPOON. In the community construction phase, two
encountered nodes exchange their interest vectors and
community vectors, if any, for community construction.
In the role assignment phase, nodes broadcast their de-
gree centrality within their communities for coordinator
selection. When the coordinator is selected, the coordina-
tor ID is also broadcasted to all nodes in the community.
Then, each node reports its contact frequencies with
foreign communities to the coordinator for ambassador
selection. Besides, when a node meets a coordinator of its
community, the node also sends its updated node vector
to the coordinator to update the community vector and
retrieves the updated community vector from the coordi-
nator. When an ambassador meets the coordinator of its
community, it reports the community vectors of foreign
communities to the coordinator. After above information
exchange, two encountered nodes exchange their node
vectors and history vectors for packet routing. Each
node checks packets in it sequentially to decide which
packets should be forwarded to the other node based
on the file searching algorithm introduced in Section 3.5.
Further, when network turns to be stable, the frequency
of information exchange for community construction
and node role assignment can be reduced to save costs.

3.7 Intelligent File Prefetching
Ambassadors in SPOON can meet nodes holding dif-

ferent files since they usually travel between different

communities frequently. Taking advantage of this fea-
ture, an ambassador can intelligently prefetch popular
files outside of its home community. Recall that a query
in a local community for a file residing in a remote
community are forwarded through the coordinator of
the local community. Thus, each coordinator keeps track
of the frequency of local queries for remote files and
provides the information of popular remote files to each
ambassador in its community upon encountering it.
When a community ambassador finds that its foreign
community neighbors have popular remote files that are
frequently requested by its home community members,
it stores the files on its memory. The prefetched files
can directly serve potential requests in the ambassador’s
home community, thus reducing the file searching delay.

3.8 Querying-Completion and Loop-Prevention
Given a file query, there may exist a number of matching
files in the system. A node can associate a parameter
Smax with its query to specify the number of files that
it wishes to find. A challenge we need to handle is
to ensure that the querying process stops when Smax

matching files are discovered when multi-copy forward-
ing is used. To solve this problem, we let a query carry
Smax when it is generated. When a query finds a file
that matches the query and is not discovered before, it
decreases its S by 1. Also, if this query is replicated to
another node, S is evenly split to the two nodes. A query
stops searching files when its S equals 0.

When a query needs to find more than one file, it
is likely that IRA would forward a query to the same
node repeatedly. To avoid this phenomenon, SPOON
incorporates two strategies. First, the query holder in-
serts its ID to the query before forwarding the query
to the next node. Second, a node records the queries it
has received within a certain period of time. The former
method avoids sending a packet to nodes it has visited
before while the latter method prevents sending different
replicas of the same query to the same node. Specifically,
when a node, say Ni, needs to forward a query to a
newly met node Nj based on IRA, Ni checks whether
the query’s record of traversed nodes contains Nj . If
yes, Ni does not forward the query to Nj . Also, when a
node receives a query, if the query exists in its record of
received queries, the node sends the query back to the
sender. These two strategies effectively avoid searching
loops by simply preventing a node from forwarding the
same query to nodes that have received the query before.

3.9 Node Churn Consideration
In SPOON, when a node joins in the system, it first

finds the communities it belongs to and learns the IDs
of community coordinators, and then reports its files
and utility values to the community coordinator when
encountering it. This enables the coordinator to maintain
updated information of the community members.

A node may leave the system voluntarily when users
manually stop the SPOON application on their devices.
In this case, a leaving node informs its community coor-
dinator about its departure through IRA. If the leaving

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

node is an ambassador, the coordinator then chooses a
new ambassador. If the leaving node is a coordinator, it
uses broadcast to notify other community members to
select a new coordinator.

A node may also leave the system abruptly due to
various reasons. Simply relying on the periodical beacon
message, a node cannot tell whether a neighbor is left
or is just isolated from itself, which is a usual case in
MANETs. To handle this problem, each node records the
timestamps when it meets other nodes, and sends it to
the coordinator through IRA. The coordinator receives
this information and updates the most recent timestamp
of each node seen by other nodes. If the coordinator
finds that a node’s timestamp is more than Tx seconds
ago, it considers this node as a departed node. Similarly,
normal nodes in a community also maintain and update
the timestamp of the coordinator to determine whether
it is still alive. A node piggybacks the coordinator de-
parture information on the beacon messages. Then, its
nearby nodes can know whether the coordinator has left.
Note that a node can know the number of community
members from the coordinator. When a node finds that
more than half of community members have found that
the coordinator has left, it broadcasts a coordinator re-
election message to select a new coordinator using the
same method explained in Section 3.4.1.

4 PERFORMANCE EVALUATION
We evaluated the performance of SPOON in comparison
with MOPS [18], PDI+DIS [8], [12], CacheDTN [14],
PodNet [16], and Epidemic [34]. MOPS is a social net-
work based content service system. It forms nodes with
frequent contacts into a community and selects nodes
with frequent contacts with other communities as bro-
kers for inter-community communication. PDI+DIS is a
combination of PDI [8] and an advertisement-based DIS-
semination method (DIS) [12]. PDI provides distributed
search service through local broadcasting (3 hops), and
builds content tables in nodes along the response path,
while DIS let each node disseminate its contents to its
neighbors to create content tables. CacheDTN replicate
files to network centers in decreasing order of their
overall popularity. In PodNet, nodes cache files intereted
by them and nodes they have met. We adopted the
“Most Solicited” file solicitation strategy in PodNet. We
doubled the memory on each node in CacheDTN and
PodNet for replicas. In Epidemic, when two nodes meet
each other, they exchange the messages the other has not
seen. We have conducted the following experiments.
(1) Evaluation of Community Construction. We first eval-
uated the proposed community construction algorithm
introduced in Section 3.3.
(2) GENI experiments. We deployed the systems on the
real-world GENI ORBIT testbed [35], [36] and tested
the performance using the MIT Reality trace. The GENI
ORBIT testbed contains 400 nodes with 802.11 wireless
cards. Nodes can communicate with each other through
the wireless interface. We used real trace to simulate
node mobility in ORBIT: two nodes can communicate
with each other only during the period of time when
they meet in the real trace.

(3) Event-driven experiments with real trace. We also con-
ducted event-driven experiments with two real traces.
(4) Evaluation of enhancement strategies. We evaluated the
effect of the enhancement strategies introduced in Sec-
tion 3.7, 3.8, and 3.9 through event-driven experiments.
(5) NS2 experiments with synthetic mobility. We conducted
experiments on NS-2 [37] using a community based mo-
bility model [38] to evaluate the applicability of SPOON
in different types of networks. Due to page limit, the
results are shown in Appendix A.

We disabled the intelligent prefetching and the multi-
copy forwarding (i.e., π = 1 and Ω = 1) in SPOON to
make the method comparable. Also, since the compari-
son methods can return only one file for a query, we set
Smax = 1 in SPOON. In each community, we used the
node having the most contacts with other communities
as the ambassador in SPOON and as the broker in
MOPS. We also set the node with the most contacts with
its community members as the coordinator in SPOON.

Besides the Haggle trace, we further tested with the
MIT Reality trace [39], in which 94 smart phones were
deployed among students and staffs at MIT to record
their encountering. The two traces last 0.34 million sec-
onds (Ms) and 2.56 Ms, respectively. As in MOPS, we
used 40% of the two traces to detect groups in which
nodes share frequent contacts. Here, we use “group” to
represent a group of nodes with frequent contacts, and
use “community” to represent a group of nodes with
common-interests and frequent contacts. We got 7 and 8
groups for the MIT Reality trace and the Haggle trace,
respectively. Then, since there is no real trace for P2P
over MANETs, we collected articles from different news
categories (e.g., sports, entertainment and technology)
from CNN.com and mapped them to the identified
communities. Each node contains 50 articles from the
news category for its community. Each node extracts its
interests from its stored files. The similarity threshold
was set to 70% in AGNES for file classification.

In experiments with the Haggle trace and the MIT
Reality trace, we set the initialization period to 0.09Ms
and 0.3Ms, the query generation period to 0.1Ms and
1Ms, and the TTL of a query to 0.15Ms and 1.2Ms,
respectively. Considering that people usually generate
queries according to their interests, we set 70% of total
queries searching for files located in the local community.
Each query is for an article randomly selected from the
article pool. We measured following metrics:
(1) Hit rate: the percentage of requests that are success-
fully delivered to the file holders.
(2) Average delay: the average delay of the successfully
delivered requests.
(3) Maintenance cost: the total number of all messages
except the requests, which are for routing information
establishment and update, or replication creation.
(4) Total cost: the total number of messages, including
maintenance messages and requests, generated in a test.

4.1 Evaluation of Community Construction
We first tested the effectiveness of the community con-
struction method in SPOON, denoted by SPOON-CC,

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

0.5

0.6

0.7

0.8

0.9

1

20 30 40 50

Si
m

ila
rit

y

h1

MIT Reality Haggle

(a) h2 = 30 and h1 = 20− 50.

0.5

0.6

0.7

0.8

0.9

1

20 30 40 50

Si
m

ila
rit

y

h2

MIT Reality Haggle

(b) h1 = 30 and h2 = 20− 50.

Fig. 3. Average similarity values with different h1 and h2.

in comparison with Active-CC and Centralized-CC. The
Active-CC selects three most active nodes to collect
node contacts and interests when they meet nodes. In
Centralized-CC, we purposely let a super node collect
all node contacts and interests timely. Both Active-CC
and Centralized-CC use AGNES to build communities
with the collected information.

Since there is no real trace about content sharing in
P2P MANETs, we tested in an indirect way. We first con-
ducted the group construction and content distribution
as previously described, and then removed the group
identity of each node. Then, we run the three methods
to create communities. After this, we matched each new
community to the most similar old community and
calculated the similarity value by N2

sm/(Np ∗Nn), where
Nsm is the number of common nodes, Np and Nn denote
the size of the old community and the new community,
respectively. In SPOON-CC, we set TG to 1 to ensure
interest closeness, and set h1 and h2 to 30. Active-CC and
Centralized-CC used the same threshold for granting
community membership as SPOON-CC. The average
similarities in SPOON-CC, Active-CC, and Centralized-
CC are 0.95, 0.87, and 1 with the Haggle trace and
0.91, 0.85, and 1 with the MIT trace, respectively. The
Centralized-CC has inferior performance since active
nodes can only collect information from nodes they have
met, leading to less accurate community construction.
Also, the performance of SPOON-CC is close to that
of Centralized-CC, which has the best performance in
theory. Such a result shows the effectiveness of SPOON-
CC in this test.

We further varied h1 and h2 from 20 to 50 to verify the
effectiveness of SPOON-CC. Figure 3(a) and 3(b) show
the average similarity values with the two traces. We see
that the similarity values are above 90% with various h1

and h2. Such results further confirm the effectiveness of
SPOON’s community construction algorithm to cluster
nodes with frequent contacts and similar interests in the
experiments with the two real traces.

4.2 GENI Experiments
Table 3 shows the results of the GENI experiments of
the six methods. From the table, we find that Epidemic
generates the highest hit rate with the highest total
cost and a low average delay. This is resulted from the
dissemination nature of broadcasting. SPOON produces
the second highest hit rate at the second lowest total
cost and relatively high average delay. This is because
SPOON utilizes both contact and content properties of
social networks to guide file querying. Therefore, it
can successfully locate queried files without the need

of many information exchanges and request messages,
though at a relatively slow speed. SPOON outperforms
MOPS in terms of hit rate, delay and cost. This is because
SPOON utilizes IRA for intra-communication and dedi-
cated ambassadors for inter-communication while MOPS
relies heavily on brokers. Also, MOPS only considers
node contact in routing, while SPOON considers both
content and contact. We will elaborate the reasons in
describing the trace driven simulation results later on.

TABLE 3
Efficiency and cost in the experiments on GENI

Method Hit Rate Ave. Delay (s) Maintenance Cost Total Cost
SPOON 0.671 152731.3 258764 275312
MOPS 0.629 163282.5 310131 320412
CacheDTN 0.5712 219021.4 283210 298123
PodNet 0.5932 183621 223218 240238
PDI+DIS 0.524 7418.9 298641 359841
Epidemic 0.8813 15621.2 669193 860475

CacheDTN has low hit rate, median cost and high
average delay. This is because though replicas are cre-
ated, queries wait for files passively on their originators,
leading to a long delay. Also, the replication of files to
network centers incurs a high cost. PodNet has low hit
rate for the same reason as CacheDTN. However, since
the replicas on each node are more catered for the inter-
ests of itself and nodes it has met, PodNet has slightly
higher hit rate than CacheDTN. Moreover, PodNet has
the lowest cost because nodes in it only replica files
they are interested in. PDI+DIS generates the lowest
hit rate at relatively high total cost and low average
delay. The low hit rate is caused by the poor mobility
resilience of route tables. As a result, only partial queries
are resolved quickly in the local broadcasting. Others
passively wait for file holders or updated routes and
usually cannot be resolved timely. Then, since we only
count the average delay of successful queries, PDI+DIS
has the lowest average delay.

TABLE 4
Memory usage in the experiments on GENI

Metric SPOON MOPS CacheDTN PodNet PDI+DIS Epid.
Query 36.8 44.1 48.4 45.3 13.1 1998
Table 10.4 16.9 50 50 15.6 0

We also evaluated the performance of each method
in memory utilization in terms of the average num-
ber of queries in the buffer (Query) and the aver-
age size of a content/neighbor table (Table). The re-
sults are shown in Table 4. For the average number
of buffered queries, we find that PDI+DIS<SPOON<
MOPS<PodNet<CacheDTN<Epidemic. In Epidemic,
nodes buffer the most queries since it tries to replicate
each request to all nodes in the system. CacheDTN and
PodNet have a lot of queries in memory since they does
not actively search for the queried files. Both SPOON
and MOPS keep one copy of each query during the
searching process. However, since SPOON completes file
query more quickly than MOPS (as shown in Table 3),
it buffers fewer quires in memory than MOPS. PDI+DIS
has the fewest number of queries on nodes because local
broadcasting just forwards queries without buffering.

Considering that each entry in the content table has
roughly the same size, we used the number of en-

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

tries in a table to represent memory usage. The re-
sults in Table 4 show that Epidemic<SPOON<MOPS<
PDI+DIS<CacheDTN=PodNet. Clearly, Epidemic does
not need memory on content table. SPOON stores the
second fewest content synopses because most nodes only
store the information of the same community members.
In MOPS, brokers store content synopses of all nodes
in their communities and consume a large amount of
memory. Therefore, MOPS produces high average num-
ber of stored content synopses. PDI+DIS stores a alrge
amount of content synopses because each node collects
content synopses from all nodes it has met and from all
received reply messages. CacheDTN and PodNet have
the highest number of entries in the content table since
we doubled the memory (i.e., 50 articles) for replicas. In
summary, the results in Table 3 and Table 4 show that
SPOON is superior over other methods in terms of hit
rate, average delay, total cost and memory efficiency.

4.3 Event-driven Experiments with Real Trace
In this experiments, we varied the total number of
queries from 5000 to 25000 to show the scalability of
each method in terms of the amount of queries.

4.3.1 Hit Rate
Figures 4(a) and 5(a) show the hit rate of each method
in the experiments with the Haggle trace and the MIT
Reality trace, respectively. We find that with both traces,
Epidemic can resolve almost all requests, while PDI+DIS
can only complete about 60% of requests. The hit rates
of SPOON, MOPS, PodNet, and CacheDTN reach about
75%, 70%, 68%, 67%, respectively. Epidemic has the
highest hit rate because of its broadcasting nature. In
SPOON, coordinators and ambassadors facilitate intra-
and inter- community searching, while the IRA actively
forwarded to the node with a high probability of meeting
the destination. MOPS only relies on the encountering
of mobile brokers for file searching. This probability is
lower than that of SPOON, resulting in a lower hit rate.
PodNet and CacheDTN lack active query forwarding,
leading to median hit rates. However, replicas on each
node are more catered to the interests of nodes it can
meet in PodNet, while CacheDTN just caches files on
network center. Therefore, PodNet has slightly higher
hit rate than CacheDTN. In PDI+DIS, many routes in
the content table expire quickly due to node mobility. As
a result, most successful requests are resolved through
the 3-hop broadcast. Others have to passively wait for
file holders or updated routes. Therefore, many requests
cannot be resolved, leading to a low hit rate.

4.3.2 Average Delay
Figures 4(b) and 5(b) show the average delays of the six
methods in the tests with the Haggle trace and the MIT
Reality trace, respectively. The delays follow PDI+DIS<
Epidemic<SPOON<MOPS<PodNet<CacheDTN.

Recall that we only measure the delay of successful
requests. In PDI+DIS, most successful requests are re-
solved in the initial 3-hop broadcasting stage. Therefore,
it generates the least average delay. In Epidemic, requests

are rapidly distributed to nodes at the cost of multiple
copies. As a result, requests can reach their destinations
quickly. MOPS exhibits a large delay because requests
in it usually have to wait for a long time for brokers
or same-community file holders. In contrast, SPOON
always tries to find an optimal neighbor to send a
request to the file holder with the interest-oriented rout-
ing algorithm. In addition, the designation of ambas-
sadors in SPOON increases the possibility of relaying
requests to foreign communities. As a result, SPOON
has lower average query delay than MOPS. PodNet and
CacheDTN generate high average delay because queries
only wait for file holders passively on their originators.
However, since PodNet create replicas that are more
likely to be encountered by nodes that are interested in
them, it has lower average delay than CacheDTN.

4.3.3 Cost
Figures 4(c) and 5(c) plot the maintenance costs of the six
methods in the experiments with the Haggle trace and
the MIT Reality trace, respectively. We see that when
the total number of queries is small, the six methods all
have low maintenance cost. When the total number of
queries is larger than 10000, the maintenance costs gen-
erally follow: Epidemic>PDI+DIS>MOPS>CacheDTN>
SPOON>PodNet.

In PodNet, nodes only replica interested files when
meet other nodes, leading to the least maintenance cost.
In SPOON, nodes exchange node vectors for the update
of history vector. Nodes also report its contents to coordi-
nators for file indexing. In MOPS, brokers exchange the
contents of all nodes from their home communities when
meeting each other. Therefore, MOPS produces slightly
higher cost than SPOON. The active replication of files
to network centers in CacheDTN leads to a high cost.
PDI+DIS needs to build content tables through reply
messages and disseminated queries, so it has higher
maintenance cost than above four methods when the
number of queries becomes large. In Epidemic, two
nodes need to inform each other requests already on
them, which causes a lot of information exchange and
leads to the highest maintenance cost.

We see that when the number of queries increases,
the maintenance costs of SPOON, PodNet, CacheDTN,
and MOPS remain stable while those of Epidemic and
PDI+DIS increase quickly. This is because the mainte-
nance costs of the former four methods are determined
by the information/replication exchanges among nodes
and are irrelevant with the number of queries, and those
of Epidemic and PDI+DIS are related to the total number
of queries. Such results prove the scalability of SPOON,
MOPS, CacheDTN, and PodNet in query amount.

Figures 4(d) and 5(d) show the total cost of each
method in the experiments with the Haggle trace and
the MIT Reality trace, respectively. In the two figures,
the results of MOPS, CacheDTN, SPOON, and PodNet
are shown to be very close. We then plot the total
costs of the four methods with 95% confidence inter-
val in Figure 6(a) and Figure 6(b) for better demon-
stration. Note we did not show the confidence inter-
val of other measurements because they have clear

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12

0.55

0.65

0.75

0.85

0.95

5 10 15 20 25

H
it

Ra
te

Number of Queries (x103)

SPOON MOPS Epidemic
PDI+DIS CacheDTN PodNet

(a) Hit rate.

0

10

20

30

40

50

5 10 15 20 25

A
ve

ra
ge

D
el

ay
(x

10
3

S)

Number of Queries (x103)

SPOON MOPS Epidemic
PDI+DIS CacheDTN PodNet

(b) Average delay.

2

4

6

8

10

12

14

5 10 15 20 25

M
ai

nt
en

an
ce

Co
st

Number of Queries (x103)

SPOON MOPS
Epidemic PDI+DIS
CacheDTN PodNet(x

10
5)

(c) Maintenance cost.

2

7

12

17

22

5 10 15 20 25

To
ta

lC
os

t
(x

10
5)

Number of Queries (x103)

SPOON MOPS
Epidemic PDI+DIS
CacheDTN PodNet

(d) Total cost.

Fig. 4. Performance in the event-driven experiments with Haggle trace.

0.55

0.70

0.85

1.00

5 10 15 20 25

H
it

Ra
te

Number of Queries (x103)

SPOON MOPS Epidemic
PDI+DIS CacheDTN PodNet

(a) Hit rate.

0

10

20

30

40

50

5 10 15 20 25

A
ve

ra
ge

D
el

ay
(x

10
4

S)

Number of Queries (x103)

SPOON MOPS Epidemic
PDI+DIS CacheDTN PodNet

(b) Average delay.

5

10

15

20

25

30

35

5 10 15 20 25

M
ai

nt
en

an
ce

Co
st

Number of Queries (x103)

SPOON MOPS
Epidemic PDI+DIS
CacheDTN PodNet

(x
10

5)

(c) Maintenance cost.

5

15

25

35

45

5 10 15 20 25

To
ta

lC
os

t
(x

10
5)

Number of Queries (x103)

SPOON MOPS
Epidemic PDI+DIS
CacheDTN PodNet

(d) Total cost.

Fig. 5. Performance in the event-driven experiments with MIT Reality trace.

2

3

4

5

6

7

5 10 15 20 25

To
ta

lC
os

t(
x1

05)

Number of Queries (x103)

SPOON MOPS
CacheDTN PodNet

(a) Haggle trace.

5

6

7

8

9

10

11

12

13

5 10 15 20 25

To
ta

lC
os

t(
x1

05)

Number of Queries (x103)

SPOON MOPS
CacheDTN PodNet

(b) MIT Reality trace.

Fig. 6. Total costs with confidence intervals.

difference and the page limit. We find that the total
costs follow Epidemic>PDI+DIS>MOPS>CacheDTN >
SPOON>PodNet, which is the same as Figures 4(c)
and 5(c). Such a result means that the maintenance cost
is the majority part of the total cost. With above results,
we conclude that SPOON has the highest overall file
searching efficiency in terms of hit rate, delay and cost.

4.4 Evaluation of the Enhancement Strategies
4.4.1 Multi-copy forwarding and Prefetching
We first evaluated the effect of the multi-copy forward-
ing and the intelligent file prefetching. We let “Multi-
copy forwarding” and “Prefetching” denote the SPOON
with the corresponding improvement strategy, respec-
tively, and compare them with the “Original” SPOON.
In Multi-copy forwarding, we let each query originator
distribute two copies of its query. In Prefetching, we let
each ambassador store top ten most popular files. We
varied the number of queries from 5000 to 25000. The
test results are shown in Tables 5 and 6.

We find that the multi-copy forwarding strategy with
only two copies enhances the hit rate greatly in the
experiments with both traces. This is because when
each query has two copies in the system, its probability
of encountering the node containing the queried file
increases. Such a result shows the effectiveness of the
multi-forwarding strategy. We also see from the two

tables that the file prefetching strategy slightly improves
the hit rate with both the two traces. This is because
1) we only configure two ambassadors per community,
and 2) the prefetched files only satisfy a small amount
of queries since most queries are for contents in lo-
cal community. The improvement on the hit rate still
demonstrates the effectiveness of the file prefetching
strategy and the improvement would be greater with
more ambassadors and greatly varied file popularity.

TABLE 5
Hit rate improvement with the Haggle trace.

of packets Original Prefetching Multi-copy forwarding
5000 0.75137 0.75313 0.779412
10000 0.75215 0.75633 0.780135
15000 0.73831 0.74274 0.778912
20000 0.74928 0.75242 0.774321
25000 0.74731 0.75201 0.779415

TABLE 6
Hit rate improvement with the MIT Reality trace.
of Packets Original Prefetching Multi-copy forwarding

5000 0.761371 0.7671675 0.780413
10000 0.759941 0.762841 0.770838
15000 0.760135 0.763762 0.772843
20000 0.756418 0.759957 0.773901
25000 0.751835 0.754837 0.771963

4.4.2 Querying-Completion and Loop-Prevention
We name SPOON without querying-completion as
“SPOON-OR”, SPOON with the querying-completion
only as “SPOON-QC”, and SPOON with both querying-
completion and loop-prevention as “SPOON-QCLP”. We
set the number of queries to 15000. In SPOON-OR,
queries do not stop searching until TTL expiration. We
also set the maximal number of files each query can
retrieve, Smax, to 2. To enable a query to find two files,
we purposely let each file have two copies in the system.
In order to alleviate the influence of the TTL on the
evaluation of the querying-completion, we enlarge the
TTL to the entire length of the used traces. The test
results are shown in Table 7.

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

13

We find from the table that SPOON-QCLP has slightly
higher hit rate than SPOON-QR and SPOON-QC. This is
because the loop-prevention avoids forwarding a query
to the same file holder repeatedly, thereby utilizing
forwarding opportunities more efficiently. SPOON-QC
has slightly lower hit rate than SPOON-OR because it
stops querying when Smax files are fetched. We also
see that the number of query forwarding operations
follow SPOON-OR>SPOON-QC>SPOON-QCLP. This is
because SPOON-OR does not stop querying until the
TTL is expired. SPOON-QC reduces the cost as it stops
querying after the specified number of files are located.
In SPOON-QCLP, the loop-prevention avoids redundant
forwarding to the same node, leading to less number of
forwarding operations and more efficient file searching.

TABLE 7
Effect of query-completion strategy.

Trace SPOON-OR SPOON-QC SPOON-QCLP
Hit Rate

Haggle 0.8741 0.8701 0.8813
MIT Reality 0.9091 0.9012 0.9406

Number of query forwarding operations
Haggle 569841 530516 304953

MIT Reality 721852 609863 249132

4.4.3 Node Churn Consideration
We name SPOON with and without a strategy to handle
node churn as “SPOON-CH” and “SPOON-NA”, respec-
tively. The total number of queries was set to 15000. The
period for beacon message was set to 100s and 1000s
with the Haggle trace and the MIT Reality trace, respec-
tively. In the test, NL nodes leave the system evenly
during the first 1/2 and 1/4 of the Haggle trace and
the MIT Reality trace, respectively. NL was varied from
5 to 25. We name the node that contains a file matching
a query as the primary matching node for the query. In
order to demonstrate the performance of SPOON in node
churn, for each queried file, we purposely created a file
that has 70% similarity with it in a non-leaving node in
the same community with the primary matching node.
We name this node as the secondary matching node.

The test results of voluntary and abrupt normal nodes
departure are shown in Figure 7. We see that in all cases,
when node churn consideration is applied, the hit rate
is increased and the average delay is decreased. This
is because with the node churn consideration, queries
failing to find their primary matching nodes (i.e., have
left the system) are further forwarded to their secondary
matching nodes while when there is no node churn
consideration, these queries just wait on coordinators
for the primary matching node, leading to a low hit
rate and a high average delay. We also observe that
when the number of leaving nodes increases, the hit
rate decreases and the average delay increases. This
is because leaving nodes can no longer relay queries
or departure notification/detection messages, leading to
lower hit rate and higher average delay.

TABLE 8
Effect of the detection of coordinator departures.

Trace w/o churn w/ churn w/ churn
consideration consideration-Ab consideration-Vo

Haggle 0.650643 0.684512 0.729942
MIT Reality 0.641053 0.677841 0.746841

We also tested the scenario in which only the coordi-
nator nodes leave the system. Since the total number of
coordinators is limited, we only randomly chose two co-
ordinators to leave the system during the test. We name
the scenarios when coordinators depart abruptly and
voluntarily as “w/ churn consideration-Ab” and “w/
churn consideration-Vo”, respectively. The test results
are shown in Table 8. We find that when coordinators
leave the system, the hit rate of SPOON with node churn
consideration is much higher than that without node
churn consideration. This is because the coordinator is
critical in both intra- and inter- file searching in SPOON.
Without node churn consideration, queries just wait for
coordinators until their TTL expiration if they need to be
forwarded to coordinators, leading to a low hit rate and
a high average delay. Above results show that SPOON’s
strategies for node churn consideration can improve the
system performance at a low cost.

5 CONCLUSION
In this paper, we propose a Social network based P2P

cOntent file sharing system in disconnected mObile ad-
hoc Networks (SPOON). SPOON considers both node
interest and contact frequency for efficient file shar-
ing. We introduce four main components of SPOON:
Interest extraction identifies nodes’ interests; Community
construction builds common-interest nodes with frequent
contacts into communities. The node role assignment
component exploits nodes with tight connection with
community members for intra-community file searching
and highly mobile nodes that visit external communi-
ties frequently for inter-community file searching; The
interest-oriented file searching scheme selects forwarding
nodes for queries based on interest similarities. SPOON
also incorporates additional strategies for file prefetch-
ing, querying-completion and loop-prevention, and node
churn consideration to further enhance file searching ef-
ficiency. The system deployment on the real-world GENI
Orbit platform and the trace-driven experiments prove
the efficiency of SPOON. In future, we will explore how
to determine appropriate thresholds in SPOON, how
they affects the file sharing efficiency, and how to adapt
SPOON to larger and more disconnected networks.

ACKNOWLEDGMENTS
This research was supported in part by U.S. NSF grants
CNS-1249603, OCI-1064230, CNS-1049947, CNS-1156875,
CNS-0917056 and CNS-1057530, CNS-1025652, CNS-
0938189, CSR-2008826, CSR-2008827, Microsoft Research
Faculty Fellowship 8300751, and U.S. Department of
Energy’s Oak Ridge National Laboratory including the
Extreme Scale Systems Center located at ORNL and DoD
4000111689. An early version of this work was presented
in the Proceedings of MASS’11 [40]

REFERENCES
[1] “The state of the smartphone market,” http://www.allaboutsymb

ian.com/news/item/6671 The State of the Smartphone Ma.php.
[2] “Next Generation Smartphones Players, Opportunities & Fore-

casts 2008-2013,” Juniper Research, Tech. Rep., 2009.

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14

0.50
0.55
0.60
0.65
0.70
0.75

Voluntary: SPOON NA
Voluntary: SPOON CH

0.60
0.65
0.70
0.75
0.80

36000 18000 12000 9000 7200
Periodical time for a node departure (s)

Abrupt: SPOON NA
Abrupt: SPOON CH

H
it

Ra
te

(a) Hit rate with Haggle trace.

60
65
70
75
80
85
90 Voluntary: SPOON NA

Voluntary: SPOON CH

55
60
65
70
75
80
85

36000 18000 12000 9000 7200
Periodical time for a node departure (s)

Abrupt: SPOON NA
Abrupt: SPOON CH

A
ve

ra
ge

D
el

ay
(x

10
3

S)

(b) Ave. delay with Haggle trace.

0.5

0.6

0.7 Voluntary: SPOON NA
Voluntary: SPOON CH

0.5

0.6

0.7

120000 60000 40000 30000 24000
Periodical time for a node departure (s)

Abrupt: SPOON NA
Abrupt: SPOON CHH

it
Ra

te

(c) Hit rate with MIT trace.

55

60

65

70

75

Voluntary: SPOON NA
Voluntary: SPOON CH

50
55
60
65
70

120000 60000 40000 30000 24000

Periodical time for a node departure (s)

Abrupt: SPOON NA
Abrupt: SPOON CH

A
ve

ra
ge

D
el

ay
(x

10
3

S)

(d) Ave. delay with MIT trace.

Fig. 7. Performance with voluntary and abrupt node departures.

[3] “A Market Overview And Introduction to GyPSii,”
http://corporate.gypsii.com/docs/MarketOverview.

[4] “Bittorrent,” http://www.bittorrent.com/.
[5] “Kazaa,” http://www.kazaa.com.
[6] M. Papadopouli and H. Schulzrinne, “A Performance Analysis of

7DS: a Peer-to-Peer Data Dissemination and Prefetching Tool for
Mobile Users,” Advances in wired and wireless communications, IEEE
Sarnoff Symposium Digest, 2001.

[7] A. Klemm, C. Lindemann, and O. Waldhorst, “A Special-Purpose
Peer-to-Peer File Sharing System for Mobile Ad Hoc Networks,”
in Proc. of VTC, 2003.

[8] C. Lindemann and O. P. Waldhort, “A Distributed Search Service
for Peer-to-Peer File Sharing,” in Proc. of P2P, 2002.

[9] D. W. A. Hayes, “Peer-to-Peer Information Sharing in a Mobile
Ad hoc Environment,” in Proc. of WMCSA, 2004.

[10] J. B. Tchakarov and N. H. Vaidya, “Efficient Content Location in
Wireless Ad Hoc Networks,” in Proc. of MDM, 2004.

[11] C. Hoh and R. Hwang, “P2P File Sharing System over MANET
based on Swarm Intelligence: A Cross-Layer Design,” in Proc of
WCNC, 2007, pp. 2674–2679.

[12] T. Repantis and V. Kalogeraki, “Data Dissemination in Mobile
Peer-to-Peer Networks,” in Proc. of MDM, 2005.

[13] Y. Huang, Y. Gao, K. Nahrstedt, and W. He, “Optimizing file
retrieval in delay-tolerant content distribution community,” in
Proc. of ICDCS, 2009.

[14] W. Gao, G. Cao, A. Iyengar, and M. Srivatsa, “Supporting cooper-
ative caching in disruption tolerant networks.” in Proc. of ICDCS,
2011.

[15] J. Reich and A. Chaintreau, “The age of impatience: optimal repli-
cation schemes for opportunistic networks.” in Proc. of CoNEXT,
2009.

[16] V. Lenders, M. May, G. Karlsson, and C. Wacha, “Wireless ad hoc
podcasting,” Mobile Computing and Communications Review, 2008.

[17] K. Chen and H. Shen, “Global optimization of file availability
through replication for efficient file sharing in manets.” in Proc.
of ICNP, 2011.

[18] F. Li and J. Wu, “MOPS: Providing Content-Based Service in
Disruption-Tolerant Networks,” in Proc. of ICDCS, 2009.

[19] P. Costa, C. Mascolo, M. Musolesi, and G. P. Picco, “Socially-aware
Routing for Publish-Subscribe in Delay-Tolerant Mobile Ad Hoc
Networks,” IEEE JSAC, vol. 26, no. 5, pp. 748–760, 2008.

[20] E. Yoneki, P. Hui, S. Chan, and J. Crowcroft, “A Socio-aware
Overlay for Publish/subscribe Communication in Delay Tolerant
Networks,” in Proc. of MSWiM, 2007.

[21] C. Boldrini, M. Conti, and A. Passarella, “Contentplace: Social-
aware data dissemination in opportunistic networks,” in Proc. of
MSWIM, 2008.

[22] A. Fast, D. Jensen, and B. N. Levine, “Creating social networks
to improve peer-to-peer networking,” in Proc. of KDD, 2005.

[23] A. Iamnitchi, M. Ripeanu, and I. T. Foster, “Small-world file-
sharing communities,” in Proc. of INFOCOM, 2004.

[24] M. Mcpherson, “Birds of a feather: Homophily in social net-
works,” Annual Review of Sociology, vol. 27, no. 1, 2001.

[25] E. Yoneki, P. Hui, S. Chan, and J. Crowcroft, “A socio-aware
overlay for publish/subscribe communication in delay tolerant
networks,” in Proc. of MSWiM, 2007.

[26] A. Chaintreau, P. Hui, J. Scott, R. Gass, J. Crowcroft, and C. Diot,
“Impact of human mobility on opportunistic forwarding algo-
rithms,” IEEE TMC, vol. 6, no. 6, pp. 606–620, 2007.

[27] V. Carchiolo, M. Malgeri, G. Mangioni, and V. Nicosia, “An
adaptive overlay network inspired by social behavior,” Journal
of Parallel and Distributed Computing (JPDC), 2010.

[28] A. Iamnitchi, M. Ripeanu, E. Santos-Neto, and I. Foster, “The
small world of file sharing,” IEEE TPDS, 2011.

[29] H. Schtze and C. Silverstein, “Projections for Efficient Document
Clustering,” in Proc. of SIGIR, 1997, pp. 74–81.

[30] P. Bonacich, “Factoring and Weighting Approaches to Status
Scores and Clique Identification,” J. of Math.Sociol., 1972.

[31] L. Kaufman and P. Rousseeuw, Finding Groups in Data: An Intro-
duction to Cluster Analysis. New York, USA: Wiley, 1990.

[32] E. Daly and M. Haahr, “Social network analysis for routing in
disconnected delay-tolerant manets,” in Proc. of MobiHoc, 2007.

[33] W. Hsu, T. Spyropoulos, K. Psounis, and A. Helmy, “Modeling
time-variant user mobility in wireless mobile networks,” in Proc.
of INFOCOM, 2007.

[34] A. Vahdat and D. Becker, “Epidemic routing for partially-
connected ad hoc networks,” Duke University, Tech. Rep., 2000.

[35] “GENI project,” http://www.geni.net/.
[36] “Orbit,” http://www.orbit-lab.org/.
[37] “The network simulator ns-2,” http://www.isi.edu/nsnam/ns/.
[38] M. Musolesi and C. Mascolo, “Designing Mobility Models Based

on Social Network Theory,” ACM SIGMOBILE Comput. and Comm.
Rev., 2007.

[39] N. Eagle, A. Pentland, and D. Lazer, “Inferring Social Network
Structure using Mobile Phone Data,” PNAS, vol. 106, no. 36, 2009.

[40] K. Chen and H. Shen, “Leveraging social networks for p2p
content-based file sharing in mobile ad hoc networks,” in Proc.
of MASS, 2011.

Kang Chen Kang Chen received the BS degree
in Electronics and Information Engineering from
Huazhong University of Science and Technol-
ogy, China in 2005, and the MS in Communica-
tion and Information Systems from the Gradu-
ate University of Chinese Academy of Sciences,
China in 2008. He is currently a Ph.D student
in the Department of Electrical and Computer
Engineering at Clemson University. His research
interests include mobile ad hoc networks and
delay tolerant networks.

Haiying Shen Haiying Shen received the BS
degree in Computer Science and Engineering
from Tongji University, China in 2000, and the
MS and Ph.D. degrees in Computer Engineering
from Wayne State University in 2004 and 2006,
respectively. She is currently an Assistant Pro-
fessor in the Department of Electrical and Com-
puter Engineering at Clemson University. Her
research interests include distributed computer
systems and computer networks, with an em-
phasis on P2P and content delivery networks,

mobile computing, wireless sensor networks, and grid and cloud com-
puting. She was the Program Co-Chair for a number of international
conferences and member of the Program Committees of many leading
conferences. She is a Microsoft Faculty Fellow of 2010 and a member
of the IEEE and ACM.

Haibo Zhang Haibo Zhang received the BS de-
gree in Computer Science and Technology from
Shanghai Jiao Tong University, China in 2008,
and the MS in Computer Science from University
of Arkansas, Fayetteville in 2010. He’s currently
a Software Engineer in Cerner Corporation that
makes software for hospitals and medical insti-
tutions to support meaningful use of information
system.

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

